首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In higher eukaryotes, the 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units composed of a coding region and a non-transcribed spacer sequence (NTS). These tandem arrays can be found on either one or more chromosome pairs. 5S rDNA copies from the tilapia fish, Oreochromis niloticus, were cloned and the nucleotide sequences of the coding region and of the non-transcribed spacer were determined. Moreover, the genomic organization of the 5S rDNA tandem repeats was investigated by fluorescence IN SITU hybridization (FISH) and Southern blot hybridization. Two 5S rDNA classes, one consisting of 1.4-kb repeats and another one with 0.5-kb repeats were identified and designated 5S rDNA type I and type II, respectively. An inverted 5S rRNA gene and a 5S rRNA putative pseudogene were also identified inside the tandem repeats of 5S rDNA type I. FISH permitted the visualization of the 5S rRNA genes at three chromosome loci, one of them consisting of arrays of the 5S rDNA type I, and the two others corresponding to arrays of the 5S rDNA type II. The two classes of the 5S rDNA, the presence of pseudogenes, and the inverted genes observed in the O. niloticus genome might be a consequence of the intense dynamics of the evolution of these tandem repeat elements.  相似文献   

2.
3.
4.
ABSTRACT: BACKGROUND: In eukaryotes, variation in gene copy numbers is often associated with deleterious effects, but may also have positive effects. For prokaryotes, studies on gene copy number variation are rare. Previous studies have suggested that high numbers of rRNA gene copies can be advantageous in environments with changing resource availability, but further association of gene copies and phenotypic traits are not documented. We used one of the morphologically most diverse prokaryotic phyla to test whether numbers of gene copies are associated with levels of cell differentiation. RESULTS: We implemented a search algorithm that identified 44 genes with highly conserved copies across 22 fully sequenced cyanobacterial taxa. For two very basal cyanobacterial species, Gloeobacter violaceus and a thermophilic Synechococcus species, distinct phylogenetic positions previously found were supported by identical protein coding gene copy numbers. Furthermore, we found that increased ribosomal gene copy numbers showed a strong correlation to cyanobacteria capable of terminal cell differentiation. Additionally, we detected extremely low variation of 16S rRNA sequence copies within the cyanobacteria. We compared our results for 16S rRNA to three other eubacterial phyla (Chroroflexi, Spirochaetes and Bacteroidetes). Based on Bayesian phylogenetic inference and the comparisons of genetic istances, we could confirm that cyanobacterial 16S rRNA paralogs and orthologs show significantly stronger conservation than found in other eubacterial phyla. Conclusions: A higher number of ribosomal operons could potentially provide an advantage to terminally differentiated cyanobacteria. Furthermore, we suggest that 16S rRNA gene copies in cyanobacteria are homogenized by both concerted evolution and purifying selection. In addition, the small ribosomal subunit in cyanobacteria appears to evolve at extraordinary slow evolutionary rates, an observation that has been made previously for morphological characteristics of cyanobacteria.  相似文献   

5.
P J Wejksnora 《Gene》1985,33(3):285-292
We have examined the ribosomal RNA (rRNA) genes of the Chinese hamster ovary (CHO) cell line. A partial EcoRI library of genomic CHO DNA was prepared using lambda Charon-4A. We isolated two recombinants containing the region transcribed as 45S pre-rRNA and 13 kb of external spacer flanking 5' and 3' to the transcribed region. These sequences show restriction site homology with the vast majority of the genomic sequences complementary to rRNA. In addition to this form of rDNA, Southern blot analysis of EcoRI-cut CHO genomic DNA reveals numerous minor fragments ranging from 2 to 19 kb which are complementary to 18S rRNA. We isolated one clone which contains the 18S rRNA gene and sequences 5' which appear to contain length heterogeneity within the non-transcribed spacer region. We have nine additional cloned EcoRI fragments in which the homology with 18S rRNA is limited to a 0.9-kb EcoRI-HindIII fragment. This EcoRI-HindIII fragment is present in each of the cloned EcoRI fragments, and is flanked on both sides by apparently nonribosomal sequences which bear little restriction site homology with each other or the major cloned rDNA repeat.  相似文献   

6.
The ribosomal RNA genes (rDNA) of Rhynchosciara americana were analysed using Southern transfers of DNA cleaved with EcoRI, HindIII, BamHI and PstI. The results show that the rDNA is heterogeneous in structure. Following digestion with EcoRI and hybridization to rRNA three bands corresponding to fragments of 9.5, 7.5 and 5.5 kilobases (kb) were detected. Recombinants containing EcoRI fragments of R. americana DNA were prepared using the vector gtB. Three different recombinants (gtRa1, gtRa23 and gtRa5) were isolated containing the rDNA fragments of 9.5, 7.5 and 5.5 kb, respectively. These fragments were transferred to pBR325 and analysed with restriction enzymes and Southern hybridization with 28 S and 18 S rRNA. The gt recombinants were further analysed by R-loop mapping. The data show that the rDNA occurs in two different repeating gene units. A shorter repeat of 9.5 kb and a longer repeat of 13 kb, in which the 28 S rRNA coding sequence contains an insertion of 3.5 kb.  相似文献   

7.
8.
M Mottes  S A Tsai Lai  J Montoya  G Attardi 《Gene》1984,27(1):109-113
Several clones of rDNA have been isolated from an adult human liver DNA Charon 4A library by using cDNA probes synthesized from human 18S and 28S rRNA. The insert of one recombinant Charon 4A clone contained, besides the already known 5.7-kb EcoRI fragment of rDNA, comprising the major portion of the 18S rRNA gene and all the external transcribed spacer (ETS), a previously unidentified EcoRI fragment of rDNA of 8.5 kb in size. DNA transfer hybridization experiments utilizing EcoRI digests of the human DNA used to construct the library and of another human DNA showed the presence of the 8.5-kb EcoRI fragment in a minority of the rDNA repeats on the 5'-end side of the 5.7-kb fragment, thus defining a hitherto unidentified type of EcoRI polymorphism of these repeats.  相似文献   

9.
Genomes of 11 Quercus species were characterized using cytogenetic (Giemsa C-banding, fluorochrome banding), molecular-cytogenetic (fluorescence in situ hybridization, FISH, to ribosomal genes) and molecular (dot-blot for ribosomal gene-copy number assessment) techniques. Ribosomal genes are the first DNA sequences to be physically mapped in oaks, and the copy number of the 18S-5.8S-26 S rRNA genes is estimated for the first time. Oak karyotypes were analysed on the basis of DAPI banding and FISH patterns; five marker chromosomes were found. In addition, chromosomal organization of ribosomal genes with respect to AT- and GC-differentiated heterochromatin was studied. Fluorochrome staining produced very similar CMA/DAPI banding patterns, and the position and number of ribosomal loci were identical for all the species studied. The 18S-5.8S-26 S rRNA genes in oak complements were represented by a major locus at the subterminal secondary constriction (SC) of the only subtelocentric chromosome pair and a minor locus at paracentromeric SC of one metacentric pair. The only 5 S rDNA locus was revealed at the paracentromeric region of the second largest metacentric pair. A striking karyotypic similarity, shown by both fluorochrome banding and FISH patterns, implies close genome relationships among oak species no matter their geographic origin (European or American) or their ecophysiology (deciduous or evergreens). Dot-blot analysis gave preliminary evidence for different copy numbers of 18S-5.8S-26 S rRNA genes in diploid genomes of Q. cerris, Q. ilex, Q. petraea, Q. pubescens and Q. robur (2700, 1300, 2200, 4000 and 2200 copies, respectively) that was correlated with the size polymorphism of the major locus. Received: 26 February 1999 / Accepted: 16 March 1999  相似文献   

10.
Isolation and characterization of rat ribosomal DNA clones   总被引:8,自引:0,他引:8  
Four EcoRI fragments, which contain the transcribed portion of the rat rDNA repeat, have been isolated from a rat genome library cloned in lambda Charon 4A vector. Three of the fragments, 9.6, 6.7, and 4.5 kb, from clones lambda ChR-B4, lambda Nr-42, and lambda ChR-C4B9, contained part of the 5'-NTS, the 5'-ETS, 18S rDNA, ITS-1, 5.8S rDNA, 28S rDNA and approximately 3.5 kb of the 3'-NTS. Two EcoRI fragments, from clones lambda ChR-B4 and lambda ChR-B7E12, which coded for the 5'-NTS, the ETS, and most of the 18S rDNA, differed by 1 kb near the EcoRI site upstream of the 5' terminus of 18S rRNA. Restriction maps of the cloned DNA fragments were constructed by cleavage of the fragments with various restriction endonucleases and Southern hybridization with 18S, 5.8S, and 28S rRNA. These maps were confirmed and extended by subcloning several regions of the repeat in pBR322.  相似文献   

11.
A PCR assay for the amplification of small subunit ribosomal DNA (SSU rDNA) of Euryarchaea was developed and used to detect archaeal rDNA in 37 (77%) out of 48 pooled subgingival plaque samples from 48 patients suffering from periodontal disease. One major group of cloned periodontal sequences was identical to Methanobrevibacter oralis and a second minor group to Methanobrevibacter smithii. These two groups and a third novel group were found to be more than 98% similar to each other over an 0.65-kb segment of the 16S rRNA gene sequenced. M. oralis was found to be the predominant archaeon in the subgingival dental plaque. Phylogenetic analysis of partial SSU rDNA sequences revealed evidence for a distinct cluster for human and animal Methanobrevibacter sp. within the Methanobacteriaceae family.  相似文献   

12.
A cloned EcoRI fragment containing human 18 S rRNA gene sequences was used to screen a gene library to obtain a set of 8 overlapping cloned DNA segments extending into the non-transcribed spacer region of the human ribosomal RNA gene cluster. 19.4 kb of the approx. 43-kb rDNA repeat was obtained in cloned form and mapped with restriction endonucleases. None of the clones obtained extended into 28 S rRNA sequences. A 7-kb region of non-transcribed spacer DNA shared in common between five independent clones was subjected to comparative restriction digests. It was estimated that sequences among the five different spacer isolated varied by not more than 1.0%, if all the observed differences are assumed due to point mutation. HaeII-restriction fragments from within this same 7-kb region contain sequences carried not only within the tandem repeats of the gene cluster but interspersed elsewhere in the genome. Some of these sequences correspond to the Alu family of highly repeated interspersed sequences.  相似文献   

13.
The region between the 28S and 18S rRNA genes, including the intergenic spacer (IGS) region and the 5S rRNA gene, from 32 strains of Toxoplasma gondii and the NC1 strain of Neospora caninum was amplified and used for DNA sequencing and/or restriction fragment length polymorphism (RFLP) analysis. The 5S rDNA sequences from 20 strains of T. gondii were identical. The IGS region between the 5S and 18S rRNA genes (nontranscribed spacer 2 or NTS 2) showed 10 nucleotide variations. Six of the 10 variant positions correlated with the murine virulence of the strains. Intraspecific polymorphisms distinguished the virulent strains of zymodemes 5, 6, and 8 from other virulent strains (in zymodeme 1). RFLP methods (IGS-RFLP) were developed and used to characterize the virulent and avirulent patterns among 29 T. gondii strains. Sequence diversity of 19.8% was found between T. gondii and N. caninum when comparing a region of 919 bp at the 3' end of NTS 2. The sequence variation in ribosomal IGS could therefore be a useful marker for Toxoplasma strain identification and for distinguishing N. caninum from T. gondii.  相似文献   

14.
15.
Highly conserved sequences present at an identical position near the 3' ends of eukaryotic and prokaryotic 5S rRNAs are complementary to the 5' strand of the m2(6)A hairpin structure near the 3' ends of 18S rRNA and 16S rRNA, respectively. The extent of base-pairing and the calculated stabilities of the hybrids that can be constructed between 5S rRNAs and the small ribosomal subunit RNAs are greater than most, if not all, RNA-RNA interactions that have been implicated in protein synthesis. The existence of complementary sequences in 5S rRNA and small ribosomal subunit RNA, along with the previous observation that there is very efficient and selective hybridization in vitro between 5S and 18S rRNA, suggests that base-pairing between 5S rRNA in the large ribosomal subunit and 18S (16S) rRNA in the small ribosomal subunit might be involved in the reversible association of ribosomal subunits. Structural and functional evidence supporting this hypothesis is discussed.  相似文献   

16.
I Pata  S Hoth  J Kruppa  A Metspalu 《Gene》1992,121(2):387-392
Using PCR cloning we isolated the first intron of the human ribosomal protein S6 gene (hRPS6). By screening the human HeLa cell cDNA library in lambda ZAPII vector (Stratagene, La Jolla, CA), we identified and sequenced a partially spliced pre mRNA copy of hRPS6. The complete hRPS6 gene was isolated from a lambda DASH library with an intron-specific probe. The gene and flanking regions were sequenced, and the mRNA 5' end was mapped by primer extension experiments. The hRPS6 gene has 6 exons and 5 introns and is 3.6 kb long. Using intron-specific primers in PCR and a panel of human-hamster cell lines we localized the hRPS6 gene in human chromosome 9.  相似文献   

17.
18.
19.
We investigated the 5S ribosomal RNA (rRNA) genes of the isopod crustacean Asellus aquaticus. Using PCR amplification, three different tandemly repeated units containing 5S rDNA were identified. Two of the three sequences were cloned and sequenced. One of them was 1842 bp and presented a 5S rRNA gene and a U1 small nuclear RNA (snRNA) gene. This type of linkage had never been observed before. The other repeat consisted of 477 bp and contained only an incomplete 5S rRNA gene lacking the first eight nucleotides and a spacer sequence. The third sequence was 6553 bp long and contained a 5S rRNA gene and the four core histone genes. The PCR products were used as probes in fluorescent in situ hybridization (FISH) experiments to locate them on chromosomes of A. aquaticus. The possible evolutionary origin of the three repeated units is discussed.  相似文献   

20.
The DNA fragments coding for ribosomal RNA inCampylobacter jejuni have been cloned from a genomic library ofC. jejuni constructed inEscherichia coli. Clones carrying DNA Sequences for rRNA were identified by hybridization of 5-end-labeled rRNA fromC. jejuni to colony blots of transformants from this gene library. Cloned DNA sequences homologous to each of 5S, 16S, and 23S rRNA were idenfified by hybridization of labeled plasmid DNA to Northern blots of rRNA. The gene coding for 23S rRNA was found to be located on a 5.5kb HindIII fragment, while the 5S and 16S rRNA genes were on HindIII fragments of 1.65 and 1.7 kb, respecitively. The DNA fragment containing the 16S rRNA gene was characterized by restriction endonuclease mapping, and the location of the 16S rRNA gene on this fragment was determined by hybridization of 5-end-labeled rRNA to restriction fragments and also by DNA sequence determination. It appears that the major portion of the coding region for 16S rRNA is located on the 1.7-kb HindIII fragment, while a small portion is carried on an adjacent HindIII fragment of 7.5 kb. Cloned rRNA genes fromC. jejuni were used to study the organization of the rDNA inC. jejuni and other members of the genùsCampylobacter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号