首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Trees with sufficient nutrition are known to allocate carbon preferentially to aboveground plant parts. Our global study of 49 forests revealed an even more fundamental carbon allocation response to nutrient availability: forests with high-nutrient availability use 58?±?3% (mean?±?SE; 17 forests) of their photosynthates for plant biomass production (BP), while forests with low-nutrient availability only convert 42?±?2% (mean?±?SE; 19 forests) of annual photosynthates to biomass. This nutrient effect largely overshadows previously observed differences in carbon allocation patterns among climate zones, forest types and age classes. If forests with low-nutrient availability use 16?±?4% less of their photosynthates for plant growth, what are these used for? Current knowledge suggests that lower BP per unit photosynthesis in forests with low- versus forests with high-nutrient availability reflects not merely an increase in plant respiration, but likely results from reduced carbon allocation to unaccounted components of net primary production, particularly root symbionts.  相似文献   

3.
Optimal size of storage for recovery after unpredictable disturbances   总被引:18,自引:0,他引:18  
Terrestrial plants often live in environments in which above-ground photosynthetic organs (production parts) are suddenly removed by unpredictable disturbances, such as fire, frost, desiccation, pathogen attack, breakage by wind and trampling, or herbivory by insects and mammals. We study the optimal growth schedule for a plant having a below-ground storage organ that is used for recovery (or regrowth) of photosynthetic organs after disturbances. We assume the following: (1) the daily production rate increases with the production part size, but saturates for large size due to shading and local resource depletion, (2) disturbances occur randomly and remove all the aerial parts, (3) plants are finally killed by fatal disturbances that also occur randomly and (4) the plant chooses the pattern of growth, reproduction, storage and recovery after disturbances by reallocation of stored material to maximize the total lifetime reproductive success. The model is analysed by stochastic dynamic programming. The results are as follows: (1) the ratio of storage size to production part size (S/F ratio) is large if the longevity is large and if the disturbance rate is large but a little smaller than the productivity coefficient, (2) the S/F ratio is larger for mature plants than for small immature plants, (3) after disturbances, the above-ground production part recovers relatively quickly, but reproductive activity is depressed until storage size recovers and (4) the variations over time and between habitats differing in disturbance frequency are larger for storage size and for reproductive activity than for production part size. These tendencies are more pronounced for a linear production function (with initial linear increase followed by a sudden stop), but less so for a hyperbolic production function (with a gradually decreasing slope). We also discuss the growth and regrowth behaviour of plants adapted to a disturbance frequency growing under one different disturbance frequency.  相似文献   

4.
贺丹妮  杨华  温静  谢榕 《应用生态学报》2020,31(6):1916-1922
2019年8月在云冷杉针阔混交林样地(0.36 hm2),对48个林隙及幼苗(0.2<更新高度RH<1 m)、幼树(RH≥1 m,胸径DBH<5 cm)进行调查,分析林隙大小(<20 m2,小;20~50 m2,中;50~120 m2,大;>120 m2,特大)对林隙内红松、鱼鳞云杉及冷杉幼苗幼树密度和生长指标(高、基径)的短期影响,并采用核密度估计法分析其空间分布规律。结果表明: 云冷杉更新的密度通常随林隙增大而降低,仅对幼树影响显著,小林隙下云冷杉幼树密度分别为0.34和1.74株·m-2,红松密度不受林隙大小的影响。林隙大小对冷杉幼苗幼树生长指标的影响最大,对红松影响最小,平均最大值多出现在大林隙。红松和云杉幼树的基径和树高最大值均分布在小、中、大林隙东北部,在特大林隙中转移至冠空隙西北部。小林隙有助于幼苗的建立和萌发,可通过择伐冷杉创造小林隙,随后扩大林隙面积(>50 m2)促进幼树生长,需要持续监测来确定林隙大小对森林更新的长期影响。  相似文献   

5.
张建新  王天铎 《生态学报》1990,10(3):243-248
本工作建立了一个一年生植物群体的生长模型,利用以梯度法为基础的离散系统最优控制的计算方法,计算并分析了一年生植物群体光合产物的营养器官间分配的最优策略,以及这一策略对植物群体最大生长速率和消光系数的依赖关系。用Pontryagin最小值原理和奇异最优控制的条件证明了光合产物的最优分配方法是:在营养和生殖生长并行阶段,群体叶片的死亡量恰好等于新形成量,植物干重随时间线性增加。  相似文献   

6.
Z. Wang  J. Fu  M. He  Q. Tian  H. Cao 《Biologia Plantarum》1997,39(3):379-385
Source-sink relationship, which was influenced by both genotype and environmental factors, contributed to the variation in photosynthesis and photosynthate partitioning of wheat. Source reduction by partial defoliation increased leaf net photosynthetic rate (PN), and sink reduction decreased PN of irrigated wheat. However, the change in PN varied among genotypes. Source reduction enhanced photosynthate translocation into grain in irrigated wheat. However, the enhancement was more evident in cv. Lumai 215953 than incv. Lumai 15. Sink reduction had little effect on the translocation of photosynthate into grain in cv. Lumai 15, but decreased the translocation of photosynthate into grain and increased it into stem in cv. Lumai 215953. In rainfed, non-irrigated wheat, the source or sink manipulation influenced PN only slightly. The source reduction decreased the partitioning of photosynthates into the upper parts (including grains) of plant. However, very little effects of sink reduction on the production of photosynthates occurred in rainfed wheat. This showed that grain sink size was not a factor limiting the production of photosynthates, but controlled the partitioning of photosynthates. Sink reduction decreased photosynthate translocation into grains, and increased it into upper parts of rainfed wheat plant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
鼎湖山林窗形成特征及其对幼树组成和多样性的影响   总被引:10,自引:1,他引:9  
在对鼎湖山自然保护区植物群落动态长期监测的基础上,研究了保护区内各林窗成因、大小和年龄等形成特征,以及地形位置、附近同种的成年乔木等其它相关因子,探讨其对幼树组成和多样性的影响。林窗主要由山体滑坡、暴风雨或雷击大树、虫害等原因形成。结果显示,幼树组成、密度和多样性随林窗形成方式而异,因耐荫能力的差异使出现在林窗的植物不尽相同。林窗大小、年龄和地形位置的变化,导致植物更新生态位的分化,使幼树在林窗内分布形成同源种团。  相似文献   

8.
Co-evolution of seed size and seed predation   总被引:3,自引:0,他引:3  
Using the evolutionarily stable strategy (ESS) approach in a model for the co-evolution of seed size and seed predation, I show that seed size variation within individual plants is favoured if there is a trade-off in the predator's attack rate for different seed sizes. A single seed size is not evolutionarily stable because a predator that is optimally adapted to one particular seed size cannot prevent invasion by plants with a different seed size. The model generates the following predictions. The ESS consists of a continuous range of seed sizes. Small seeds tend to be attacked more frequently than big seeds. Plants with many resources and plants with low (frequency-independent) juvenile mortality have more variable seeds than plants with few resources and a high juvenile mortality. Seed size variation is higher in fluctuating populations regulated by seed predation alone than in stable populations (partially) regulated by seedling competition. Predator searching behaviour does not directly affect the ESS seed size range, but may have an indirect effect by affecting population stability or the significance of seedling competition as a population regulating mechanism. Moreover, seed size distributions are found to be more skewed in favour of small seeds if predation is spatially non-uniform than if predation is more even. Application of the model to systems of several co-evolving plant and predator species is discussed.  相似文献   

9.
测定了温州蜜柑 (CitrusunshiuMarc .cv .Miyagawawase)果实发育进程中干鲜重、果皮光合速率和叶绿素含量的变化 ,并用14 CO2 示踪技术研究了果皮和叶同化生成的光合产物在果实内的运输分配特性。结果表明 :果皮光合速率与叶绿素含量有关 ,随着叶绿素含量的下降 ,果实光合速率也快速下降。在果实完熟之前 ,即使是当果皮积累的干重超过汁囊时 ,叶同化产物仍主要分配到汁囊中 ;而在完熟阶段 ,果皮光合速率接近零 ,果皮成了叶同化产物的主要库。果皮的同化产物 ,主要保留在果皮中 ,输入到汁囊的比率随果实发育而下降 ,但高峰时也有 12 %输入汁囊。与对照相比 ,果实遮光处理后降低了果皮与汁囊的干重和含糖量。上述结果表明果皮光合产物主要用于果皮自身的发育并能减少对叶光合产物的依赖 ,同时也能部分增加汁囊糖的积累  相似文献   

10.
以秦岭南坡栓皮栎天然次生林间伐后形成的不同大小林窗实生苗为材料,采用典型抽样法调查林窗大小对栓皮栎实生苗枝系构型、叶片特征及其垂直分布的影响.结果表明: 林窗大小显著影响了栓皮栎实生苗的地径、树冠面积,林窗大小与地径呈显著正相关,与树冠面积呈显著负相关;林窗大小对实生苗苗高、冠长、树冠率均无显著影响;实生苗总体分枝率、逐步分枝率、枝径比均表现为大林窗>中林窗>小林窗>林下,不同林窗大小实生苗一级枝在垂直方向上主要分布于干的中、上部,直径较大的一级枝主要分布在中下部,一级枝倾角均随苗高的增高呈先增加后降低的趋势;随着林窗面积的增大,实生苗的叶长、叶宽和单叶面积逐渐〖JP2〗下降,平均单株叶数、相对高度上的总叶数增加,叶长宽比在不同大小林窗下均保持稳定,相对叶数均在干的中上部分布较多,叶面积指数与相对叶总数的变化一致;中林窗实生苗地径与大林窗无显著差异,但苗高较高,利于栓皮栎种群更新及培育优质干材.在栓皮栎林经营管理过程中,需确定合适的间伐强度增加中林窗数量,促进栓皮栎实生苗更新以及培育优质干材.  相似文献   

11.
Abstract. Non-native perennial grasses form 30% of the live understory biomass in seasonally dry, submontane forests in Hawaii Volcanoes National Park, yet their effects on native species are unknown. We removed these grasses from plots of 20 m × 20 m in 1991 and maintained removal and control areas over the next three years. Two fast growing shrub species, Dodonaea viscosa and Osteomeles anthylidifolia, increased in size significantly more in removal areas than in controls. Individuals of the most abundant shrub species, Styphelia tameiameia showed no net growth response to grass removal. They did, however, change their architecture: many branches along the mid and upper sections of the main trunk died and a proliferation of new leaves and shoots occurred in the lower 40 cm of trunk. Basal diameter increase was very small in Metrosideros polymorpha, the dominant tree species in these sites. All species except Styphelia had significantly increased leaf tissue nitrogen in removal plots by 18 months after removal when compared to shrubs in control areas suggesting that removal plot shrubs had greater access to soil nitrogen. Available soil-N pools, which were generally higher in the removal plots, support this interpretation. Light levels near the soil surface were also higher where grasses were removed than where they were present which may have contributed to increased shrub growth. By contrast, soil moisture was consistently lower where grasses were removed than where they were still present. Shrub tissue carbon isotope values were consistent with the interpretation that shrubs in removal plots had less rather than more water available to them. Hence, the increased growth observed in removal plot shrubs could not be due to release from moisture competition. Lastly, our results showed that seedlings of all woody species except Metrosideros were significantly more abundant in removal plots at both one and three years after removal and initially high sapling mortality was balanced by high recruitment into the sapling class. We believe that over time this will result in increased densities of native shrubs if grasses are kept out. With the presence of grasses, shrub growth in these woodlands is reduced and biomass is shifting towards grasses.  相似文献   

12.
膝柄木是我国极度濒危植物,也是广西滨海过渡带天然植被的重要组成树种.为了解光因子对膝柄木天然更新的限制影响,该文对林缘、林窗、林下三种不同光照生境下膝柄木幼树的生理和生长指标的年际变化特征进行了研究.结果表明:(1)光合有效辐射不足影响了膝柄木幼树的生长.林下幼树的地径、株高和叶面积增长量显著降低,而生长于光照充足林缘...  相似文献   

13.
The importance of light acquisition and utilization by individuals in intraspecific competition was evaluated by determining growth and photosynthesis of individual plants in a dense monospecific stand of an annual, Xanthium canadense. Photosynthesis of individual plants in the stand was calculated using a canopy photosynthesis model in which leaf photosynthesis was assumed to be function of leaf nitrogen content and light availability. The estimated photosynthetic rates of individuals were strongly correlated with the measured growth rates. Photosynthetic rates per unit aboveground mass (RPR, relative photosynthetic rate) increased with increasing aboveground mass, suggesting asymmetric (one-sided) competition in the stand. However, larger individuals had similar RPRs, suggesting symmetric (two-sided) competition. These results were consistent with the observation that size inequality over the whole stand increased with growth, but it remained stable among the larger individuals. The RPR of an individual was calculated as the product of absorbed photon flux per unit aboveground mass (Φmass) and light use efficiency (LUE, photosynthesis per unit absorbed photon flux). Φmass indicates the efficiency of light acquisition, and was higher in larger individuals in the stand, while LUE was highest in individuals with intermediate aboveground mass. LUE depends on leaf nitrogen content. At an early stage, leaf nitrogen contents of smaller individuals were similar to those that maximize LUE. Light availability to smaller individuals decreased as they grew, while their nitrogen contents did not change markedly, which decreased their LUE. We concluded that asymmetric competition among individuals in the stand resulted mainly from lower efficiencies in both light acquisition and light use by smaller individuals. Received: 31 January 1998 / Accepted: 12 November 1998  相似文献   

14.
Rainfall, fire and competition are emphasized as determinants of the density and basal area of woody vegetation in savanna. The semi‐arid savannas of Australia have substantial multi‐year rainfall deficits and insufficient grass fuel to carry annual fire in contrast to the mesic savannas in more northern regions. This study investigates the influence of rainfall deficit and excess, fire and woody competition on the population dynamics of a dominant tree in a semi‐arid savanna. All individuals of Eucalyptus melanophloia were mapped and monitored in three, 1‐ha plots over an 8.5 year period encompassing wet and dry periods. The plots were unburnt, burnt once and burnt twice. A competition index incorporating the size and distance of neighbours to target individuals was determined. Supplementary studies examined seedling recruitment and the transition of juvenile trees into the sapling layer. Mortality of burnt seedlings was related to lignotuber area but the majority of seedlings are fire resistant within 12 months of germination. Most of the juveniles (≤1 cm dbh) of E. melanophloia either died in the dry period or persisted as juveniles throughout 8.5 years of monitoring. Mortality of juveniles was positively related to woody competition and was higher in the dry period than the wet period. The transition of juveniles to a larger size class occurred at extremely low rates, and a subsidiary study along a clearing boundary suggests release from woody competition allows transition into the sapling layer. From three fires the highest proportion of saplings (1–10 cm dbh) reduced to juveniles was only 5.6% suggesting rates of ‘top‐kill’ of E. melanophloia as a result of fire are relatively low. Girth growth was enhanced in wet years, particularly for larger trees (>10 cm dbh), but all trees regardless of size or woody competition levels are vulnerable to drought‐induced mortality. Overall the results suggest that variations in rainfall, especially drought‐induced mortality, have a much stronger influence on the tree demographics of E. melanophloia in a semi‐arid savanna of north‐eastern Australia than fire.  相似文献   

15.
Local tree species diversity is maintained in part by conspecific negative density dependence (CNDD). This pervasive mechanism occurs in a variety of forms and ecosystems, but research to date has been heavily skewed toward tree seedling survival in tropical forests. To evaluate CNDD more broadly, we investigated how sapling growth rates were affected by conspecific adult neighbors in a fully mapped 25.6 ha temperate deciduous forest. We examined growth rates as a function of the local adult tree neighborhood (via spatial autoregressive modeling) and compared the spatial positioning of faster‐growing and slower‐growing saplings with respect to adult conspecific and heterospecific trees (via bivariate point pattern analysis). In addition, to determine whether CNDD‐driven variation in growth rates leaves a corresponding spatial signal, we extended our point pattern analysis to a static, growth‐independent comparison of saplings and the next larger size class. We found that negative conspecific effects on sapling growth were most prevalent. Five of the nine species that were sufficiently abundant for analysis exhibited CNDD, while only one species showed evidence of a positive conspecific effect, and one or two species, depending on the analysis, displayed heterospecific effects. There was general agreement between the autoregressive models and the point pattern analyses based on sapling growth rates, but point pattern analyses based on single‐point‐in‐time size classes yielded results that differed markedly from the other two approaches. Our work adds to the growing body of evidence that CNDD is an important force in temperate forests, and demonstrates that this process extends to sapling growth rates. Further, our findings indicate that point pattern analyses based solely on size classes may fail to detect the process of interest (e.g., neighborhood‐driven variation in growth rates), in part due to the confounding of tree size and age.  相似文献   

16.
Sami Aikio 《Oikos》2004,104(1):51-58
Individuals allocate resources to the expansion of their foraging area and those resources are no longer available for the traits that determine how well those individuals are able to protect their foraging area against competitors. The resulting trade‐off between foraging area size and the traits associated with the ability to compete for the resources within the foraging area applies to ecological scenarios as different as territorial defence by individuals and colonies, and light competition in plants. Whether the trade‐off affects species performance in competition for resources at the area of overlap between foraging areas depends on the symmetry of resource division. In symmetric competition resources are divided equally between the competitors, while in asymmetric competition the individual with the smallest foraging area, and consequently the greatest competitive ability, gains all the resources. Competition may also be a combination of the symmetric and asymmetric processes. I studied the effects of competitive asymmetry on population dynamics and coexistence of two annual species with different sized foraging areas using an individual‐based spatially explicit simulation model. Symmetric competition favoured the species with the larger foraging area and did not allow coexistence. Competitive asymmetry favoured the species with smaller foraging area and allowed coexistence, which was due to the consequences of losing an asymmetric competition being more severe than losing a symmetric competition. The mechanism of coexistence is the larger foraging area's superiority in low population densities (little competition) and the smaller foraging area's ability to win a large foraging area when competition was intense. Competitive asymmetry and small size of both foraging areas led to population dynamics dominated by long‐term fluctuations of small intensity. Symmetric competition and large size of the foraging areas led to large short‐term fluctuations, which often resulted in the extinction of one or both of the species due to demographic stochasticity.  相似文献   

17.
《Annals of botany》1996,77(6):565-571
The canopy structure in terms of the vertical distribution of leaf mass and the degree of asymmetry of competition between individual trees was studied in two types of forest stand in Hokkaido, northern Japan: a naturally regenerated stand ofBetulaspp. and an artificial plantation ofPicea abies.The canopy structure in theBetulastand was more hierarchical; larger individuals were not heavily shaded even in the lowest part of their crowns and smaller individuals were heavily shaded by their larger neighbours. The canopy structure in thePiceastand was less hierarchical; even larger individuals were shaded in the lowest part of their crowns and smaller individuals were not heavily shaded by their neighbours. Application of the general formula of size-dependent mean growth rate revealed that competition in theBetulastand was more one-sided than that in thePiceastand. This result was consistent with the trends in the change over time in size equality in both stands.Even if competition is mediated by light, which often makes competition one-sided, the degree of one-sidedness in competition can be variable depending on canopy structure.  相似文献   

18.
We measured the reproductive output of Takydromus septentrionalis collected over 5 years between 1997 and 2005 to test the hypothesis that reproductive females should allocate an optimal fraction of accessible resources in a particular clutch and to individual eggs. Females laid 1–7 clutches per breeding season, with large females producing more, as well as larger clutches, than did small females. Clutch size, clutch mass, annual fecundity, and annual reproductive output were all positively related to female size (snout–vent length). Females switched from producing more, but smaller eggs in the first clutch to fewer, but larger eggs in the subsequent clutches. The mass-specific clutch mass was greater in the first clutch than in the subsequent clutches, but it did not differ among the subsequent clutches. Post-oviposition body mass, clutch size, and egg size showed differing degrees of annual variation, but clutch mass of either the first or the second clutch remained unchanged across the sampling years. The regression line describing the size–number trade-off was higher in the subsequent clutch than in the first clutch, but neither the line for first clutch, nor the line for the second clutch varied among years. Reproduction retarded growth more markedly in small females than in large ones. Our data show that: (1) trade-offs between size and number of eggs and between reproduction and growth (and thus, future reproduction) are evident in T. septentrionalis ; (2) females allocate an optimal fraction of accessible resources in current reproduction and to individual eggs; and (3) seasonal shifts in reproductive output and egg size are determined ultimately by natural selection.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 315–324.  相似文献   

19.
Woody plant encroachment is a common consequence of disturbance in savannas. Grazers and browsers interfere with sapling establishment dynamics by direct consumption of plant tissue, changing soil nutrient status (through fertilization and trampling) and grass competition. Studies evaluating the effects of herbivory on sapling establishment have mostly been extrapolated from single species. In a controlled field experiment, we studied the effects of clipping (simulating grazing and browsing), nutrients, grass competition, and their interactive effects on sapling survival and growth of four dominant humid and four dominant mesic savanna species. We conducted this experiment in a humid South African savanna. We found no effects on sapling survival by the treatments provided. However, clipped saplings of all species increased their investment in relative growth rate of stem length (RGRL). Clipping had a greater negative impact on relative growth rate of more humid than mesic species in terms of stem diameter (RGRD), total dry biomass and proportion of leaf biomass. Nutrients had a positive effect on the RGRL and sapling biomass of three mesic species. Positive effects of nutrients on RGRL of one humid and two mesic species were observed in their clipped saplings only. Grass competition had a strong negative impact on all growth parameters measured. Clipped saplings of one humid and two mesic species had lower RGRL with grass competition whereas intact saplings showed no significant response. After clipping, humid savanna species were more vulnerable to grass competition than mesic species, with reduced ability to use nutrients. In conclusion, herbivory increases sapling vulnerability to grass competition, with humid species being more susceptible than mesic species, indicating that woody-plant control strategies are more likely to be effective in humid savannas.  相似文献   

20.
Photosynthetic rate and yield formation in different maize hybrids   总被引:1,自引:0,他引:1  
The relationship between photosynthetic rate and yield formation processes of the newer and older maize hybrids were investigated. Leaf area at flowering (source) and kernel number (sink) of the newer hybrids were greater than the older ones although their light-saturated photosynthetic rate (Psat) were not greater than the older ones before flowering. After flowering, Psat and chlorophyll content of the newer hybrids declined more slowly than the older ones. They not only distributed almost all photosynthates produced after flowering to grain but also reallocated some reserved photosynthates produced before flowering to grain. The newer hybrids exhibited greater grain mass than the older ones mostly because they could optimally regulate the photosynthetic rate and yield formation processes to maximize grain mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号