首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous determination of mycophenolic acid (MPA) and mycophenolic acid glucuronide (MPAG) in plasma was accomplished by isocratic HPLC with UV detection. After protein precipitation and phase separation with saturated sodium dihydrogenphosphate, chromatographic separation was achieved on a monolithic column "Chromolith Performance RP-18e", with acetonitrile/0.01 M phosphate buffer, pH 3, (25:75, v/v), as the mobile phase; flow rate 3.3 ml/min and measurement at 214 nm. Linearity was verified up to 40 mg/l for MPA and up to 400 mg/l for MPAG. Detection limits based on the analysis of 50 microl plasma were 0.05 and 0.5 mg/l for MPA and MPAG, respectively. Accuracy was 99.6-104% for MPA and 95.6-105% for MPAG and total imprecision (CV) was <7% for both compounds. Analytical recovery was >95% for MPA and MPAG. The method is simple, rapid, accurate and suitable for routine determination of MPA and MPAG in plasma.  相似文献   

2.
When measuring fentanyl and midazolam simultaneously in the same plasma sample with standard high-performance liquid chromatography–ultraviolet (HPLC–UV) detection, overlap of the fentanyl peak by the midazolam peak occurs, which makes fentanyl determination impossible. We tested the hypothesis that by acidifying the methanol mobile phase with 0.02% perchloric acid, 70%, it would be possible to separate both peaks. The UV detector was set at 200 nm. Calibration curves for fentanyl (range 0–2000 pg/ml) and midazolam (range 0–400 ng/ml) were linear (r>0.99). The detection limits were 200 pg/ml (fentanyl) and 10 ng/ml (midazolam). Precision and accuracy for intra- and inter-assay variability as well as in-line validation with quality control samples (QCS) were acceptable (< 15 and 20%, respectively), except for fentanyl QCS of 200 pg/ml (17.8% precision). Although less sensitive than gas chromatography–mass spectrometry (GC–MS), reliable measurements of fentanyl, simultaneously with midazolam, can be performed with this HPLC–UV system.  相似文献   

3.
We have developed a liquid chromatographic method which uses electrochemical detection for the simultaneous quantitation of histamine and N tau-methylhistamine in rat brain. The amines are derivatized with the water-soluble Bolton-Hunter reagent (sulfo B-H). Perchloric acid extracts of rat brains are chromatographed on a strong cation-exchange resin. The eluate is evaporated and allowed to react with sulfo B-H at pH 9.8 at room temperature. The derivatization is complete after 30 s vortexing. The derivatives are purified using a cellulose-phosphate fibrous cation exchanger. They are quantified with an electrochemical detector at a potential of 0.56 V after preoxidizing the sample at 0.47 V. The derivatives of histamine, N tau-methylhistamine, and N alpha-methylhistamine are completely separated without interfering peaks. Since no N alpha-methylhistamine was detected in rat brain it was used as an internal standard. The detection limits are 0.1 pmol of histamine and 0.2 pmol of N tau-methylhistamine. The precision of this method is high, with within-run and between-run coefficients of variation of 2-7% and linearity of 0.999. Both histamine and N tau-methylhistamine peak heights increased significantly and selectively after treatment with pargyline. Because of the high sensitivity, accuracy, and precision, the histamine and N tau-methylhistamine contents of single nuclei of the rat hypothalamus can be routinely quantified.  相似文献   

4.
A high-performance liquid chromatography (HPLC) procedure for the separation of choline lysophospholids including 1-acyl-lysophosphatidylcholines and 1-O-alkyl-lysophosphatidyl-cholines, like the lysoform of the platelet activating factor (2-lysoPAF), is described. The lysophospholipids are derivatized at the sn-2 position of the hydroxyl group by 7-diethylaminocoumarin-3-carbonylazide, which converts them into the corresponding carbamoyl derivatives. The derivatized compounds were well separated by reversed-phase HPLC and quantified by fluorimetric detection. This method shows a high sensitivity and allows the separation and quantification of mixtures of lysophospholipids at picomolar level. The method was applied to assay enzyme activities, like phospholipase A2 and PAF-acetylhydrolase, on single phospholipids or their mixtures.  相似文献   

5.
6.
A reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet detection has been developed for the analysis of purines in urinary calculi. The method using gradient of methanol concentration and pH was able to separate 16 compounds: uric acid, 2,8-dihydroxyadenine, xanthine, hypoxanthine, allopurinol and oxypurinol as well as 10 methyl derivatives of uric acid or xanthine (1-, 3-, 7- and 9-methyluric acid, 1,3-, 1,7- and 3,7-dimethyluric acid, 1-, 3- and 7-methylxanthine). Limits of detection for individual compounds ranged from 0.006 to 0.035 mg purine/g of the stone weight and precision (CV%) was 0.5-2.4%. The method enabled us to detect in human uric acid stones admixtures of nine other purine derivatives: natural metabolites (hypoxanthine, xanthine, 2,8-dihydroxyadenine) and methylated purines (1-, 3- and 7-methyluric acid, 1,3-dimethyluric acid, 3- and 7-methylxanthine) originating from the metabolism of methylxanthines (caffeine, theophylline and theobromine). The method allows simultaneous quantitation of all known purine constituents of urinary stones, including methylated purines, and may be used as a reference one for diagnosing disorders of purine metabolism and research on the pathogenesis of urolithiasis.  相似文献   

7.
Here we describe a simple high-performance liquid chromatography (HPLC) procedure for the simultaneous detection and quantitation in standard solutions of 13 important metabolites of cellular energy metabolism, including 9 tricarboxylic acid (TCA) cycle components and 4 additional metabolites. The metabolites are detected by their absorbance at 210 nm. The procedure does not require prior derivatization, and an analysis can be carried out at ambient temperature within 15 min. The significance of the current work is that the current HPLC procedure should motivate the development of simplified TCA cycle enzyme assays, isotopomer analysis, and determination of selected TCA metabolite levels in plasma/tissues.  相似文献   

8.
A selective method based on high-performance liquid chromatography with electrochemical detection (HPLC-ECD) has been developed to enable simultaneous determination of three fluoroquinolones (FQs), namely danofloxacin (DANO), difloxacin (DIFLO) and sarafloxacin (SARA). The fluoroquinolones are separated on a Novapack C-18 column and detected in a high sensitivity amperometric cell at a potential of +0.8 V. Solid-phase extraction was used for the extraction of the analytes in real samples. The range of concentration examined varied from 10 to 150 ng g?1 for danofloxacin, from 25 to 100 ng g?1 for sarafloxacin and from 50 to 315 ng g?1 for difloxacin, respectively. The method presents detection limits under 10 ng g?1 and recoveries around 90% for the three analytes have been obtained in the experiments with fortified samples. This HPLC-ECD approach can be useful in the routine analysis of antibacterial residues being less expensive and less complicated than other more powerful tools as hyphenated techniques.  相似文献   

9.
A fast, simple, and a reliable high-performance liquid chromatography linked with electrochemical detector (HPLC-ECD) method for the assessment of lipoic acid (LA) and dihydrolipoic acid (DHLA) in plasma was developed using naproxen sodium as an internal standard (IS) and validated according to standard guidelines. Extraction of both analytes and IS from plasma (250 μl) was carried out with a single step liquid-liquid extraction applying dichloromethane. The separated organic layer was dried under stream of nitrogen at 40°C and the residue was reconstituted with the mobile phase. Complete separation of both compounds and IS at 30°C on Discovery HS C18 RP column (250 mm × 4.6 mm, 5 μm) was achieved in 9 min using acetonitrile: 0.05 M phosphate buffer (pH 2.4 adjusted with phosphoric acid) (52:48, v/v) as a mobile phase pumped at flow rate of 1.5 ml min(-1) using electrochemical detector in DC mode at the detector potential of 1.0 V. The limit of detection and limit of quantification for lipoic acid were 500 pg/ml and 3 ng/ml, and for dihydrolipoic acid were 3 ng/ml and 10 ng/ml, respectively. The absolute recoveries of lipoic acid and dihydrolipoic acid determined on three nominal concentrations were in the range of 93.40-97.06, and 93.00-97.10, respectively. Similarly coefficient of variations (% CV) for both intra-day and inter-day were between 0.829 and 3.097% for lipoic acid and between 1.620 and 5.681% for dihydrolipoic acid, respectively. This validated method was applied for the analysis of lipoic acid/dihydrolipoic acid in the plasma of human volunteers and will be used for the quantification of these compounds in patients with oxidative stress induced pathologies.  相似文献   

10.
In this paper we develop an high-performance liquid chromatographic method with ultraviolet detection for the determination of verapamil and its primary metabolite norverapamil in biological samples. Both compounds, as well as the internal standard, imipramine, were extracted from alkalinised blood, with n-hexane–isobutyl alcohol, back-extracted into 0.01 M phosphoric acid and determined using a reversed-phase column and ultraviolet monitoring at 210 nm. The average coefficient of variation obtained over the concentration range of 1–1000 ng/ml is about 3%. The detection limit is below 5 ng/ml for both compounds, and extraction recoveries close to 80%. The method was applied to a pharmacokinetic study of the drug and its active metabolite and used to analyse blood samples from verapamil treated rabbits.  相似文献   

11.
We herein report the simultaneous determination of the levels of noradrenaline (NA), and 3-methoxy-4-hydroxyphenylglycol (MHPG), a major metabolite of NA. The sample was subjected to a Sep Pak C18 cartridge prior to the NA and MHPG assay by high-performance liquid chromatography with an electrochemical detector. The results correlated well with the established methods. The average percentage of recovery was 91.2 and 98.7% for NA and MHPG, respectively. The intraassay coefficients of variation were 3.7 and 4.6% for NA and MHPG. The interassay coefficients of variation were 3.5 and 7.5% for NA and MHPG, respectively.  相似文献   

12.
A new, sensitive, and specific assay method for guanine nucleotides using high-performance liquid chromatography with dual-electrochemical detection was developed. GTP, GDP, GMP, and cyclic GMP were separated with reversed-phase "ion-pair" chromatography and detected by a dual-electrochemical detector. Only guanine nucleotides among all purine and pyrimidine nucleotides responded to the electrochemical detector at 0.95 V. The peak heights for these guanine nucleotides were linear at concentrations between 0.5 pmol and 1 nmol. The regional distribution of these guanine nucleotides in the rat brain was studied by this new assay method.  相似文献   

13.
14.
A simple method has been developed for the simultaneous determination of lathosterol and cholesterol by high-performance liquid chromatography with electrochemical detection (HPLC-ECD). Lathosterol was found to be electrochemically oxidized and its current peak height was linearly related to the amount of lathosterol injected, ranging from 0.15 μmol/L to 300 μmol/L (r=0.995). Similar results were obtained with cholesterol from 15 μmol/L to 600 μmol/L (r=0.995). The separation was carried out with an ODS column, acetonitrile containing 30 mmol/L lithium perchlorate as a mobile phase, and an applied potential at +2.8 V vs. Ag/AgCl. The detection limit (S/N=3) of lathosterol as well as cholesterol was 0.03 μmol/L (0.15 pmol). Total lathosterol in control human and rat serum was determined by the present method with a recovery of more than 95.8% and an RSD (n=5) of less than 7.3%. The present method was applied to an experiment with rats to examine the effect of lathosterol feeding. There were no significant changes in serum lathosterol or cholesterol levels in rats fed with a high-lathosterol diet for six days. Therefore, we found this method to be both simple and useful for the simultaneous determination of lathosterol and cholesterol in serum.  相似文献   

15.
A procedure is described for the determination of plasma catecholamines using reversed-phase, ion-pair high-performance liquid chromatography coupled with electrochemical detection. Optimisation of chromatographic conditions with respect to detector performance and adherence to procedures and precautions described, render the method applicable to both neurochemical research and routine clinical analysis. The limit of quantitative detection of the method was found to be approximately 30 pg per injection for individual catecholamines. A single chromatographic run, providing adequate resolution of each component, could be completed in approximately 12 min.  相似文献   

16.
A high-performance liquid chromatography (HPLC) procedure for the simultaneous determination of quinapril and its active metabolite quinaprilat in human plasma samples is described. A one-step solid-phase extraction (SPE) with C18 cartridges was coupled with a reversed-phase HPLC system. The system requires two mobile phases composed of tetrabutyl ammonium hydrogensulfate (10 mM adjusted to pH 7)-acetonitrile (62:38, v/v) for quinapril, and (25:75, v/v) for quinaprilat elution through a C18 Symmetry column and detection at a wavelength of 215 nm. Calibration curves were linear over the ranges 20 to 1,000 ng/ml for quinaprilat and 10 to 500 for quinapril. The limits of quantification were 20 and 10 ng/ml for quinaprilat and quinapril, respectively. Extraction recoveries were higher than 90% for quinapril and 80% for quinaprilat. This method has been successfully applied to a bioequivalence study of quinapril in healthy subjects.  相似文献   

17.
A rapid, simple and low-cost assay method of histamine-N-methyltransferase activity was developed. Methylhistamine, which was separated from the enzymatic reaction system on reversed-phase high-performance liquid chromatography using an ion-paired chromatographic technique, was detected spectrophotometrically at 226 nm. The mobile phase used for the separation of methylhistamine was 0.05M NH4H2PO4 (pH 3.0) containing 2 mM of sodium octanesulfonate. The new assay technique could detect methylhistamine as an enzyme activity product of histamine-N-methyltransferase in the brain and kidney of rats. Chloropheniramine maleate, an antihistamine, activated the histamine-N-methyltransferase. Whether neurotransmitter or neuromodulator, the role of histamine in the brain has not yet been made clear. Therefore, the present method could be applicable for the enzymatic investigation of histamine metabolism in central nervous system or inflammatory reactions.  相似文献   

18.
A simple, specific and sensitive high-performance liquid chromatographic method has been developed for the simultaneous determination of rufloxacin, fenbufen and felbinac in human plasma. Plasma, spiked with internal standard, was vortex-mixed for 1 min with a mixture of dichloromethane-diethyl ether (80:20, v/v). The evaporated extract was dissolved in 0.02 M NaOH. Drugs were resolved at room temperature on a 5 μm Zorbax SAX column (250×4.6 min I.D.) equipped with a 20×4.6 mm anion-exchange Vydac AXGU ( 10 μm particle size) precolumn. The mobile phase consisted of acetonitrile and phosphate buffer (pH 7.0), delivered at a flow-rate of 1.2 ml/min. Detection was made at 280 nm, 2-[4-(2′-Furoyl)phenyl]propionic acid was used as internal standard. The calibration curve was linear from 0.2 to 10μg/ml for rufloxacin, from 0.5 to 30 μg/ml for fenbufen and from 0.2 to 10 μg/ml for felbinac, respectively. The detection limit was 0.1 μg/ml for rufloxacin. 0.3 μg/ml for fenbufen and 0.1 μg/ml for felbinac, respectively.  相似文献   

19.
A fast, simple and selective HPLC method has been developed for the assay of aciclovir, ganciclovir, and penciclovir in human plasma by coupling HPLC with fluorescence detection. 200 microl plasma, with guanosine 5'-monophosphate as an internal standard, was subjected to protein precipitation with a 7% [v/v] aqueous perchloric acid solution. The 40 microl supernatant was injected into a Diamonsil-5 microm C18 column. Aciclovir, ganciclovir, and penciclovir, with solvents composed of methanol and 0.08% aqueous trifluoroacetic acid solution, were analysed by fluorescence detection at 260 nm (excitation) and 380 nm (emission) using a gradient elution program. The calibration curves of all three analytes were linear between 20 and 2000 ng/ml. The mean absolute recoveries of aciclovir, ganciclovir, and penciclovir were 93.91+/-1.20%, 97.42+/-0.75%, and 99.01+/-3.30%, respectively. The mean inter-day CVs for aciclovir, ganciclovir, and penciclovir, were within 1.29-7.30%, 1.00-5.53%, and 1.19-3.54%, respectively. The intra-day bias for aciclovir, ganciclovir, and penciclovir ranged from -2.01 to 6.33%, 1.81 to 7.37%, and 1.42 to 6.91%, respectively. The method has been validated and applied in pharmacokinetic studies in Chinese adult renal transplant patients.  相似文献   

20.
The signal transduction inhibitor STI571 (formerly known as CGP 57148B) or Gleevec received fast track approval by the US Food and Drug Administration (FDA) for treatment of chronic myeloid leukemia (CML). STI571 is a revolutionary and promising new oral therapy for CML, which functions at the molecular level with high specificity. The dramatic improvement in efficacy compared to existing treatments prompted an equally profound increase in the pace of development of Gleevec. The duration from first dose in man to completion of the New Drug Application (NDA) filing was approximately 2.6 years. In order to support all pharmacokinetics studies with sufficient speed to meet various target dates, a semi-automated procedure using protein precipitation was developed and validated. A Tomtec Quadra 96 (Model 320) and a protein precipitation step in a 96-well plate format were utilized. A Sciex API 3000 triple quadrupole mass spectrometer with an atmospheric pressure chemical ionization interface operated in positive ion mode was used for detection. The method proved to be rugged and allowed the simultaneous quantification of STI571 and its main metabolite (CGP 74588) in human plasma. Herein, assay development, validation, and representative concentration-time profiles obtained from clinical studies are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号