首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Nuclear transfer experiments in mammals have attempted to reprogram a donor nucleus to a state equivalent to the zygotic one. Reprogramming of the donor nucleus is, among other features, indicated by a synthesis of ribosomal RNA (rRNA). The initiation of rRNA synthesis is simultaneously reflected in nuclear morphology as a transformation of the nucleolus precursor body into a functional rRNA synthesising nucleolus with a characteristic ultrastructure. We examined nucleolar ultrastructure in bovine in vitro produced (control) embryos and in nuclear transfer embryos reconstructed from a MII phase (nonactivated) or S phase (activated) cytoplasts. Control embryos were fixed at the two-, four-, early eight- and late eight-cell stages; nuclear transfer embryos were fixed at 1 and 3 hr post fusion and at the two-, four-, and eight-cell stages. Control embryos possessed a nucleolar precursor body throughout all three cell cycles. In the eight-cell stage embryo, a primary vacuole appeared as an electron lucid area originating in the centre of the nucleolar precursor body. In nuclear transfer embryos reconstructed from nonactivated cytoplasts, the nuclear envelope was fragmented or completely broken down at 1 hr after fusion and, by 3 hr after fusion, it was restored again. At this time, the reticulated fibrillo-granular nucleolus had an almost round shape. The nucleolar precursor body seen in the two-cell stage nuclear transfer embryos consisted of intermingled filamentous components and secondary vacuoles. A nucleolar precursor body typical for the two-cell stage control embryos was never observed. None of the reconstructed embryos of this group reached the eight-cell stage. Nuclear transfer embryos reconstructed from activated cytoplasts, in contrast, exhibited a complete nuclear envelope at all time intervals after fusion. In the two-cell stage nuclear transfer embryo, the originally reticulated nucleolus of the donor blastomere had changed into a typical nucleolar precursor body consisting of a homogeneous fibrillar structure. A primary vacuole appeared in the four-cell stage nuclear transfer embryos, which was one cell cycle earlier than in control embryos. Only nuclear transfer embryos reconstructed from activated cytoplasts underwent complete remodelling of the nucleolus. The reorganisation of the donor nucleolar architecture into a functionally active nucleolus was observed as early as in the four-cell stage nuclear transfer embryo. These ultrastructural observations were correlated with our autoradiographic data on the initiation of RNA synthesis in nuclear transfer embryos.  相似文献   

2.
山羊早期胚胎发育的超微结构研究   总被引:2,自引:0,他引:2  
本实验以促卵泡刺激素(FSH)进行超排处理所得的胚胎为材料,首次对山羊附植前胚胎发育过程中的超微结构变化进行了系统的研究。结果表明:(1)在桑椹期以前,胚胎中大都为带帽线粒体,从此期开始这种线粒体明显减少;从四细胞期开始,出现基质浅具横嵴的线粒体,且以后各期逐步增多。具横嵴的线粒体可能由带帽线粒体的帽状泡消失后转变而来。(2)核仁从四细胞期开始网状化,以后网状化程度逐步增强,颗粒部明显增加。(3)间隙连结最早形成于4细胞期,紧密连结和桥粒分别从8细胞期开始出现。  相似文献   

3.
为了提高异种间核移植重构胚的发育率,本研究以体内排放的奶山羊成熟卵为供胞质的受体细胞,以人、兔、波尔山羊等的异种或亚种体细胞的原代核移植(Primary Somatic Cell Nuclear Transfer,PSCNT)重构早胚(8-16细胞期)的卵裂球作供核体,观察经亚种或异种卵胞质体短期“修饰”的核再移植产生的继代(Secondary SCNT,SSCNT)重构胚的着床前发育潜能。结果:人、兔、波尔山羊的继代桑椹/囊胚发育率均显著地高于其PSCNT胚胎(人,14.81%VS.7.79%;兔,23.53%VS.12.50%;波尔羊,55.35%VS.24.53%);这些早胚的各阶段发育时程仍遵循供核体动物正常受精卵的发育时程。结果启示:奶山羊成熟卵胞质对异种体细胞核亦具一定的去分化能力,能支持重构胚发育到囊胚;异种重构胚的发育特征是由供体核所决定的;继代核移植几乎能够成倍提高异种间重构胚的着床前发育率,提示核的去分化完全是在母型信息主导的调控之下完成的,而进一步发育的时序似乎是由核决定的:成倍延长在含母型信息主导调控环境中的时间能成倍提高SCNT重构胚的着床前发育率。  相似文献   

4.
The embryos from many outbred and inbred strains of mice are arrested at the late 2-cell stage when cultured in vitro in simple culture media. This phenomenon is referred to as the "2-cell block in vitro". The ultrastructural morphology of the nuclei of the blocked embryos is not yet well described. In the present paper we documented the results of a comparative study on the nuclei of mouse embryos, both normally developing and arrested at the 2-cell stage. The blocked embryos maintain the morphological integrity of their nuclei. Main nuclear domains (nucleolus precursor bodies, interchromatin granule clusters, perichromatin granules, and perichromatin fibrils), typical for the control embryos, are observed in the blocked ones. A number and morphological characteristics of these nuclear substructures are not changed significantly in the blocked embryos. At the same time, RNA polymerase II and pre-mRNA splicing factors are redistributed in the nucleus of the blocked embryos. Although something goes to show that nuclear organization of the blocked embryos differ from that of the control, we could not reveal in the blocked embryos distinct signs of degeneration which might characterize aged or dying cells. Our data confirm a peculiar functional state of the 2-cell blocked embryos.  相似文献   

5.
6.
人-山羊异种核移植胚胎发育的初步研究   总被引:2,自引:0,他引:2  
以体外分离培养的人胚胎成纤维细胞为核供体,经血清饥饿培养后,通过显微操作技术移入山羊去核卵母细胞中,采用化学方法激活重组胚.通过体外培养观察,2-细胞胚胎发育率可达51.33%,4-细胞发育率为31.42%,但发育至桑椹胚阶段的胚胎数目大大减少,仅为9.73%.虽然目前尚未能获得异种核移植囊胚,但实验结果说明山羊成熟卵母细胞可以支持人体细胞核完成重编程,人-山羊异种体细胞核移植重组胚可在体外完成其早期发育.  相似文献   

7.
8.
The aim of the present investigation was to describe the basic cell biology of the postfertilization activation of rRNA genes using in vitro-produced bovine embryos as a model. We used immunofluorescence confocal laser scanning microscopy and transmission electron microscopy to study nucleolar development in the nuclei of embryos up to the fifth postfertilization cell cycle. During the first cell cycle (1-cell stage), fibrillarin, upstream binding factor (UBF), nucleolin (C23), and RNA polymerase I were localized to distinct foci in the pronuclei, and, ultrastructurally, compact spherical fibrillar masses were the most prominent pronuclear finding. During the second cell cycle (2-cell stage), the findings were similar except for a lack of nucleolin and RNA polymerase I labeling. During the third cell cycle (4-cell stage), fibrillarin, UBF, nucleophosmin, and nucleolin were localized to distinct foci. Ultrastructurally, spherical fibrillar masses that developed a central vacuole over the course of the cell cycle were observed. Early in the fourth cell cycle (8-cell stage), fibrillarin, nucleophosmin, and nucleolin were localized to small bodies that with time developed a central vacuole. UBF and topoisomerase I were localized to clusters of small foci. Ultrastructurally, spherical fibrillar masses with a large eccentric vacuole and later small peripheral vacuoles were seen. Late in the fourth cell cycle, nucleophosmin and nucleolin were localized to large shell-like bodies; and fibrillarin, UBF, topoisomerase I, and RNA polymerase I were localized to clusters of small foci. Ultrastructurally, a presumptive dense fibrillar component (DFC) and fibrillar centers (FCs) were observed peripherally in the vacuolated spherical fibrillar masses. Subsequently, the presumptive granular component (GC) gradually became embedded in the substance of this entity, resulting in the formation of a fibrillo-granular nucleolus. During the fifth cell cycle (16-cell stage), a spherical fibrillo-granular nucleolus developed from the start of the cell cycle. In conclusion, the nucleolar protein compartment in in vitro-produced preimplantation bovine embryos is assembled over several cell cycles. In particular, RNA polymerase I and topoisomerase I are detected for the first time late during the fourth embryonic cell cycle, which coincides with the first recognition of the DFC, FCs, and GC at the ultrastructural level.  相似文献   

9.
10.
11.
The ultrastructural distribution of proteins B23 and nucleolin in the nucleolus of mouse embryos from the zygote to the early blastocyst has been analyzed by means of specific antibodies and immunocytochemistry using colloidal gold complexes as markers. In parallel, silver staining of nucleoli was carried out on ultrathin sections. Our results show that the compact prenucleolar bodies at 1- and 2-cell stage as well as the compact residual fibrillar masses observed up to the morula stage, are labelled with the two antibodies. These masses, however, are not stained with silver up to the 4-cell stage. In well-developed nucleoli, the two antibodies co-localize in the dense fibrillar component (DFC) and the granular component (GC) while fibrillar centers (FCs) are devoid of label. On the contrary, silver staining occurs in the FCs and DFC but not in the GC. Our observations suggest that there is no direct relationship between the occurrence of silver staining and the distribution of protein B23 or nucleolin. Moreover, neither the localization of the two above proteins nor silver staining are unequivocally related to the nucleolar activity.  相似文献   

12.
The technique of interspecies somatic cell nuclear transfer, in which interspecies cloned embryos can be reconstructed by using domestic animal oocytes as nuclear recipients and endangered animal or human somatic cells as nuclear donors, can afford more opportunities in endangered animal rescue and human tissue transplantation, but the application of this technique is limited by extremely low efficiency which may be attributed to donor nucleus not fully reprogrammed by xenogenic cytoplasm. In this study, goat fetal fibroblasts (GFFs) were used as nuclear donors, in vitro-matured sheep oocytes were used as nuclear recipients, and a two-stage nuclear transfer procedure was performed to improve the developmental ability of goat-sheep interspecies clone embryos. In the first stage nuclear transfer (FSNT), GFFs were injected into the ooplasm of enucleated sheep metaphase-II oocytes, then non-activated reconstructed embryos were cultured in vitro, so that the donor nucleus could be exposed to the ooplasm for a period of time. Subsequently, in the second stage nuclear transfer, FSNT-derived non-activated reconstructed embryo was centrifuged, and the donor nucleus was then transferred into another freshly enucleated sheep oocyte. Compared with the one-stage nuclear transfer, two-stage nuclear transfer could significantly enhance the blastocyst rate of goat-sheep interspecies clone embryos, and this result indicated that longtime exposure to xenogenic ooplasm benefits the donor nucleus to be reprogrammed. The two-stage nuclear transfer procedure has two advantages, one is that the donor nucleus can be exposed to the ooplasm for a long time, the other is that the problem of oocyte aging can be solved.  相似文献   

13.
Cryopreservation of swine embryos is inefficient. Our goal was to develop a non-invasive method for “relatively” high-throughput cryopreservation of in vivo-produced swine embryos. Since removal of the lipid droplets within early swine embryos improves cryosurvival we wanted to apply a technique of high osmolality treatment followed by centrifugation that was first developed for in vitro-produced swine embryos to in vivo-produced swine embryos. The first aim was to determine how sensitive the in vivo-produced zygote and 2-cell stage embryo was to various high osmolality conditions for a short duration. Culture for 6, 12 or 18 min at 300, 400 or 500 milliosmoles (mOsm) had no detectable affect on the resulting blastocyst stage embryos (number of inner cell mass nuclei, trophectoderm nuclei, total number of nuclei, ratio of the trophectoderm to inner cell mass nuclei or percent blastocyst). However there was an effect of gilt on each of these parameters. For the second aim we focused on 300 mOsm for 6 min, 400 mOsm for 12 min, 500 mOsm for 12 min, and 500 mOsm for 18 min. The embryos were centrifuged for the duration of high osmolality treatment, then cultured to the blastocyst stage and vitrified. After vitrification and thawing the 500 mOsm for 18 min had the highest percent re-expansion with no difference in the total number of nuclei. While requiring a different base culture medium than in vitro-produced embryos, in vivo-derived embryos also survive cryopreservation without damage to their zona pellucida.  相似文献   

14.
The aim of this study was to investigate whether cells of early goat embryos isolated from in vivo-fertilized goats interact with the caprine arthritis-encephalitis virus (CAEV) in vitro and whether the embryonic zona pellucida (ZP) protects early embryo cells from CAEV infection. ZP-free and ZP-intact 8-16 cell embryos were inoculated for 2 h with CAEVat the 10(4) tissue culture infectious dose 50 (TCID50)/ml. Infected embryos were incubated for 72 h over feeder monolayer containing caprine oviduct epithelial cells (COECs) and CAEV indicator goat synovial membrane (GSM) cells. Noninoculated ZP-free and ZP-intact embryos were submitted to similar treatments and used as controls. Six days postinoculation, infectious virus assay of the wash fluids of inoculated early goat embryos showed typical CAEV-induced cytopathic effects (CPE) on indicator GSM monolayers, with fluids of the first two washes only. The mixed cell monolayer (COEC + GSM) used as feeder cells for CAEV inoculated ZP-free embryos showed CPE. In contrast, none of the feeder monolayers, used for culture of CAEV inoculated ZP-intact embryos or the noninoculated controls, developed any CPE. CAEV exposure apparently did not interfere with development of ZP-free embryos in vitro during the 72 h study period when compared with untreated controls (34.6 and 36% blastocysts, respectively, P > 0.05). From these results one can conclude that the transmission of infectious molecularly cloned CAEV-pBSCA (plasmid binding site CAEV) by embryonic cells from in vivo-produced embryos at the 8-16 cell stages is possible with ZP-free embryos. The absence of interactions between ZP-intact embryos and CAEV in vitro suggests that the ZP is an efficient protective embryo barrier.  相似文献   

15.
Interspecies somatic cell nuclear transfer (iSCNT) involves the transfer of a nucleus or cell from one species into the cytoplasm of an enucleated oocyte from another. Once activated, reconstructed oocytes can be cultured in vitro to blastocyst, the final stage of preimplantation development. However, they often arrest during the early stages of preimplantation development; fail to reprogramme the somatic nucleus; and eliminate the accompanying donor cell's mitochondrial DNA (mtDNA) in favour of the recipient oocyte's genetically more divergent population. This last point has consequences for the production of ATP by the electron transfer chain, which is encoded by nuclear and mtDNA. Using a murine-porcine interspecies model, we investigated the importance of nuclear-cytoplasmic compatibility on successful development. Initially, we transferred murine fetal fibroblasts into enucleated porcine oocytes, which resulted in extremely low blastocyst rates (0.48%); and failure to replicate nuclear DNA and express Oct-4, the key marker of reprogramming. Using allele specific-PCR, we detected peak levels of murine mtDNA at 0.14±0.055% of total mtDNA at the 2-cell embryo stage and then at ever-decreasing levels to the blastocyst stage (<0.001%). Furthermore, these embryos had an overall mtDNA profile similar to porcine embryos. We then depleted porcine oocytes of their mtDNA using 10 μM 2',3'-dideoxycytidine and transferred murine somatic cells along with murine embryonic stem cell extract, which expressed key pluripotent genes associated with reprogramming and contained mitochondria, into these oocytes. Blastocyst rates increased significantly (3.38%) compared to embryos generated from non-supplemented oocytes (P<0.01). They also had significantly more murine mtDNA at the 2-cell stage than the non-supplemented embryos, which was maintained throughout early preimplantation development. At later stages, these embryos possessed 49.99±2.97% murine mtDNA. They also exhibited an mtDNA profile similar to murine preimplantation embryos. Overall, these data demonstrate that the addition of species compatible mtDNA and reprogramming factors improves developmental outcomes for iSCNT embryos.  相似文献   

16.
The possibility of producing interspecies handmade cloned (iHMC) embryos by nuclear transfer from donor cells of cattle, goat and rat using buffalo oocytes as recipient cytoplasts was explored. Zona-free buffalo oocytes were enucleated by protrusion cone-guided bisection with a microblade. After electrofusion with somatic cells, reconstructed oocytes were activated by calcimycin A23187, treated with 6-dimethylaminopurine and were cultured in K-RVCL-50® medium for 8 days. Although the cleavage rate was not significantly different when buffalo, cattle, goat or rat cells were used as donor nuclei (74.6 ± 3.8, 82.8 ± 5.3, 86.0 ± 4.9 and 82.3 ± 3.6%, respectively), the blastocyst rate was significantly higher (P < 0.01) for buffalo (51.4 ± 2.6) than for cattle (3.5 ± 1.0) or the goat (2.2 ± 0.9), whereas none of the embryos crossed the 32-cell stage when rat cells were used. However, the total cell number was similar for buffalo–buffalo (175.0 ± 5.07) and cattle–buffalo embryos (178.0 ± 11.84). Following transfer of 3 buffalo–buffalo embryos each to 6 recipients, 3 were found to be pregnant, though the pregnancies were not carried to full term. These results suggest that interspecies blastocyst stage embryos can be produced by iHMC using buffalo cytoplasts and differentiated somatic cells from cattle and goat and that the source of donor nucleus affects the developmental competence of interspecies embryos.  相似文献   

17.
Our and other previous studies have shown that telophase enucleation is an efficient method for preparing recipient cytoplasts in nuclear transfer. Conventional methods of somatic cell nuclear transfer either by electro-fusion or direct nucleus injection have very low efficiency in animal somatic cell cloning. To simplify the manipulation procedure and increase the efficiency of somatic cell nuclear transfer, this study was designed to study in vitro and in vivo development of Asian yellow goat cloned embryos reconstructed by direct whole cell intracytoplasmic injection (WCICI) into in vitro matured oocytes enucleated at telophase II stage. Our results demonstrated that the rates of cleavage and blastocyst development of embryos reconstructed by WCICI were slightly higher than in conventional subzonal injection (SUZI) group, but no statistic difference (P > 0.05) existed between these two methods. However, the percentage of successful embryonic reconstruction in WCICI group was significantly higher than that in SUZI group (P < 0.05). After embryo transfer at 4-cell stage, the foster in both groups gave birth to offspring. Therefore, the present study suggests that the telophase ooplasm could properly reprogram the genome of somatic cells, produce Asian yellow goat cloned embryos and viable kids, and whole cell intracytoplasmic injection is an efficient protocol for goat somatic cell nuclear transfer.  相似文献   

18.
The objective of the study was to investigate interspecies somatic cell nuclear transfer (iSCNT) embryonic potential and mitochondrial DNA (mtDNA) segregation during preimplantation development. We generated bovine-ovine reconstructed embryos via iSCNT using bovine oocytes as recipient cytoplasm and ovine fetal fibroblast as donor cells. Chromosome composition, the total cell number of blastocyst and embryonic morphology were analyzed. In addition, mtDNA copy numbers both from donor cell and recipient cytoplasm were assessed by real-time PCR in individual blastocysts and blastomeres from 1- to 16-cell stage embryos. The results indicated the following: (1) cell nuclei of ovine fetal fibroblasts can dedifferentiate in enucleated bovine ooplasm, and the reconstructed embryos can develop to blastocysts. (2) 66% of iSCNT embryos had the same number of chromosome as that of donor cell, and the total cell number of iSCNT blastocysts was comparable to that of sheep parthenogenetic blastocysts. (3) RT-PCR analysis in individual blastomeres revealed that the ratio of donor cell mtDNA: recipient cytoplasm mtDNA remained constant (1%) from the one- to eight-cell stage. However, the ratio decreased from 0.6% at the 16-cell stage to 0.1% at the blastocyst stage. (4) Both donor cell- and recipient cytoplasm-derived mitochondria distributed unequally in blastomeres with progression of cell mitotic division. Considerable unequal mitochondrial segregation occurred between blastomeres from the same iSCNT embryos.  相似文献   

19.
The aim of this study was to investigate effect of cytoplast on the development competence of reconstructed embryos derived from inter-subspecies somatic cell nucleus transfer (SCNT). First, the development potency of reconstructed embryos produced by transferring Boer goat fibroblast cell nucleus of different ages into enucleated Sannen goat ova was evaluated in order to determine which age of nuclear donor is favorable for the reconstructed embryos development. Secondly, the another component of reconstructed embryos, "cytoplast," was evaluated by comparing the effect of ovum cytoplast derived from Sannen male symbol x Boer female symbol descendant on the reconstructed embryos development to that of Sannen goat ovum cytoplast. The results revealed that the development rate of the reconstructed embryos derived from 2 months old Boer goat somatic cells was the highest, their gestation rate was up to 50%, and one viable male offspring was obtained. The cytoplast derived from the crossbreeding goats improves the development competence of reconstructed embryos, which birth rate was 5.5%. The genetic identification of offspring by using PCR-SSCP analysis confirmed that these cloned kids were derived from the donor. The results above reveal that the cytoplast of Sannen goat ovum could induce the dedifferentiation of somatic cell nuclei derived from Boer goat, but the reprogramming process of these reconstructed embryos seems incomplete, probably due to some incorrect processes happened after implantation. Relatedness components of nucleus donor in cytoplast of the crossbreeding goat may be helpful to induce the dedifferentiation of somatic cell nuclei completely and improve the development competence of the reconstructed embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号