首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melatonin in circadian sleep disorders in the blind   总被引:2,自引:0,他引:2  
Assessment of sleep patterns in blind people demonstrates a high prevalence of sleep disorders. Our studies have shown that subjects with no conscious light perception (NPL) have a higher occurrence and more severe sleep disorders than those with some degree of light perception (LP). A detailed study of 49 blind individuals showed that those with NPL are likely to have free-running (FR) circadian rhythms (aMT6s, cortisol) including sleep. Non-24-hour (or FR) sleep-wake disorder, characterised by periods of good and bad sleep is a condition that may benefit from melatonin treatment. Melatonin has been administered to NPL subjects with FR circadian rhythms and compared with placebo (or the no-treatment baseline) sleep parameters improved. The results suggest that prior knowledge of the subject's type of circadian rhythm, and timing of treatment in relation to the individual's circadian phase, may improve the efficacy of melatonin.  相似文献   

2.
Although extraocular light can entrain the circadian rhythms of invertebrates and nonmammalian vertebrates, almost all studies show that the mammalian circadian system can only be affected by light to the eyes. The exception is a recent study by Campbell and Murphy that reported phase shifts in humans to bright light applied with fiber-optic pads behind the knees (popliteal region). We tested whether this extraocular light stimulus could accelerate the entrainment of circadian rhythms to a shift of the sleep schedule, as occurs in shift work or jet lag. In experiment 1, the sleep/dark episodes were delayed 8h from baseline for 2 days, and 3h light exposures were timed to occur before the temperature minimum to help delay circadian rhythms. There were three groups: (1) bright (about 13,000 lux) extraocular light from fiber-optic pads, (2) control (dim light, 10-20 lux), and (3) medium-intensity (about 1000 lux) ocular light from light boxes. In experiment 2, the sleep/dark episodes were inverted, and extraocular light was applied either before the temperature minimum to help delay circadian rhythms or after the temperature minimum to help advance rhythms. Circadian phase markers were the salivary dim light melatonin onset (DLMO) and the rectal temperature minimum. There was no evidence that the popliteal extraocular light had a phase-shifting effect in either experiment. Possible reasons for phase shifts in the Campbell and Murphy study and not the current study include the many differences between the protocols. In the current study, there was substantial sleep deprivation before the extraocular light was applied. There was a large shift in the sleep/dark schedule, rather than allowing subjects to sleep each day from midnight to noon, as in the Campbell and Murphy study. Also, when extraocular light was applied in the current protocol, subjects did not experience a change from sleeping to awake, a change in posture (from lying in bed to sitting in a chair), or a change in ocular light (from dark to dim light). Further research is necessary to determine the conditions under which extraocular light might produce phase shifts in human circadian rhythms. (Chronobiology International, 17(6), 807-826, 2000).  相似文献   

3.
Although extraocular light can entrain the circadian rhythms of invertebrates and nonmammalian vertebrates, almost all studies show that the mammalian circadian system can only be affected by light to the eyes. The exception is a recent study by Campbell and Murphy that reported phase shifts in humans to bright light applied with fiber-optic pads behind the knees (popliteal region). We tested whether this extraocular light stimulus could accelerate the entrainment of circadian rhythms to a shift of the sleep schedule, as occurs in shift work or jet lag. In experiment 1, the sleep/dark episodes were delayed 8h from baseline for 2 days, and 3h light exposures were timed to occur before the temperature minimum to help delay circadian rhythms. There were three groups: (1) bright (about 13,000 lux) extraocular light from fiber-optic pads, (2) control (dim light, 10–20 lux), and (3) medium-intensity (about 1000 lux) ocular light from light boxes. In experiment 2, the sleep/dark episodes were inverted, and extraocular light was applied either before the temperature minimum to help delay circadian rhythms or after the temperature minimum to help advance rhythms. Circadian phase markers were the salivary dim light melatonin onset (DLMO) and the rectal temperature minimum. There was no evidence that the popliteal extraocular light had a phase-shifting effect in either experiment. Possible reasons for phase shifts in the Campbell and Murphy study and not the current study include the many differences between the protocols. In the current study, there was substantial sleep deprivation before the extraocular light was applied. There was a large shift in the sleep/dark schedule, rather than allowing subjects to sleep each day from midnight to noon, as in the Campbell and Murphy study. Also, when extraocular light was applied in the current protocol, subjects did not experience a change from sleeping to awake, a change in posture (from lying in bed to sitting in a chair), or a change in ocular light (from dark to dim light). Further research is necessary to determine the conditions under which extraocular light might produce phase shifts in human circadian rhythms. (Chronobiology International, 17(6), 807–826, 2000).  相似文献   

4.
Even during “free-running” experiments, in which subjects lived in caves or cellars without any time cues, various circadian rhythms such as core body temperature and the sleep-wake cycle remained for a long time mutually synchronized in one group of subjects. In another group of subjects, or later in the same subjects, a number of unusually long sleep-wake cycles occurred while body temperature persisted in a near-24 hr rhythm. This has been termed “internal desynchronization” by Aschoff & Wever (1962) to emphasize the uncoupling of rhythms. Zulley (1980) and Czeisler et al. (1980) found that the duration of sleep depends regularly on the phase of the sleep onset in the body temperature rhythm, even in the apparently “random and irregular” sleep-wake pattern. The graph which plots, the sleep duration against the sleep onset phase is called sleep duration in this paper. We develop a quantitative, multi-oscillator model of human circadian system following Wever (1979) and Kronauer et al. (1982). Because the simplest model, which describes the state of each component oscillator by only one variable (ptlase) was adopted for each component oscillator, we can determine the intFraction between oscillators using sleep duration. It is found that a three-oscillator model can simulate several qualitative features of human circadian rhythms, such as an irregular free-running pattern and sleep duration. Moreover we find that the model reproduces the mysterious phenomenon of “forbidden wake up”, although we do not incorporate a priori any mechanism to explain it.  相似文献   

5.
Both recumbency and sleep affect core body temperature (CBT). To characterize their circadian effects and interactions, the authors examined the bedtime temperature drops (TDs) of nine men and eight women (aged 20 to 30) who repeated 90-min sleep-wake cycles over 2.5 days. While awake, subjects were exposed to 50 to 250 lux; while asleep, lights were off. Electroencephalogram-monitored time inbed lasted 30 min during each cycle. Cosinor nonlinear mixed-effects regressions modeled the circadian rhythm of TDs. The circadian maximum of TDs occurred approximately 4 h before the time of circadian CBT minimum, in a model that included the effects of baseline expected CBT, deviations from baseline CBT, time in study, and gender-dependent 24- and 12-h adjustments. Rates of temperature drops were faster during initial periods of lying awake than during periods of initially sleeping. Both rates followed separate circadian rhythms. The circadian maximum of TDs was located near customary nocturnal bedtimes, suggesting its role in fostering sleep during a normal bedtime routine. The apparent deceleration of temperature dropping at sleep onset supports the notion that the sleep onset period has complicated circadian neuroregulatory dynamics. These findings confirm the need for nonlinear models of temperature responses to postural changes and sleep that incorporate circadian variability in these masking effects.  相似文献   

6.
RETINAL CIRCADIAN RHYTHMS IN HUMANS *   总被引:6,自引:0,他引:6  
Circadian rhythms in the retina may reflect intrinsic rhythms in the eye. Previous reports on circadian variability in electrophysiological human retinal measures have been scanty, and the results have been somewhat inconsistent. We studied the circadian variation of the electrooculography (EOG), electroretinography (ERG), and visual threshold (VTH) in subjects undergoing a 36h testing period. We used an ultrashort sleep-wake cycle to balance effects of sleep and light-dark across circadian cycles. Twelve healthy volunteers (10 males, 2 females; mean age 26.3 years, standard deviation [SD] 8.0 years, range 19-40 years) participated in the study. The retinal functions and oral temperature were measured every 90 min. The EOG was measured in the light, whereas the ERG and the VTH were measured in the dark. Sleep was inferred from activity detected by an Actillume monitor. The EOG peak-to-peak responses followed a circadian rhythm, with the peak occurring late in the morning (acrophase 12:22). The ERG b-wave implicit time peaked in the early morning (acrophase 06:46). No statistically significant circadian rhythms could be demonstrated in the ERG a-wave implicit time or peak-to-peak amplitude. The VTH rhythm peaked in the early morning (acrophases 07:59 for blue and 07:32 for red stimuli). All retinal rhythms showed less-consistent acrophases than the temperature and sleep rhythms. This study demonstrated several different circadian rhythms in retinal electrophysiological and psychophysical measures of healthy subjects. As the retinal rhythms had much poorer signal-to-noise ratios than the temperature rhythm, these measures cannot be recommended as circadian markers. (Chronobiology International, 18(6), 957-971, 2001)  相似文献   

7.
Exogenous melatonin (0.5-10 mg) has been shown to entrain the free-running circadian rhythms of some blind subjects. The aim of this study was to assess further the entraining effects of a daily dose of 0.5 mg melatonin on the cortisol rhythm and its acute effects on subjective sleep in blind subjects with free-running 6-sulphatoxymelatonin (aMT6s) rhythms (circadian period [tau] 24.23-24.95 h). Ten subjects (9 males) were studied, aged 32 to 65 years, with no conscious light perception (NPL). In a placebo-controlled, single-blind design, subjects received 0.5 mg melatonin or placebo p.o. daily at 2100 h (treatment duration 26-81 days depending on individuals' circadian period). Subjective sleep was assessed from daily sleep and nap diaries. Urinary cortisol and aMT6s were assessed for 24 to 48 h weekly and measured by radioimmunoassay. Seven subjects exhibited an entrained or shortened cortisol period during melatonin treatment. Of these, 4 subjects entrained with a period indistinguishable from 24 h, 2 subjects continued to free run for up to 25 days during melatonin treatment before their cortisol rhythm became entrained, and 1 subject appeared to exhibit a shortened cortisol period throughout melatonin treatment. The subjects who entrained within 7 days did so when melatonin treatment commenced in the phase advance portion of the melatonin PRC (CT6-18). When melatonin treatment ceased, cortisol and aMT6s rhythms free ran at a similar period to before treatment. Three subjects failed to entrain with initial melatonin treatment commencing in the phase delay portion of the PRC. During melatonin treatment, there was a significant increase in nighttime sleep duration and a reduction in the number and duration of daytime naps. The positive effect of melatonin on sleep may be partly due to its acute soporific properties. The findings demonstrate that a daily dose of 0.5 mg melatonin is effective at entraining the free-running circadian systems in most of the blind subjects studied, and that circadian time (CT) of administration of melatonin may be important in determining whether a subject entrains to melatonin treatment. Optimal treatment with melatonin for this non-24-h sleep disorder should correct the underlying circadian disorder (to entrain the sleep-wake cycle) in addition to improving sleep acutely.  相似文献   

8.
The circadian rhythm of rectal temperature was continuously recorded over several consecutive days in young men and women on regular nocturnal sleep schedules. There were 50 men, 21 women with natural menstrual cycles [i.e., not taking oral contraceptives (OCs) (10 in the follicular phase and 11 in the luteal phase)], and 14 women using OCs (6 in the pseudofollicular phase and 8 in the pseudoluteal phase). Circadian phase and amplitude were estimated using a curve-fitting procedure, and temperature levels were determined from the raw data. A two-way analysis of variance (ANOVA) on the data from the four groups of women, with factors menstrual cycle phase (follicular, luteal) and OC use (yes, no), showed that temperature during sleep was lower during the follicular phase than during the luteal phase. Since waking temperatures were similar in the two phases, the circadian amplitude was also larger during the follicular phase. The lower follicular phase sleep temperature also resulted in a lower 24-h temperature during the follicular phase. The two-way ANOVA showed that temperature during sleep and 24-h temperature were lower in naturally cycling women than in women taking OCs. A one-way ANOVA on the temperature rhythm parameters from the five groups of subjects showed that the temperature rhythms of the men and of the naturally cycling women in the follicular phase were not significantly different. Both of these groups had lower temperatures during sleep, lower 24-h temperatures, and larger circadian amplitudes than the other groups. There were no significant differences in circadian phase among the five groups studied. In conclusion, menstrual cycle phase, OC use, and sex affect the amplitude and level, but not the phase, of the overt circadian temperature rhythm.  相似文献   

9.
The circadian rhythm of rectal temperature was continuously recorded over several consecutive days in young men and women on regular nocturnal sleep schedules. There were 50 men, 21 women with natural menstrual cycles [i.e., not taking oral contraceptives (OCs) (10 in the follicular phase and 11 in the luteal phase)], and 14 women using OCs (6 in the pseudofollicular phase and 8 in the pseudoluteal phase). Circadian phase and amplitude were estimated using a curve-fitting procedure, and temperature levels were determined from the raw data. A two-way analysis of variance (ANOVA) on the data from the four groups of women, with factors menstrual cycle phase (follicular, luteal) and OC use (yes, no), showed that temperature during sleep was lower during the follicular phase than during the luteal phase. Since waking temperatures were similar in the two phases, the circadian amplitude was also larger during the follicular phase. The lower follicular phase sleep temperature also resulted in a lower 24-h temperature during the follicular phase. The two-way ANOVA showed that temperature during sleep and 24-h temperature were lower in naturally cycling women than in women taking OCs. A one-way ANOVA on the temperature rhythm parameters from the five groups of subjects showed that the temperature rhythms of the men and of the naturally cycling women in the follicular phase were not significantly different. Both of these groups had lower temperatures during sleep, lower 24-h temperatures, and larger circadian amplitudes than the other groups. There were no significant differences in circadian phase among the five groups studied. In conclusion, menstrual cycle phase, OC use, and sex affect the amplitude and level, but not the phase, of the overt circadian temperature rhythm.  相似文献   

10.
Deep body temperature and sleep/activity diaries data were recorded during control days and for 6 days after simulated time zone transitions of 8 h to the east (six subjects) or west (seven subjects). Circadian rhythms were assessed by cosinor analysis of both raw data (the conventional method) and purified data (corrected for the effects of sleep and activity). Analysis of raw data gives misleading information about the phase and amplitude of the rhythms due to the masking effects of the exogenous component. Use of purified data indicates that during the process of adjustment after an eastward shift (a) phase changes are more erratic than after a shift to the west; (b) no marked decrease in the amplitude of the rhythms is evident; and (c) no clear evidence exists that the circadian rhythm breaks up temporarily. The masking effect was less after the time zone transition if sleep maintenance was poor.  相似文献   

11.
Deep body temperature and sleep/activity diaries data were recorded during control days and for 6 days after simulated time zone transitions of 8 h to the east (six subjects) or west (seven subjects). Circadian rhythms were assessed by cosinor analysis of both raw data (the conventional method) and purified data (corrected for the effects of sleep and activity). Analysis of raw data gives misleading information about the phase and amplitude of the rhythms due to the masking effects of the exogenous component. Use of purified data indicates that during the process of adjustment after an eastward shift (a) phase changes are more erratic than after a shift to the west; (b) no marked decrease in the amplitude of the rhythms is evident; and (c) no clear evidence exists that the circadian rhythm breaks up temporarily. The masking effect was less after the time zone transition if sleep maintenance was poor.  相似文献   

12.
Circadian rhythms in the retina may reflect intrinsic rhythms in the eye. Previous reports on circadian variability in electrophysiological human retinal measures have been scanty, and the results have been somewhat inconsistent. We studied the circadian variation of the electrooculography (EOG), electroretinography (ERG), and visual threshold (VTH) in subjects undergoing a 36h testing period. We used an ultrashort sleep-wake cycle to balance effects of sleep and light-dark across circadian cycles. Twelve healthy volunteers (10 males, 2 females; mean age 26.3 years, standard deviation [SD] 8.0 years, range 19–40 years) participated in the study. The retinal functions and oral temperature were measured every 90 min. The EOG was measured in the light, whereas the ERG and the VTH were measured in the dark. Sleep was inferred from activity detected by an Actillume monitor. The EOG peak-to-peak responses followed a circadian rhythm, with the peak occurring late in the morning (acrophase 12:22). The ERG b-wave implicit time peaked in the early morning (acrophase 06:46). No statistically significant circadian rhythms could be demonstrated in the ERG a-wave implicit time or peak-to-peak amplitude. The VTH rhythm peaked in the early morning (acrophases 07:59 for blue and 07:32 for red stimuli). All retinal rhythms showed less-consistent acrophases than the temperature and sleep rhythms. This study demonstrated several different circadian rhythms in retinal electrophysiological and psychophysical measures of healthy subjects. As the retinal rhythms had much poorer signal-to-noise ratios than the temperature rhythm, these measures cannot be recommended as circadian markers. (Chronobiology International, 18(6), 957971, 2001)  相似文献   

13.
It seems likely that the influences of light upon circadian rhythms will decrease with aging, particularly those rhythms that are more influenced by light with a higher color temperature and richer in short wavelengths. More specifically, cataract patients' optical systems transmit light poorly, especially the shorter wavelengths that affect the circadian system more. The present study investigated melatonin secretion profiles and sleep patterns before and after cataract surgery. Fifteen subjects were studied for 3 consecutive weekdays before, and one month after, their cataract surgery. UV-cutting intra-ocular lenses were used for patients after surgery. No statistically significant differences between before and after surgery were observed in the amount of light received and the amount of activity. This means that there were no significant changes in their lifestyle during the experimental period. Considering the group as a whole, no significant differences were present in melatonin secretion, sleep parameters, or sleepiness before and after the surgery. However, individual subjects responded differently. The subjects showed a negative correlation between the wake-up (p=0.067) or retiring times (p=0.017) and sleep efficiency after surgery. The amount of light received during the nighttime influenced sleep more significantly than during the daytime.  相似文献   

14.
The length of the endogenous period of the human circadian clock (tau) is slightly greater than 24 hours. There are individual differences in tau, which influence the phase angle of entrainment to the light/dark (LD) cycle, and in doing so contribute to morningness-eveningness. We have recently reported that tau measured in subjects living on an ultradian LD cycle averaged 24.2 hours, and is similar to tau measured using different experimental methods. Here we report racial differences in tau. Subjects lived on an ultradian LD cycle (1.5 hours sleep, 2.5 hours wake) for 3 days. Circadian phase assessments were conducted before and after the ultradian days to determine the change in circadian phase, which was attributed to tau. African American subjects had a significantly shorter tau than subjects of other races. We also tested for racial differences in our previous circadian phase advancing and phase delaying studies. In the phase advancing study, subjects underwent 4 days of a gradually advancing sleep schedule combined with a bright light pulse upon awakening each morning. In the phase delaying study, subjects underwent 4 days of a gradually delaying sleep schedule combined with evening light pulses before bedtime. African American subjects had larger phase advances and smaller phase delays, relative to Caucasian subjects. The racial differences in tau and circadian phase shifting have important implications for understanding normal phase differences between individuals, for developing solutions to the problems of jet lag and shift work, and for the diagnosis and treatment of circadian rhythm based sleep disorders such as advanced and delayed sleep phase disorder.  相似文献   

15.
Lithium hydroxybutyrate (10 mg/kg, 10 days) influences circadian temperature and activity rhythms of rats in "open field" and sleep structure according to the time of preparation of the injection (8.30 or 19.30). It was stated that lithium hydroxybutyrate modified circadian rhythms and sleep structure less after morning injections into the rats, while evening administration destabilized circadian rhythms, increased slow-sleep and decreased REM sleep duration.  相似文献   

16.
The few controlled studies dealing with the action of alcohol on core body temperature in humans have focused on the effect of a single dose of ethanol and reported that it has a hypothermic effect. No studies report the effects of repeated ethanol intake over a 24-h period, a pattern of consumption much closer to the clinical condition of chronic alcoholism. We therefore designed a trial in which alcohol was repeatedly and regularly administered, with a total dose of 256 g. Nine healthy male volunteers (mean age 23.3 +/- 2.9 yr; range 21-30) each served as his own control. The circadian temperature rhythm was studied by a single-blind, randomized, crossover study that compared a 26-h alcohol session to a 26-h placebo session. The trial controlled for so-called masking effects known to affect temperature. The volunteers were in bed; the ambient temperature was maintained between 20 and 22 degrees C. Meals were standardized. And light was controlled during the night. All sessions took place between November and April. The two sessions were separated by 2 to 5 wk. Rectal temperature was monitored every 20 min throughout the trial. We found the standard hypothermic effect of alcohol in the early hours of the trial, during the daytime, but our principal result is that alcohol consumption induced a very significant hyperthermic effect (+0.36 degrees C) during the night and thereby reduced the circadian amplitude of core body temperature by 43%. The dramatic decrease of the amplitude of circadian temperature rhythm that we observed may explain, at least in part, some clinical signs observed in alcoholic patients, including sleep and mood disorders. We suggest that jet lag, shift work, and aging, which are known to alter body temperature, are aggravated by alcohol consumption.  相似文献   

17.
Two groups of subjects (total N = 6) were studied in an isolation chamber for a period of 3 weeks whilst living on a 22.8 hr “day”. Regular samples of urine were taken when the subjects were awake, deep body temperature was recorded continuously and polygraphic EEG recordings were made of alternate sleeps. The excretion in the urine of potassium, sodium, phosphate, calcium and a metabolite of melatonin were estimated.

Measurements of the quantity and quality of sleep were made together with assessments of the temperature profiles associated with sleep. In addition, cosinor analysis of circadian rhythmicity in urinary variables and temperature was performed.

The 22.8 hr “days” affected variables and subjects differently. These differences were interpreted as indicating that the endogenous component of half the subjects adjusted to the 22.8 hr “days” but that, for the other three, adjustment did not occur. When the behaviour of different variables was considered then some (including urinary potassium and melatonin, sleep length and REM sleep) appeared to possess a larger endogenous component than others (for example, urinary sodium, phosphate and calcium), with rectal temperature behaving in an intermediate manner. In addition, a comparison between different rhythms in any subject enabled inferences to be drawn regarding any links (or lack of them) that might exist between the rhythms. In this respect also, there was a considerable range in the results and no links between any of the rhythms appeared to exist in the group of subjects as a whole.

Two further groups (total N=8) were treated similarly except that the chamber clock ran at the correct rate. In these subjects, circadian rhythms of urinary excretion and deep body temperature (sleep stages and urinary melatonin were not measured) gave no evidence for deterioration. We conclude, therefore, that the results on the 22.8 hr “day” were directly due to the abnormal “day” length rather than to a prolonged stay in the isolation chamber.  相似文献   

18.
19.
A number of studies have been devoted to better understand the cardiovascular adaptation to space flights. These studies included hemodynamic and hormonal studies, but few investigations of the rhythms exist in the literature. However, the importance of the modifications of rhythms in true or simulated weightlessness was underlined in some published works. Several factors are probably associated to modify the circadian rhythms. First, there is a reduction or an absence of gravity, an important environmental factor: second, space missions or bed rest simulations are conducted under confinement conditions which may influence many psychological functions. The resulting instability of the circadian state will affect other physiological systems, because circadian variations are a fundamental feature of many biological systems (sleep, endocrine and cardiovascular functions). The present study was undertaken to study the effect of as well as a continuous 28-day bed rest on the rhythms of circulating PRA and ANP, the modification of rhythmicity of systolic and diastolic blood pressure and heart rate during bed rest.  相似文献   

20.
Partial sleep deprivation is increasingly common in modern society. This study examined for the first time if partial sleep deprivation alters circadian phase shifts to bright light in humans. Thirteen young healthy subjects participated in a repeated-measures counterbalanced design with 2 conditions. Each condition had baseline sleep, a dim-light circadian phase assessment, a 3-day phase-advancing protocol with morning bright light, then another phase assessment. In one condition (no sleep deprivation), subjects had an 8-h sleep opportunity per night during the advancing protocol. In the other condition (partial sleep deprivation), subjects were kept awake for 4 h in near darkness (<0.25 lux), immediately followed by a 4-h sleep opportunity per night during the advancing protocol. The morning bright light stimulus was four 30-min pulses of bright light (~5000 lux), separated by 30-min intervals of room light. The light always began at the same circadian phase, 8 h after the baseline dim-light melatonin onset (DLMO). The average phase advance without sleep deprivation was 1.8 ± 0.6 (SD) h, which reduced to 1.4 ± 0.6 h with partial sleep deprivation (p < 0.05). Ten of the 13 subjects showed reductions in phase advances with partial sleep deprivation, ranging from 0.2 to 1.2 h. These results indicate that short-term partial sleep deprivation can moderately reduce circadian phase shifts to bright light in humans. This may have significant implications for the sleep-deprived general population and for the bright light treatment of circadian rhythm sleep disorders such as delayed sleep phase disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号