首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Stupar RM  Springer NM 《Genetics》2006,173(4):2199-2210
Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns.  相似文献   

3.
Gene imprinting is a widely observed epigenetic phenomenon in maize endosperm; however, whether it also occurs in the maize embryo remains controversial. Here, we used high‐throughput RNA sequencing on laser capture microdissected and manually dissected maize embryos from reciprocal crosses between inbred lines B73 and Mo17 at six time points (3–13 days after pollination, DAP) to analyze allelic gene expression patterns. Co‐expression analysis revealed sequential gene activation during maize embryo development. Gene imprinting was observed in maize embryos, and a greater number of imprinted genes were identified at early embryo stages. Sixty‐four strongly imprinted genes were identified (at the threshold of 9:1) on manually dissected embryos 5–13 DAP (more imprinted genes at 5 DAP). Forty‐one strongly imprinted genes were identified from laser capture microdissected embryos at 3 and 5 DAP (more imprinted genes at 3 DAP). Furthermore, of the 56 genes that were completely imprinted (at the threshold of 99:1), 36 were not previously identified as imprinted genes in endosperm or embryos. In situ hybridization demonstrated that most of the imprinted genes were expressed abundantly in maize embryonic tissue. Our results shed lights on early maize embryo development and provide evidence to support that gene imprinting occurs in maize embryos.  相似文献   

4.
5.
Imprinting describes the differential expression of alleles based on their parent of origin. Deep sequencing of RNAs from maize (Zea mays) endosperm and embryo tissue 14 d after pollination was used to identify imprinted genes among a set of ~12,000 genes that were expressed and contained sequence polymorphisms between the B73 and Mo17 genotypes. The analysis of parent-of-origin patterns of expression resulted in the identification of 100 putative imprinted genes in maize endosperm, including 54 maternally expressed genes (MEGs) and 46 paternally expressed genes (PEGs). Three of these genes have been previously identified as imprinted, while the remaining 97 genes represent novel imprinted maize genes. A genome-wide analysis of DNA methylation identified regions with reduced endosperm DNA methylation in, or near, 19 of the 100 imprinted genes. The reduced levels of DNA methylation in endosperm are caused by hypomethylation of the maternal allele for both MEGs and PEGs in all cases tested. Many of the imprinted genes with reduced DNA methylation levels also show endosperm-specific expression patterns. The imprinted maize genes were compared with imprinted genes identified in genome-wide screens of rice (Oryza sativa) and Arabidopsis thaliana, and at least 10 examples of conserved imprinting between maize and each of the other species were identified.  相似文献   

6.
7.
Genetic variation in dosage effects in maize aneuploids.   总被引:1,自引:0,他引:1  
E A Lee  E H Coe  L L Darrah 《Génome》1996,39(4):711-721
In maize (Zea mays L.), the consequences of aneuploidy have been well documented, however, genetic variation in the responses to aneuploidy has not been examined. Using simple B-A translocation stocks to generate a dosage series involving segments from 14 chromosome arms, we tested for the presence of genetic variation for dosage responses in maize by examining reciprocal and maternal genotype effects on the dosage responses. Reciprocal effects examined whether there were differences between two distinctly different inbred backgrounds, Mo17Ht and B73Ht, in how they responded to loss or gain of a B73Ht segment in the Mo17Ht x B73Ht (TB) F1 cross versus a Mo17Ht segment in the B73Ht x Mo17Ht (TB) F1 cross. Maternal genotype effects questioned whether different inbred backgrounds, Sc41R, T8, and either Mo17Ht or B73Ht (depending on the male), when used as females responded differently to the loss or gain of a chromosome arm segment from the same male (either B73Ht TB or Mo17Ht TB) in an F1 cross. Numerous examples of reciprocal and maternal genetic effects were identified in this study. Most of the genetic effects were due to differences in magnitude of response rather than direction; however, tassel-branch number involving the 5S chromosome segment in the B73Ht male background and the 7L chromosome segment in the Mo17Ht male background showed a trend toward the maternal genotype effects being due to differences in the direction of the response. Key words : quantitative traits, corn, B-A translocations, dosage analysis.  相似文献   

8.
9.
10.
11.
Summary Genetic factors controlling the differential expression of somatic embryogenesis and plant regeneration of maize from tissue culture were studied in two crosses. Inbred, hybrid, F2 and backcross generations developed from crossing maize inbred A188 with two commercially important inbred maize lines (B73 and Mo17) demonstrated genetic and environmental effects on somatic embryogenesis and plant regeneration when immature zygotic embryos were cultured on MS medium. Additive gene effects were more important in both crosses than dominant gene effects for precent somatic embryogenesis and percent or number of plants regenerated per embryo when generation means were analyzed. In backcross generations of each cross, cytoplasmic, maternal and/or paternal effects were significant for frequency of somatic embryos three weeks after culture as well as frequency, or number of plants regenerated per embryo, nine weeks after culture. Analysis of genetic variances suggests at least one gene (or block of genes) controls the expression of the frequency of somatic embryogenesis in these crosses. Differences in somatic embryogenesis and plant regeneration between B73 and Mo17 are discussed. This is Journal Paper No. 11,435 of the Purdue University Agricultural Experiment Station.  相似文献   

12.
13.
To better understand the underlying molecular basis of leaf development in maize, a reference map of nuclear proteins in basal region of seedling leaf was established using a combination of 2DE and MALDI‐TOF‐MS. In total, 441 reproducible protein spots in nuclear proteome of maize leaf basal region were detected with silver staining in a pH range of 3–10, among which 203 spots corresponding to 163 different proteins were identified. As expected, proteins implicated in RNA and protein‐associated functions were overrepresented in nuclear proteome. Remarkably, a high percentage (10%) of proteins was identified to be involved in cell division and growth. In addition, comparative nuclear proteomic analysis in leaf basal region of highly heterotic hybrid Mo17/B73 and its parental lines was also performed and 52 of 445 (11.69%) detected protein spots were differentially expressed between the hybrid and its parental lines, among which 16 protein spots displayed nonadditively expressed pattern. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of nuclear proteins, which may be responsible for the observed leaf size heterosis.  相似文献   

14.
  • The process of alternative splicing is critical for the regulation of growth and development of plants. Thus far, little is known about the role of alternative splicing in the regulation of maize (Zea mays L.) endosperm development.
  • RNA sequencing (RNA‐seq) data of endosperms from two maize inbred lines, Mo17 and Ji419, at 15 and 25 days after pollination (DAP), respectively, were used to identify genes that were alternatively spliced during endosperm development. Intron retention (IR) in GRMZM2G005887 was further validated using PCR and re‐sequencing technologies.
  • In total, 49,000 alternatively spliced events and ca. 20,000 alternatively spliced genes were identified in the two maize inbred lines. Of these, 30 genes involved in amino acid biosynthesis and starch biosynthesis were identified, with IR occurring only in a specific sample, and were significantly co‐expressed with ten well‐known genes related to maize endosperm development. Moreover, IR in GRMZM2G005887, which encodes a cysteine synthase, was confirmed to occur only in the endosperm of Mo17 at 15 DAP, resulting in the retention of a 121‐bp fragment in its 5′ untranslated region. Two cis‐acting regulatory elements, CAAT‐box and TATA‐box were observed in the retained fragment in Mo17 at 15 DAP; this could regulate the expression of this gene and influence endosperm development.
  • The results suggest that the 30 genes with IR identified herein might be associated with maize endosperm development, and are likely to play important roles in the developing maize endosperm.
  相似文献   

15.
16.
Following the domestication of maize over the past ∼10,000 years, breeders have exploited the extensive genetic diversity of this species to mold its phenotype to meet human needs. The extent of structural variation, including copy number variation (CNV) and presence/absence variation (PAV), which are thought to contribute to the extraordinary phenotypic diversity and plasticity of this important crop, have not been elucidated. Whole-genome, array-based, comparative genomic hybridization (CGH) revealed a level of structural diversity between the inbred lines B73 and Mo17 that is unprecedented among higher eukaryotes. A detailed analysis of altered segments of DNA conservatively estimates that there are several hundred CNV sequences among the two genotypes, as well as several thousand PAV sequences that are present in B73 but not Mo17. Haplotype-specific PAVs contain hundreds of single-copy, expressed genes that may contribute to heterosis and to the extraordinary phenotypic diversity of this important crop.  相似文献   

17.
Plant endosperm cells have a nuclear ratio of two maternal genomes to one paternal genome. This 2 to 1 dosage relationship provides a unique system for studying the additivity of gene expression levels in reciprocal hybrids. A combination of microarray profiling and allele-specific expression analysis was performed using RNA isolated from endosperm tissues of maize (Zea mays) inbred lines B73 and Mo17 and their reciprocal hybrids at two developmental stages, 13 and 19 d after pollination. The majority of genes exhibited additive expression in reciprocal hybrids based on microarray analyses. However, a substantial number of genes exhibited nonadditive expression patterns, including maternal like, paternal like, high parent like, low parent like, and expression patterns outside the range of the parental inbreds. The frequency of hybrid expression patterns outside of the parental range in maize endosperm tissue is much higher than that observed for vegetative tissues. For a set of 90 genes, allele-specific expression assays were employed to monitor allelic bias and regulatory variation. Eight of these genes exhibited evidence for maternally or paternally biased expression at multiple stages of endosperm development and are potential examples of differential imprinting. Our data indicate that parental effects on gene expression are much stronger in endosperm than in vegetative tissues.  相似文献   

18.
The ability of plant somatic cells to dedifferentiate, form somatic embryos and regenerate whole plants in vitro has been harnessed for both clonal propagation and as a key component of plant genetic engineering systems. Embryogenic culture response is significantly limited, however, by plant genotype in most species. This impedes advancements in both plant transformation-based functional genomics research and crop improvement efforts. We utilized natural variation among maize inbred lines to genetically map somatic embryo generation potential in tissue culture and identify candidate genes underlying totipotency. Using a series of maize lines derived from crosses involving the culturable parent A188 and the non-responsive parent B73, we identified a region on chromosome 3 associated with embryogenic culture response and focused on three candidate genes within the region based on genetic position and expression pattern. Two candidate genes showed no effect when ectopically expressed in B73, but the gene Wox2a was found to induce somatic embryogenesis and embryogenic callus proliferation. Transgenic B73 cells with strong constitutive expression of the B73 and A188 coding sequences of Wox2a were found to produce somatic embryos at similar frequencies, demonstrating that sufficient expression of either allele could rescue the embryogenic culture phenotype. Transgenic B73 plants were regenerated from the somatic embryos without chemical selection and no pleiotropic effects were observed in the Wox2a overexpression lines in the regenerated T0 plants or in the two independent events which produced T1 progeny. In addition to linking natural variation in tissue culture response to Wox2a, our data support the utility of Wox2a in enabling transformation of recalcitrant genotypes.  相似文献   

19.
20.
Summary To provide an insight into the molecular basis of heterosis, we investigated gene expression in primary root tips of a heterotic maize hybrid (B73 × Mo17) and its parental lines (B73 and Mo17). This analysis was carried out (i) by differential plaque hybridization of a recombinant cDNA library made to poly(A) RNA isolated from B73 × Mo17 primary root tips, and (ii) by comparing with two-dimensional gel electrophoresis proteins synthesized in vitro in the rabbit reticulocyte system by poly(A) RNA isolated, at different stages of development, from the three genotypes. The results showed that there are sets of proteins and mRNAs that are differentially synthesized and expressed in the F1 primary root tips in comparison to the parental lines. Moreover, results from the survey of 21 major in-vitrosynthesized polypeptide variants, from mRNAs of primary root tips of the parental lines and their F1 hybrid, indicated that in seven instances hybrid proteins translated in vitro were more abundant or possibly new. In most of the remaining cases, hybrid spots were similar in intensity to the same protein produced by one of the two parental lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号