首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The thymic microenvironment plays an important role in the development of T cells. A decrease of thymic epithelial cells is the main cause of age-related thymic atrophy or degeneration. Resveratrol (RSV), a phytoalexin produced from plants, has been shown to inhibit the adverse effects of dietary obesity on the structure and function of the thymus. D-Galactose (D-gal) can induce accelerated aging in mice. In the present study, young mice (2 months old) were injected with D-gal (120 mg/kg/day) for 8 consecutive weeks to construct an accelerated aging model. Compared with normal control mice, the thymus epithelium of the D-gal treated mice had structural changes, the number of senescent cells increased, the number of CD4+ T cells decreased, and CD8+ T cells increased. After RSV administration by gavage for 6 weeks, it was found that RSV improved the surface phenotypes of D-gal treated mice, and recovered thymus function by maintaining the ratio of CD4+ to CD8+ cells. It also indicated that RSV enhanced the cell proliferation and inhibited cell senescence. Increased autoimmune regulator (Aire) expression was present in the RSV treated mice. The lymphotoxin-beta receptor (LTβR) expression also increased. These findings suggested that RSV intake could restore the alterations caused by D-gal treatment in the thymus via stimulation of Aire expression.  相似文献   

3.
4.
BMP signaling is required for normal thymus development   总被引:5,自引:0,他引:5  
The microenvironment of the thymus fosters the generation of a diverse and self-tolerant T cell repertoire from a pool of essentially random specificities. Epithelial as well as mesenchymal cells contribute to the thymic stroma, but little is known about the factors that allow for communication between the two cells types that shape the thymic microenvironment. In this study, we investigated the role of bone morphogenetic protein (BMP) signaling in thymus development. Transgenic expression of the BMP antagonist Noggin in thymic epithelial cells under the control of a Foxn1 promoter in the mouse leads to dysplastic thymic lobes of drastically reduced size that are ectopically located in the neck at the level of the hyoid bone. Interestingly, the small number of thymocytes in these thymic lobes develops with normal kinetics and shows a wild-type phenotype. Organ initiation of the embryonic thymic anlage in these Noggin transgenic mice occurs as in wild-type mice, but the tight temporal and spatial regulation of BMP4 expression is abrogated in subsequent differentiation stages. We show that transgenic Noggin blocks BMP signaling in epithelial as well as mesenchymal cells of the thymic anlage. Our data demonstrate that BMP signaling is crucial for thymus development and that it is the thymic stroma rather than developing thymocytes that depends on BMP signals.  相似文献   

5.
Cellular events during the development of thymic lymphomas in young B10.BR mice given leukemogenic split-dose irradiation were studied by examining the differentiation of functional T lymphocyte precursors in the regenerating thymus. It was found that leukemogenic radiation treatment resulted in a sustained depression of the level of thymic cytotoxic T lymphocyte precursors (CTLp) and of mixed lymphocyte reactivity of thymus cells when assessed between 1 and 4 mo after irradiation, in spite of the fact that the total number of thymocytes was restored to the normal level within 2 mo and continued to increase thereafter. In vitro mixing studies of normal thymocytes with thymus cells from split-dose irradiated mice provided no evidence for active suppression as a mechanism for this depressed activity. The ability of bone marrow cells from split-dose irradiated mice to regenerate the thymus and to differentiate into functional CTLp was examined by use of supralethally irradiated Thy-1 congenic recipients. Reconstitution of supralethally irradiated B10.BR Thy-1.2 mice with normal bone marrow from B10.BR Thy-1.1 mice resulted in the complete repopulation of host-thymus with donor-derived cells when assessed at 4 wk after reconstitution. Lymphocytes from the regenerating thymus of these animals were shown to contain high levels of CTLp which were donor-derived. On the other hand, when the recipient mice were reconstituted with bone marrow cells from donor mice which had been split-dose irradiated 1 mo earlier, regeneration of the recipient thymus was severely depressed when assessed at 4 wk to 3 mo after reconstitution. Although variable but small numbers of donor-derived Thy-1+ cells were detected, CTL activity for alloantigen could not be induced in these donor-derived cells. The results suggest that T cell precursors derived from split-dose irradiated donor mice were unable to undergo active proliferation and differentiation into functional CTLp. The significance of these findings on radiation-induced thymic leukemogenesis is discussed.  相似文献   

6.
We have already shown that metallophilic macrophages, which represent an important component in the thymus physiology, are lacking in lymphotoxin-β receptor-deficient mice. However, further molecular requirements for the development and correct tissue positioning of these cells are unknown. To this end, we studied a panel of mice deficient in different chemokine ligand or receptor genes. In contrast to normal mice, which have these cells localized in the thymic cortico-medullary zone (CMZ) as a distinct row positioned between the cortex and medulla, in plt/plt (paucity of lymph node T cells) mice lacking the functional CCL19/CCL21 chemokines, metallophilic macrophages are not present in the thymic tissue. Interestingly, in contrast to the CCL19/21-deficient thymus, metallophilic macrophages are present in the CCR7-deficient thymus. However, these cells are not appropriately located in the CMZ, but are mostly crowded in central parts of thymic medulla. The double staining revealed that these metallophilic macrophages are CCR7-negative and CXCR3-positive. In the CXCL13-deficient thymus the number, morphology and localization of metallophilic macrophages are normal. Thus, our study shows that CCL19/21 and its possible signaling through CXCR3 are required for the development of thymic metallophilic macrophages, whereas the CXCL13–CXCR5 signaling is not necessary.  相似文献   

7.
It is well known that cell surface glycoconjugates play a determinant role in cellular recognition, cell-to-cell adhesion and serve as receptor molecules. T-lymphocytes are in strict contact with the thymic epithelial cells, which control their process of maturation and proliferation. On the other hand the normal maturation of the epithelial cells is believed to be induced by T-lymphocytes. For these reasons we have studied the glycoconjugates saccharidic moieties of the sessile and motile cells in the thymus of normal male albino Wistar rats and their changes following cyclosporin-A treatment, using a battery of seven HRP-lectins. Cytochemical controls were performed for specificity of lectin-sugar reaction. Some sections were pre-treated with neuraminidase prior to staining with HRP-lectins. Our results have demonstrated, in the control rats, a large amount and a variety of terminal and subterminal oligosaccharides within and/or on the epithelial thymic cells and in macrophages. After cyclosporin-A treatment, among the thymic epithelial cells, the subcapsular, paraseptal and perivascular cells showed the loss of some sugar residues, which characterized the same cells in the intact thymus. Some hypotheses are reported on the role played by the glycoconjugate sugar residues in control and cyclosporin-A treated rats.  相似文献   

8.
In studies of the mouse thymus, lymphocyte mitoses are seen to be most frequent in the thymus cortex. There is evidence from thymic grafts that a hypothetical factor, thymopoietin, may stimulate mitosis of thymic lymphocytes. It is a factor which is postulated to act in conjunction with the PAS-positive mesenchymal reticular cells and epithelial reticular cells of the cortex. The thymus medulla is necessary for the integrity of thymic grafts, and may also elaborate a secretion for maintaining the cellular functions of the gland. Thymectomy has been used as a gauge for judging normal thymic function and results, in the mouse, in lymphopenia, degeneration of spleen and lymph nodes, delayed rejection of skin allografts, reduced ability of spleen cells to mount the graft versus host reaction, and reduced primary immune response to certain antigens. Correction of these deficiencies offers a means of evaluating various thymic extracts and grafts. Lymphocytosis-stimulating hormone (LSH) is known to maintain the peripheral lymphoid organs and cause lymphocytosis in the thymectomized animal. Diffusion chamber studies of thymic grafts also show restored lymphoid tissue by a cell-free factor (CIF). These two factors may be the same and probably represent the basis of the highly purified lymphocyte-stimulating proteins, LSHr and LSHh, which restore the L/P ratio in thymectomized animals and may stimulate lymphopoiesis in spleen and lymph nodes. LSHr, unlike LSHh, increases the total lymphocyte count. LSHr has been found to increase the humoral antibody response in neonatal mice both by the PFC technique and by direct hemolysis of sheep erythrocytes. Homeostatic thymic hormone (HTH) is a thymic extract of small molecular weight and contains nucleic acid. In the thymectomized guinea pig it has been found to maintain normal levels of lymphocytes in the blood, spleen and lymph nodes, to restore antibody titers to typhoid H antigen and to restore the toxic allergic reaction. Thymic humoral factor (THF) is of smaller molecular weight (less than 1,000) and probably is not a protein. It also enhances lymphoid proliferation in neonatally thymectomized mice. There is evidence that THF participates in humoral antibody formation because it stimulates PFC formation from neonatally thymectomized mice after inoculation with sheep erythrocytes. Its effects on cell-mediated immunity are seen from findings that injection of THF restores the ability of thymectomized mice to reject skin allografts. THF enables spleen cells from thymectomized or neonatal animals to mount the graft versus host reaction, and causes maturation of bone marrow cells and spleen or lymph node cells so that they can participate in the graft versus host reaction. It has been reported to stimulate lymphocytes to kill isogeneic tumor cells in vitro. Thymosin is protein extracted from the thymus. It has been found to alleviate leukopenia slightly and provide some improvement in lymphoid histology in thymectomized mice...  相似文献   

9.
This presentation offers a brief review of the bone marrow-thymus axis in senescence, a putative model for thymocyte differentiation, and recent results of our work on the status of pre-thymic stem cells in aged mice. The data presented here provide further evidence for a thymus endocrine influence on the bone marrow stem cells, specifically lymphocyte precursors. It has been postulated that the thymic hormones may act on lymphocyte precursors in the bone marrow and that the loss of thymic factors during senescence may be a contributing factor to the decreased cellular immune function. This study used Haar's in vitro model to investigate the bone marrow-thymus axis in aged mice. Erythroid-depleted bone-marrow cells from 3-month- and 24-month-old CBA (Thy 1.2) mice were placed in the upper half of a blind-well chamber with thymus supernatant in the lower half. Experimental cells were treated with thymus supernatant for 1 hr prior to migration. This study confirmed that pre-thymic stem cells in aged bone marrow are deficient in their ability to migrate to the thymus supernatant. It also revealed that treatment of the old bone marrow with thymus supernatant, made from neonatal thymus cultures, could dramatically improve the thymus migrating ability of the aged bone-marrow stem cells.  相似文献   

10.
We previously reported that alloxan-induced diabetes results in reduction in the number and reactivity of mast cells at different body sites. In this study, the influence of diabetes on thymic mast cells was investigated. Thymuses from diabetic rats showed marked alterations including shrinkage, thymocyte depletion, and increase in the extracellular matrix network, as compared to those profiles seen in normal animals. Nevertheless, we noted that the number and reactivity of mast cells remained unchanged. These findings indicate that although diabetes leads to critical alterations in the thymus, the local mast cell population is refractory to its effect. This suggests that thymic mast cells are under a different regulation as compared to those located in other tissues.  相似文献   

11.
12.

Background

The dose-dependent toxicities of doxorubicin (DOX) limit its clinical applications, particularly in drug-resistant cancers, such as liver cancer. In this study, we investigated the role of quercetin on the antitumor effects of DOX on liver cancer cells and its ability to provide protection against DOX-mediated liver damage in mice.

Methodology and Results

The MTT and Annexin V/PI staining assay demonstrated that quercetin selectively sensitized DOX-induced cytotoxicity against liver cancer cells while protecting normal liver cells. The increase in DOX-mediated apoptosis in hepatoma cells by quercetin was p53-dependent and occurred by downregulating Bcl-xl expression. Z-VAD-fmk (caspase inhibitor), pifithrin-α (p53 inhibitor), or overexpressed Bcl-xl decreased the effects of quercetin on DOX-mediated apoptosis. The combined treatment of quercetin and DOX significantly reduced the growth of liver cancer xenografts in mice. Moreover, quercetin decreased the serum levels of alanine aminotransferase and aspartate aminotransferase that were increased in DOX-treated mice. Quercetin also reversed the DOX-induced pathological changes in mice livers.

Conclusion and Significance

These results indicate that quercetin potentiated the antitumor effects of DOX on liver cancer cells while protecting normal liver cells. Therefore, the development of quercetin may be beneficial in a combined treatment with DOX for increased therapeutic efficacy against liver cancer.  相似文献   

13.
14.
Breast cancer is currently one of the most common malignant tumors in women. Our previous research found that thymic dysfunction has a certain relationship with the occurrence and development of breast cancer. In order to explore whether the functional status of thymus is related to the development and metastasis of breast cancer, we use BALB/c wild type mice (BALB wt), BALB/c nude mice (BALB nu), BALB wt mice implanted with 4T1 cells (wt 4T1), BALB nu with 4T1 (nu 4T1), D-galactose treatment wt 4T1 mice (D-Gal), Thymalfasin treatment wt 4T1 mice (Tα1), Cyclophosphamide treatment wt 4T1 mice (CTX), Doxorubicin treatment wt 4T1 mice (Dox) in the research. As a result, nu 4T1, D-Gal and DOX had earlier lung metastases. Gene chip results showed that PTMα and Tβ15b1 were the most up-regulated and down-regulated genes in thymosin-related genes, respectively. Overexpression or silencing of PTMα and Tβ15b1 genes did not affect the proliferation of 4T1 cells. PTMα gene silenced, cell migration and invasion ability enhanced, while PTMα gene overexpression, the cell invasion ability weaken. In vivo, PTMα gene overexpression promotes tumor growth and lung metastasis in the early stage, but has no significant effect in the later stage. Tβ15b1 overexpression also promotes tumor growth in the early stage, but suppresses in the later stage. Tβ15b1 gene silencing inhibits tumor lung metastasis. Thus, our findings demonstrated that thymic function affects breast cancer development and metastasis by regulating expression of thymus secretions PTMα and Tβ15b1. Our study provided new directions for breast cancer therapy.  相似文献   

15.

Background

Thymic epithelial cell (TEC) microenvironments are essential for the recruitment of T cell precursors from the bone marrow, as well as the subsequent expansion and selection of thymocytes resulting in a mature self-tolerant T cell repertoire. The molecular mechanisms, which control both the initial development and subsequent maintenance of these critical microenvironments, are poorly defined. Wnt signaling has been shown to be important to the development of several epithelial tissues and organs. Regulation of Wnt signaling has also been shown to impact both early thymocyte and thymic epithelial development. However, early blocks in thymic organogenesis or death of the mice have prevented analysis of a role of canonical Wnt signaling in the maintenance of TECs in the postnatal thymus.

Methodology/Principal Findings

Here we demonstrate that tetracycline-regulated expression of the canonical Wnt inhibitor DKK1 in TECs localized in both the cortex and medulla of adult mice, results in rapid thymic degeneration characterized by a loss of ΔNP63+ Foxn1+ and Aire+ TECs, loss of K5K8DP TECs thought to represent or contain an immature TEC progenitor, decreased TEC proliferation and the development of cystic structures, similar to an aged thymus. Removal of DKK1 from DKK1-involuted mice results in full recovery, suggesting that canonical Wnt signaling is required for the differentiation or proliferation of TEC populations needed for maintenance of properly organized adult thymic epithelial microenvironments.

Conclusions/Significance

Taken together, the results of this study demonstrate that canonical Wnt signaling within TECs is required for the maintenance of epithelial microenvironments in the postnatal thymus, possibly through effects on TEC progenitor/stem cell populations. Downstream targets of Wnt signaling, which are responsible for maintenance of these TEC progenitors may provide useful targets for therapies aimed at counteracting age associated thymic involution or the premature thymic degeneration associated with cancer therapy and bone marrow transplants.  相似文献   

16.
17.
Although it has been established that high levels of estrogen can induce thymic involution, the mechanism by which this happens is not known. We have found that daily i.p. injections of the synthetic estrogen 17-beta-estradiol reduce thymus cellularity by 80% over a period of 4-6 days. Although the atrophy is most strikingly observed in the CD4/CD8 double-positive (DP) thymic subset, the loss of thymocytes is not accompanied by a significant increase in thymocyte apoptosis, suggesting that direct killing of cells may not be the dominant means by which estrogens induce thymic atrophy. Instead, we find that estradiol drastically reduces the lineage-negative, Flt3(+)Sca-1(+)c-Kit(+) population in the bone marrow, a population that contains thymic homing progenitors. Within the thymus, we observe that estradiol treatment results in a preferential depletion of early thymic progenitors. In addition, we find that estradiol leads to a significant reduction in the proliferation of thymocytes responding to pre-TCR signals. Reduced proliferation of DN3 and DN4 cell subsets is likely the major contributor to the reduction in DP thymocytes that is observed. The reduction in early thymic progenitors is also likely to contribute to thymic atrophy, as we show that estradiol treatment can reduce the size of Rag1-deficient thymuses, which lack pre-TCR signals and DP thymocytes.  相似文献   

18.
Clinical use of the anthracycline doxorubicin (DOX) is limited by its cardiotoxic effects, which are attributed to the induction of apoptosis. To elucidate the possible role of the kinin B1 receptor (B1R) during the development of DOX cardiomyopathy, we studied B1R knockout mice (B1R(-/-)) by investigating cardiac inflammation and apoptosis after induction of DOX-induced cardiomyopathy. DOX control mice showed cardiac dysfunction measured by pressure-volume loops in vivo. This was associated with a reduced activation state of AKT, as well as an increased bax/bcl2 ratio in Western blots, indicating cardiac apoptosis. Furthermore, mRNA levels of the proinflammatory cytokine interleukin 6 were increased in the cardiac tissue. In DOX B1R(-/-) mice, cardiac dysfunction was improved compared to DOX control mice, which was associated with normalization of the bax/bcl-2 ratio and interleukin 6, as well as AKT activation state. These findings suggest that B1R is detrimental in DOX cardiomyopathy in that it mediates the inflammatory response and apoptosis. These insights might have useful implications for future studies utilizing B1R antagonists for treatment of human DOX cardiomyopathy.  相似文献   

19.
Diabetic cardiomyopathy is characterized by reduced cardiac contractility independent of vascular disease. A contributor to contractile dysfunction in the diabetic heart is impaired sarcoplasmic reticulum function with reduced sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) pump activity, leading to disturbed intracellular calcium handling. It is currently unclear whether increasing SERCA2a activity in hearts with existing diabetic cardiomyopathy could still improve calcium flux and contractile performance. To test this hypothesis, we generated a cardiac-specific tetracycline-inducible double transgenic mouse, which allows for doxycycline (DOX)-based inducible SERCA2a expression in which DOX exposure turns on SERCA2a expression. Isolated cardiomyocytes and Langendorff perfused hearts from streptozotocin-induced diabetic mice were studied. Our results show that total SERCA2a protein levels were decreased in the diabetic mice by 60% compared with control. SERCA2a increased above control values in the diabetic mice after DOX. Dysfunctional contractility in the diabetic cardiomyocyte was restored to normal by induction of SERCA2a expression. Calcium transients from diabetic cardiomyocytes showed a delayed rate of diastolic calcium decay of 66%, which was reverted toward normal after SERCA2a expression induced by DOX. Global cardiac function assessed in the diabetic perfused heart showed diminished left ventricular pressure, rate of contraction, and relaxation. These parameters were returned to control values by SERCA2a expression. In conclusion, we have used mice allowing for inducible expression of SERCA2a and could demonstrate that increased expression of SERCA2a leads to improved cardiac function in mice with an already established diabetic cardiomyopathy in absence of detrimental effects.  相似文献   

20.
Reciprocal interaction between bone marrow derived lymphoid precursor cells and the thymic environment leads, through a series of developmental events, to the generation of a diverse repertoire of functional T-cells. During thymopoiesis fetal liver or bone marrow derived precursors enter the thymus and develop into mature T-cells in response to cues derived from the environment. The thymic micro-environment provides signals to the lymphoid cells as a result of cell-cell interactions, locally produced cytokines, chemokines and hormones. Developing thymocytes, in turn, influence the thymic stroma to form a supportive micro-environment. Stage-specific signals provide an exquisite balance between cellular proliferation, differentiation, cell survival and death. The result of this intricate signaling concert is the production of the requisite numbers of well educated self-restricted T-cells. Mature T-cells are exported to the peripheral lymphoid organs, where, upon encountering antigen, naive T-cells further mature into effector cells that provide cytolytic or T helper functions. While there are extra-thymic locations for T-cell development, majority of T-cells in peripheral lymphoid organs are thymus derived. In mice and humans, T-cells develop throughout life although the efficacy declines significantly with age. It is not clear if this is a direct consequence of deterioration of the thymic environment by involution, a paucity of bone marrow derived precursors, or both. However, new data clearly shows that the involuted adult thymus retains the ability to generate new T-cells. Recent advances have revealed many components of an exquisitely balanced signaling cascades that regulate cell fate, cellular proliferation and cell death in the thymus. This article describes fundamental features of developing thymocytes and the thymic micro-environment as they relate to the signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号