首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a variety of systems, histone mRNA has been shown to lack poly(A) (Adesnik and Darnell, 1972;Grunstein et al., 1973). We have found, however, that in Xenopus laevis oocytes, poly(A)-containing mRNA codes for histones, in a wheat germ cell-free system, based on the following criteria: first, co-migration with authentic X. laevis oocyte histones on polyacrylamide gels; second, no detectable incorporation of tryptophan; third, differential incorporation of lysine and methionine into histone fraction H2A; fourth, resistance of histone fraction H2A to cleavage with cyanogen bromide; and fifth, correspondence of tryptic peptide maps of partially purified cell-free products with authentic X. laevis oocyte histone. RNA which directs the synthesis of histones in the cell-free system is retained on oligo(dT)-cellulose, even after denaturation in 80% DMSO at 70°C, thereby demonstrating the covalent attachment of polyadenylic acid sequences to the mRNA. Poly(A)? RNA (7S–14S fraction) was also found to code for histones using the same criteria. We discuss the significance of the finding that X. laevis oocytes contain two classes of histone mRNA as well as the potential developmental implications of this observation.  相似文献   

2.
3.
Primer extension analysis has been used to study the principal H4 mRNAs present at different developmental stages and in several adult tissues of Xenopus borealis and X. laevis. In X. borealis a single sequence class predominates in oocytes, tadpoles and cultured fibroblasts. There is also a polymorphic minor type which shows no developmental regulation. The primer extension bands obtained from adult liver and kidney RNA appear to be the same as ovary and therefore these tissues almost certainly contain the same major H4 mRNA species. This is confirmed by S1 mapping of the 3' end of the mRNA. Thus for H4 genes in X. borealis there is no evidence of the kind of switches in histone gene expression seen in sea urchins or certain protostomes. The situation in X. laevis is complicated by considerably higher gene variability both within and between individuals. Nevertheless, in this species, as in X. borealis, there seems to be no major developmental switch in the regulation of H4 gene expression, a conclusion that also holds for an H1C and an H3 gene.  相似文献   

4.
5.
Histone gene expression in early development of Xenopus laevis   总被引:3,自引:0,他引:3  
Abstract. This study comprises the hybridization analysis of electrophoretically separated histone mRNAs from oocytes and embryos of Xenopus laevis , and analysis of in vitro translation products of these mRNAs on polyacrylamide gels containing sodium dodecyl sulfate (SDS) or Triton X-100. In oocytes and embryos up to the tailbud stage, four types of mRNAs complementary to histone H2B DNA and two complementary to histone H4 DNA can be discriminated by their different electrophoretic mobilities on polyacrylamide gels. Electrophoretic heterogeneity was not detected for messengers for histones H2A and H3.
Histone mRNA, purified by hybridization under stringent conditions with a cloned histone gene cluster, was used to direct histone protein synthesis in a wheat-germ cell free system. The proteins synthesized comigrate with purified marker histones when electrophoresed on SDS-gels or acid-urea gels containing Triton X-100. When hybrid-selected histone mRNAs from oocytes and embryos in different developmental stages are translated, the proteins made by the mRNA from one stage can not be discriminated from those made by the mRNA from another stage after electrophoresis on SDS-gels or acid urea Triton X-100 gels.  相似文献   

6.
Using a Xenopus laevis H4 cDNA clone as a probe we have determined that the numbers of H4 histone genes in Xenopus laevis and Xenopus borealis are approximately the same. These numbers are dependent on the hybridization stringency and we measure about 90 H4 genes per haploid genome after a 60 degrees C wash in 3 X SSC. Using histone probes from both Xenopus and sea urchin we have studied the genomic organization of histone genes in these two species. In all of the X.borealis individuals analyzed about 70% of the histone genes were present in a very homogeneous major cluster. These genes are present in the order H1, H2B, H2A, H4 and H3, and the minimum length of the repeated unit is 16kb. In contrast, the histone gene clusters in X.laevis showed considerable sequence variation. However two major cluster types with different gene orders seem to be present in most individuals. The differences in histone gene organization seen in species of Xenopus suggest that even in closely related vertebrates the major histone gene clusters are quite fluid structures in evolutionary terms.  相似文献   

7.
The structure of the human histone genes: clustered but not tandemly repeated   总被引:40,自引:0,他引:40  
N Heintz  M Zernik  R G Roeder 《Cell》1981,24(3):661-668
We have isolated five clones containing human histone genes from a human genomic DNA library, using a cloned X. laevis histone H4 cDNA probe (pX1ch4). Each genomic clone has been mapped and the locations of the histone genes have been determined by blot hybridization and hybridization-selection of human histone mRNA. In contrast to the organization of previously characterized histone genes, the human histone genes are clustered in the genome but are not arranged into recognizable repeating units. The extreme lack of organization of the human histone genes may reflect the diminished requirement for rapid synthesis of large quantities of histone proteins during mammalian early development.  相似文献   

8.
9.
Using a cDNA clone for the histone H3 we have isolated, from two genomic libraries of Xenopus laevis and Xenopus tropicalis, clones containing four different histone gene clusters. The structural organization of X. laevis histone genes has been determined by restriction mapping, Southern blot hybridization and translation of the mRNAs which hybridize to the various restriction fragments. The arrangement of the histone genes in X. tropicalis has been determined by Southern analysis using X. laevis genomic fragments, containing individual genes, as probes. Histone genes are clustered in the genome of X. laevis and X. tropicalis and, compared to invertebrates, show a higher organization heterogeneity as demonstrated by structural analysis of the four genomic clones. In fact, the order of the genes within individual clusters is not conserved.  相似文献   

10.
The accumulation of messenger RNA coding for histone H3 in oogenesis of Xenopus laevis was studied by quantitative hybridization techniques, using a cloned genomic DNA fragment as a probe. This probe was isolated from cloned Xenopus histone DNA and contains most of the H3 coding sequences. Histone H3 mRNA accumulation was found to be completed before the maximum lampbrush stage. Hybridization of RNA blots with DNA probes containing genes for histones H2A, H2B, and H4 suggests the same accumulation pattern for the mRNAs coding for these histones as for histone H3 mRNA. The amount of H3 mRNA in the mature oocyte was established to be 130 ± 68 pg, i.e., about 5 × 108 copies.  相似文献   

11.
12.
We find that the remodeling of the condensed Xenopus laevis sperm nucleus into the paternal pronucleus in egg extracts is associated with phosphorylation of the core histones H2A, H2A.X and H4, and uptake of a linker histone B4 and a HMG 2 protein. Histone B4 is required for the assembly of chromatosome structures in the pronucleus. However neither B4 nor core histone phosphorylation are required for the assembly of spaced nucleosomal arrays. We suggest that the spacing of nucleosomal arrays is determined by interaction between adjacent histone octamers under physiological assembly conditions.  相似文献   

13.
14.
15.
UDP-glucose dehydrogenase (UGDH) supplies the cell with UDP-glucuronic acid (UDP-GlcUA), a precursor of glycosaminoglycan and proteoglycan synthesis. Here we reported the cloning and the characterization of the UGDH from the amphibian Xenopus laevis that is one of the model organisms for developmental biology. We found that X. laevis UGDH (xUGDH) maintained a very high degree of similarity with other known UGDH sequences both at the genomic and the protein levels. Also its kinetic parameters are similar to those of UGDH from other species. During X. laevis development, UDGH is always expressed but clearly increases its mRNA levels at the tail bud stage (i.e. 30 h post-fertilization). This result fits well with our previous observation that hyaluronan, a glycosaminoglycan that is synthesized using UDP-GlcUA and UDP-N-acetylglucosamine, is abundantly detected at this developmental stage. The expression of UGDH was found to be related to hyaluronan synthesis. In human smooth muscle cells the overexpression of xUGDH or endogenous abrogation of UGDH modulated hyaluronan synthesis specifically. Our findings were confirmed by in vivo experiments where the silencing of xUGDH in X. laevis embryos decreased glycosaminoglycan synthesis causing severe embryonic malformations because of a defective gastrulation process.  相似文献   

16.
17.
Sequences coding for histone H3 and H4 of Neurospora crassa could be identified in genomic digests with the use of the corresponding genes from sea urchin and X. laevis as hybridization probes. A 2.6 kb HindIII-generated N. crassa DNA fragment, showing homology with the heterologous histone H3-gene probes was cloned in a charon 21A vector. Using DNA from this clone as a homologous hybridization probe a 6.9 kb SalI-generated DNA fragment was isolated which in addition to the histone H3-gene also contains the gene coding for histone H4. Several lines of evidence demonstrate the presence of only a single histone H3- as well as a single histone H4-gene in N. crassa. The two genes are physically linked on the genome. DNA sequencing of the N. crassa histone H3- and H4-genes confirmed their identity and, in addition, revealed the presence of one short intron (67 bp) within the coding sequence of the H3-gene and even two introns (68 and 69 bp) within the H4-gene. The amino acid sequences of the N. crassa histones H3 and H4, as deduced from the DNA sequences, and those of the corresponding yeast histones differ only at a few positions. Much larger sequence differences, however, are observed at the DNA level, reflecting a diverging codon usage in the two lower eukaryotes.  相似文献   

18.
We have examined the molecular mechanisms responsible for the shifts in histone protein phenotype during embryogenesis in the sea urchinStrongylocentrotus purpuratus. The H1, H2A, and H2B classes of histone synthesized at the earliest stages of cleavage are heterogeneous: These proteins are replaced at late embryogenesis by a different set of histone-like polypeptides, some of which are also heterogeneous. The H3 and H4 histones appear to be homogeneous classes and remain constant. We have isolated from both early and late embryos the individual messenger RNAs coding for each of the multiple protein subtypes. The RNAs were isolated by hybridization to cloned DNA segments coding for a single histone protein or by elution from polyacrylamide gels. Each RNA was then analyzed and identified by its mobility on polyacrylamide gels and by its template activity in the wheat germ cell-free protein synthesizing system. The mRNAs for each of the five early histone protein classes are heterogeneous in size and differ from the late stage templates. The late mRNAs consist of at least 11 separable types coding for the 5 classes of histones. Each of the 11 has been separated and identified. The late stage proteins were shown to be authentic histones since many of their templates hybridize with histone coding DNA. The early and late stage mRNAs are transcribed from different sets of histone genes since (1) late stage H1 and H2A mRNAs fail to hybridize to cloned early stage histone genes under ideal conditions for detecting homologous early stage hybrids, (2) late stage H2B, H3, and H4 RNA/DNA hybrids melt at 14, 11, and 11°C lower, respectively, than do homologous RNA/DNA hybrids, and (3) purified late stage mRNAs direct the synthesis of the variant histone proteins which are synthesized only during later stages. The time course of synthesis of the late stage mRNAs suggests that they appear many hours before the late histone proteins can be detected, possibly as early as fertilization. In addition, early mRNAs are synthesized in small quantities as late as 40 hr after fertilization, during gastrulation. Thus, the major modulations of histone gene expression are neither abrupt nor an absolute on-off switch, and may represent only a gradual and relative repression of early gene expression. Two histones are detected only transiently during early cleavage. The mRNA for one of them, a subtype of H2A, can be detected in the cytoplasm for as long as 40 hr after fertilization. However, template activity for the other, a subtype of H2B, can be detected only at the blastula stage. Thus, the histone genes represent a complex multigene family that is developmentally modulated.  相似文献   

19.
20.
The organization of the histone genes in the genome of Xenopus laevis.   总被引:14,自引:13,他引:1       下载免费PDF全文
We have studied the organization of the histone genes in the DNA from several individuals of Xenopus laevis. For that purpose, Southern blots of genomic DNA, that was digested with several restriction enzymes, were hybridized with radioactively labeled DNA fragments from clone X1-hi-1 (14), containing genes for Xenopus histones H2A, H2B, H3 and H4. In the DNA of all animals that were screened we found a major repeating unit of 14 kilobasepairs, which contains genes for histones H2A, H2B, H3 and H4 (H1 not tested) and is represented up to 30 times in the genome. The order of the genes in this major repeating unit is H4 - H3 - H2A - H2B. This order is different from that in the histone DNA of clone X1-hi-1, i.e. H3 - H4 - H2A - H2B. In addition to the genes in the major repeating unit, histone genes are present in unique restriction fragments in numbers that vary from one animal to another. The restriction patterns for the histone genes in these unique fragments were found to be different for all eight Xenopus individuals that were screened. The cloned Xenopus histone gene fragment X1-hi-1 represents such a unique fragment and is not present in the DNA of each single individual. The total number of genes coding for each of the nucleosomal histones is 45-50 per haploid genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号