首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrity of the extracellular matrix (ECM) is essential for maintaining the normal structure and function of connective tissues. ECM is secreted locally by cells and organized into a complex meshwork providing physical support to cells, tissues, and organs. Initially thought to act only as a scaffold, the ECM is now known to provide a myriad of signals to cells regulating all aspects of their phenotype from morphology to differentiation. Matricellular proteins are a class of ECM related molecules defined through their ability to modulate cell-matrix interactions. Matricellular proteins are expressed at high levels during development, but typically only appear in postnatal tissue in wound repair or disease, where their levels increase substantially. Members of the CCN family, tenascin-C, osteopontin, secreted protein acidic rich in cysteine (SPARC), bone sialoprotein, thrombospondins, and galectins have all been classed as matricellular proteins. Periostin, a 90 kDa secreted homophilic cell adhesion protein, was recently added to matricellular class of proteins based on its expression pattern and function during development as well as in wound repair. Periostin is expressed in connective tissues including the periodontal ligament, tendons, skin and bone, and is also prominent in neoplastic tissues, cardiovascular disease, as well as in connective tissue wound repair. This review will focus on the functional role of periostin in tissue physiology. Fundamentally, it appears that periostin influences cell behaviour as well as collagen fibrillogenesis, and therefore exerts control over the structural and functional properties of connective tissues in both health and disease. Periostin is a novel matricellular protein with close homology to Drosophila fasciclin 1. In this review, the functional role of periostin is discussed in the context of connective tissue physiology, in development, disease, and wound repair.  相似文献   

2.
Deficiency of the extracellular matrix protein tenascin-X (TNX) causes a recessive form of Ehlers‐Danlos syndrome (EDS) characterized by hyperextensible skin and hypermobile joints. It is not known whether the observed alterations of dermal collagen fibrils and elastic fibers in these patients are caused by disturbed assembly and deposition or by altered stability and turnover. We used biophysical measurements and immunofluorescence to study connective tissue properties in TNX knockout and wild-type mice. We found that TNX knockout mice, even at a young age, have greatly disturbed biomechanical properties of the skin. No joint abnormalities were noted at any age. The spatio-temporal expression of TNX during normal mouse skin development, during embryonic days 13–19 (E13–E19), was distinct from tropoelastin and the dermal fibrillar collagens type I, III, and V. Our data show that TNX is not involved in the earliest phase (E10–E14) of the deposition of collagen fibrils and elastic fibers during fetal development. From E15 to E19, TNX starts partially to colocalize with the dermal collagens and elastin, and in adult mice, TNX is present in the entire dermis. In adult TNX knockout mice, we observed an apparent increase of elastin. We conclude that TNX knockout mice only partially recapitulate the phenotype of TNX-deficient EDS patients, and that TNX could potentially be involved in maturation and/or maintenance of the dermal collagen and elastin network.  相似文献   

3.
The most commonly identified mutations causing Ehlers-Danlos syndrome (EDS) classic type result in haploinsufficiency of proalpha1(V) chains of type V collagen, a quantitatively minor collagen that co-assembles with type I collagen as heterotypic fibrils. To determine the role(s) of type I/V collagen interactions in fibrillogenesis and elucidate the mechanism whereby half-reduction of type V collagen causes abnormal connective tissue biogenesis observed in EDS, we analyzed mice heterozygous for a targeted inactivating mutation in col5a1 that caused 50% reduction in col5a1 mRNA and collagen V. Comparable with EDS patients, they had decreased aortic stiffness and tensile strength and hyperextensible skin with decreased tensile strength of both normal and wounded skin. In dermis, 50% fewer fibrils were assembled with two subpopulations: relatively normal fibrils with periodic immunoreactivity for collagen V where type I/V interactions regulate nucleation of fibril assembly and abnormal fibrils, lacking collagen V, generated by unregulated sequestration of type I collagen. The presence of the aberrant fibril subpopulation disrupts the normal linear and lateral growth mediated by fibril fusion. Therefore, abnormal fibril nucleation and dysfunctional fibril growth with potential disruption of cell-directed fibril organization leads to the connective tissue dysfunction associated with EDS.  相似文献   

4.
Abstract

Periostin, a matricellular protein in the fasciclin family, is expressed in tissues subjected to constant mechanical stress. Periostin modulates cell-to-extracellular matrix interactions and can bind to collagen, fibronectin, tenascin-C and several integrins. Our objective was to evaluate whether periostin is expressed in the human intervertebral disc. Immunohistochemical localization of periostin was carried out in tissue of human lumbar discs and lumbar discs of the sand rat (Psammomys obesus). Human discs also were examined for periostin gene expression. Immunohistochemical localization demonstrated periostin in the cytoplasm of annulus and nucleus cells, and occasionally in the surrounding pericellular and interterritorial extracellular matrix. Periostin distribution in the human disc was distinctive. Outer annulus contained the highest proportion of periostin-positive cells (88.8%), whereas inner annulus contained only 61.4%. The nucleus pulposus contained the fewest periostin-positive cells (18.5%). There was a significant negative correlation between the percentage of cells positive for periostin in the inner annulus and subject age. Periostin gene expression in the human disc also was confirmed using molecular microarray analysis. Because work by others has shown that periostin plays an important role in the biomechanical properties of other connective tissues (skin, tendon, heart valves), future research is needed to elucidate the role of periostin in disc, loading, aging and degeneration.  相似文献   

5.
The periodontal ligaments (PDLs) are soft connective tissue between the cementum covering the tooth root surface and alveolar bone. PDLs are composed of collagen and elastic system fibers, blood vessels, nerves, and various types of cells. Elastic system fibers are generally formed by elastin and microfibrils, but PDLs are mainly composed of the latter. Compared with the well-known function of collagen fibers to support teeth, little is known about the role of elastic system fibers in PDLs. To clarify their role, we examined PDLs of mice underexpressing fibrillin-1 (mgR mice), which is one of the major microfibrillar proteins. The PDLs of homozygous mgR mice showed one-quarter of the elastic system fibers of wild-type (WT) mice. A close association between the elastic system fibers and the capillaries was noted in WT, homozygous and heterozygous mgR mice. Interestingly, capillaries in PDLs of homozygous mice were dilated or enlarged compared with those of WT mice. A comparable level of type I collagen, which is the major collagen in PDLs, was expressed in PDL-cells of mice with three genotypes. However, multi-oriented collagen fiber bundles with a thinner appearance were noted in homozygous mice, whereas well-organized collagen fiber bundles were seen in WT mice. Moreover, there was a marked decrease in periostin expression, which is known to regulate the fibrillogenesis and crosslinking of collagen. These observations suggest that the microfibrillar protein, fibrillin-1, is indispensable for normal tissue architecture and gene expression of PDLs.  相似文献   

6.
Modulation of collagen fibrillogenesis by tenascin-X and type VI collagen   总被引:5,自引:0,他引:5  
Tenascin-X (TNX) is an extracellular matrix glycoprotein. We previously demonstrated that TNX regulates the expression of type VI collagen. In this study, we investigated the binding of TNX to type I collagen as well as to type VI collagen and the effects of these proteins on fibrillogenesis of type I collagen. Full-length recombinant TNX, which is expressed in and purified from mammalian cell cultures, and type VI collagen purified from bovine placenta were used. Solid-phase assays revealed that TNX or type VI collagen bound to type I collagen, although TNX did not bind to type VI collagen, fibronectin, or laminin. The rate of collagen fibril formation and its quantity, measured as increased turbidity, was markedly increased by the presence of TNX, whereas type VI collagen did not increase the quantity but accelerated the rate of collagen fibril formation. Combined treatment of both had an additive effect on the rate of collagen fibril formation. Furthermore, deletion of the epidermal growth factor-like (EGF) domain or fibrinogen-like domain of TNX attenuated the initial rate of collagen fibril formation. Finally, we observed abnormally large collagen fibrils by electron microscopy in the skin from TNX-deficient (TNX-/-) mice during development. These findings demonstrate a fundamental role for TNX and type VI collagen in regulation of collagen fibrillogenesis in vivo and in vitro.  相似文献   

7.
Sawada T. and Inoue S. 2011. Ultrastructure of irregular collagen fibrils of shark mandible. —Acta Zoologica (Stockholm) 92 : 62–66. Collagen fibrillogenesis was investigated in developing fibrous connective tissue (tooth band) in shark mandible by transmission electron microscopy. Fibrils varied considerably in shape and size. Both thin and thick fibrils 40–200 and 400–500 nm in width, respectively, were observed, with the latter showing irregular contours. Examination of both transverse and longitudinal sections of fibril suggested that the irregular, thick fibrils were formed by fusion of the thin fibrils. This was in agreement with a previously proposed mechanism of collagen fibrillogenesis in a variety of tissues, in which formation of thin fibrils is followed by their coalescence into thicker fibrils. Detailed high resolution ultrastructural examination revealed decorin‐like, 4.5‐ to 5.5‐nm‐wide polygonal frames and 3‐nm‐wide ribbon‐like structures previously identified as chondroitin sulfate proteoglycan ‘double tracks’ localized within the interfibrillar spaces. These structures may be closely involved in collagen fibrillogenesis.  相似文献   

8.
Tendons are collagen-based fibrous tissues that connect and transmit forces from muscle to bone. These tissues, which are high in collagen type I content, have been studied extensively to understand collagen fibrillogenesis. Although the mechanisms have not been fully elucidated, our understanding has continued to progress. Here, we review two prevailing models of collagen fibrillogenesis and discuss the regulation of the process by candidate cellular and extracellular matrix molecules. Although numerous molecules have been implicated in the regulation of collagen fibrillogenesis, we focus on those that have been suggested to be particularly relevant to collagen type I fibril formation during tendon development, including members of the collagen and small leucine-rich proteoglycan families, as well as other molecules, including scleraxis, cartilage oligomeric matrix protein, and cytoskeletal proteins.  相似文献   

9.
Lumican, a prototypic leucine-rich proteoglycan with keratan sulfate side chains, is a major component of the cornea, dermal, and muscle connective tissues. Mice homozygous for a null mutation in lumican display skin laxity and fragility resembling certain types of Ehlers-Danlos syndrome. In addition, the mutant mice develop bilateral corneal opacification. The underlying connective tissue defect in the homozygous mutants is deregulated growth of collagen fibrils with a significant proportion of abnormally thick collagen fibrils in the skin and cornea as indicated by transmission electron microscopy. A highly organized and regularly spaced collagen fibril matrix typical of the normal cornea is also missing in these mutant mice. This study establishes a crucial role for lumican in the regulation of collagen assembly into fibrils in various connective tissues. Most importantly, these results provide a definitive link between a necessity for lumican in the development of a highly organized collagenous matrix and corneal transparency.  相似文献   

10.
Discoidin domain receptors (DDR1 and DDR2) are widely expressed cell-surface receptors, which bind to and are activated by collagens, including collagen type 1. Activation of DDRs and the resulting downstream signaling is known to regulate the extracellular matrix. However, little is known about how DDRs interact with collagen and its direct impact on collagen regulation. Here, we have established that by binding to collagen, the extracellular domain (ECD) of DDR2 inhibits collagen fibrillogenesis and alters the morphology of collagen type 1 fibers. Our in vitro assays utilized DDR2-Fc fusion proteins, which contain only the ECD of DDR2. Using surface plasmon resonance, we confirmed that further oligomerization of DDR2-Fc (by means of anti-Fc antibody) greatly enhances its binding to immobilized collagen type 1. Collagen turbidity measurements and biochemical assays indicated that DDR2 delays the formation of collagen fibrils. Atomic force microscopy of soluble collagen revealed that a predominately monomeric state of collagen was present with DDR2, while control solutions had an abundance of polymeric collagen. Transmission electron microscopy of collagen fibers, showed that the native periodic banded structure of collagen fibers was weakened and nearly absent in the presence of DDR2. Further, using a cell-based assay we demonstrate that overexpression of full length DDR2 inhibits fibrillogenesis of collagen type 1. Our results demonstrate a novel and important functional role of the DDR2 ECD that may contribute to collagen regulation via modulation of fibrillogenesis.  相似文献   

11.
Fibromodulin is a member of a family of connective tissue glycoproteins/proteoglycans containing leucine-rich repeat motifs. Several members of this gene family bind to fibrillar collagens and are believed to function in the assembly of the collagen network in connective tissues. Here we show that mice lacking a functional fibromodulin gene exhibit an altered morphological phenotype in tail tendon with fewer and abnormal collagen fiber bundles. In fibromodulin-null animals virtually all collagen fiber bundles are disorganized and have an abnormal morphology. Also 10-20% of the bundles in heterozygous mice are similar to the abnormal bundles in fibromodulin-null tail tendon. Ultrastructural analysis of Achilles tendon from fibromodulin-null mice show collagen fibrils with irregular and rough outlines in cross-section. Morphometric analysis show that fibromodulin-null mice have on the average thinner fibrils than wild type animals as a result of a larger preponderance of very thin fibrils in an overall similar range of fibril diameters. Protein and RNA analyses show an approximately 4-fold increase in the content of lumican in fibromodulin-null as compared with wild type tail tendon, despite a decrease in lumican mRNA. These results demonstrate a role for fibromodulin in collagen fibrillogenesis and suggest that the orchestrated action of several leucine-rich repeat glycoproteins/proteoglycans influence the architecture of collagen matrices.  相似文献   

12.
Cardiac valve leaflets develop from rudimentary structures termed endocardial cushions. These pre-valve tissues arise from a complex interplay of signals between the myocardium and endocardium whereby secreted cues induce the endothelial cells to transform into migratory mesenchyme through an endothelial to mesenchymal transformation (EMT). Even though much is currently known regarding the initial EMT process, the mechanisms by which these undifferentiated cushion mesenchymal tissues are remodeled “post-EMT” into mature fibrous valve leaflets remains one of the major, unsolved questions in heart development. Expression analyses, presented in this report, demonstrate that periostin, a component of the extracellular matrix, is predominantly expressed in post-EMT valve tissues and their supporting apparatus from embryonic to adult life. Analyses of periostin gene targeted mice demonstrate that it is within these regions that significant defects are observed. Periostin null mice exhibit atrial septal defects, structural abnormalities of the AV valves and their supporting tensile apparatus, and aberrant differentiation of AV cushion mesenchyme. Rescue experiments further demonstrate that periostin functions as a hierarchical molecular switch that can promote the differentiation of mesenchymal cells into a fibroblastic lineage while repressing their transformation into other mesodermal cell lineages (e.g. myocytes). This is the first report of an extracellular matrix protein directly regulating post-EMT AV valve differentiation, a process foundational and indispensable for the morphogenesis of a cushion into a leaflet.  相似文献   

13.
Despite the fact that type III collagen is the second most abundant collagen type in the body, its contribution to the physiologic maintenance and repair of skeletal tissues remains poorly understood. This study queried the role of type III collagen in the structure and biomechanical functions of two structurally distinctive tissues in the knee joint, type II collagen-rich articular cartilage and type I collagen-dominated meniscus. Integrating outcomes from atomic force microscopy-based nanomechanical tests, collagen fibril nanostructural analysis, collagen cross-link analysis and histology, we elucidated the impact of type III collagen haplodeficiency on the morphology, nanostructure and biomechanical properties of articular cartilage and meniscus in Col3a1+/− mice. Reduction of type III collagen leads to increased heterogeneity and mean thickness of collagen fibril diameter, as well as reduced modulus in both tissues, and these effects became more pronounced with skeletal maturation. These data suggest a crucial role of type III collagen in mediating fibril assembly and biomechanical functions of both articular cartilage and meniscus during post-natal growth. In articular cartilage, type III collagen has a marked contribution to the micromechanics of the pericellular matrix, indicating a potential role in mediating the early stage of type II collagen fibrillogenesis and chondrocyte mechanotransduction. In both tissues, reduction of type III collagen leads to decrease in tissue modulus despite the increase in collagen cross-linking. This suggests that the disruption of matrix structure due to type III collagen deficiency outweighs the stiffening of collagen fibrils by increased cross-linking, leading to a net negative impact on tissue modulus. Collectively, this study is the first to highlight the crucial structural role of type III collagen in both articular cartilage and meniscus extracellular matrices. We expect these results to expand our understanding of type III collagen across various tissue types, and to uncover critical molecular components of the microniche for regenerative strategies targeting articular cartilage and meniscus repair.  相似文献   

14.
Group G streptococcus (GGS) is a human pathogen of emerging clinical significance. It causes skin and soft tissue infections, occasionally resulting in life-threatening conditions such as sepsis and necrotizing fasciitis. We recently identified FOG, a novel surface protein of GGS with fibrinogen binding and immune evasion properties. Here we investigated the role of FOG in streptococcal primary adhesion to host tissue. A FOG-expressing clinical isolate adhered more efficiently to human skin biopsies ex vivo and to the murine dermis in vivo than a FOG-deficient strain. Scanning and transmission electron microscopy of skin specimens exhibited that this property was assigned to the ability of FOG to interact with collagen I, a major interstitial component of the dermis. Overlay experiments with human skin extracts and radiolabeled FOG followed by matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis identified both the alpha1- and alpha2-chains of collagen I as targets for FOG. Transmission electron microscopy of the molecular complexes revealed thread-like FOG molecules binding via their NH2 termini to distinct sites on collagen I monomers and fibrils. The results demonstrate that FOG is important for GGS adhesion in vivo, implying a pathogenic role for this surface protein.  相似文献   

15.
Summary Active fibrous septa are a common feature in liver fibrosis and cirrhosis. Their etiology and formation were studied using cultures of tissue fragments or cells included in collagen gels. Liver fragments obtained from patients with cirrhosis or severe schistosomal fibrosis were able to reorganize the gel and to form discrete, interconnecting fibrous septa composed of parallel arrays of collagen, subsequently colonized by migrating connective tissue cells. The same was obtained in cultures of fibrogranulomatous lesions isolated from schistosome-infected mice livers. However, fragments of normal human and murine liver tissue did not show the capacity to form fibrous septa. Septa formation was also obtained in cultures of cell spheroids formed by liver connective tissue cells isolated from human fibrotic or cirrhotic liver tissues, but not with spheroids of normal skin fibroblasts or smooth muscle cells. This experimental model may represent the fibrous septa formation in vivo, depending on the activity of liver connective tissue cells. The ability of tissue fragments or cell spheroids to form septa in collagen gels might reflect the degree of fibrosis present in the liver tissue in vivo. This research was supported by FINEP and CNPq (Brazil) and CNRS (France).  相似文献   

16.
Differentiation of fibroblasts to myofibroblasts and collagen fibrillogenesis are two processes essential for normal cutaneous development and repair, but their misregulation also underlies skin-associated fibrosis. Periostin is a matricellular protein normally expressed in adult skin, but its role in skin organogenesis, incisional wound healing and skin pathology has yet to be investigated in any depth. Using C57/BL6 mouse skin as model, we first investigated periostin protein and mRNA spatiotemporal expression and distribution during development and after incisional wounding. Secondarily we assessed whether periostin is expressed in human skin pathologies, including keloid and hypertrophic scars, psoriasis and atopic dermatitis. During development, periostin is expressed in the dermis, basement membrane and hair follicles from embryonic through neonatal stages and in the dermis and hair follicle only in adult. In situ hybridization demonstrated that dermal fibroblasts and basal keratinocytes express periostin mRNA. After incisional wounding, periostin becomes re-expressed in the basement membrane within the dermal-epidermal junction at the wound edge re-establishing the embryonic deposition pattern present in the adult. Analysis of periostin expression in human pathologies demonstrated that it is over-expressed in keloid and hypertrophic scars, atopic dermatitis, but is largely absent from sites of inflammation and inflammatory conditions such as psoriasis. Furthermore, in vitro we demonstrated that periostin is a transforming growth factor beta 1 inducible gene in human dermal fibroblasts. We conclude that periostin is an important ECM component during development, in wound healing and is strongly associated with pathological skin remodeling.  相似文献   

17.
In mice, embryo implantation induces profound changes in the endometrium. These changes include redifferentiation of endometrial fibroblasts and extensive remodeling of extracellular matrix components. We have previously shown that, during this process, there is an impressive increase in the thickness of collagen fibrils present in decidualised areas that surround the implantation site, while collagen fibrils in non-decidualised areas and in the interimplantation site remain thin. In vitro and in vivo experiments have identified small leucine rich proteoglycans (SLRPs) as regulators of collagen fibrillogenesis. In a previous study, we demonstrated a difference between the pre-implantation and the post-implantation expression and distribution of four SLRPs types in uterine tissues. The present study, utilising immunocytochemical electron microscopy, shows that biglycan is associated with the presence of thick collagen fibrils in decidualised regions of the endometrium and that decorin is associated exclusively with thin collagen fibrils in non-decidualised endometrial areas. These results strongly indicate that biglycan plays a role in collagen fibrillogenesis and probably participates in the determination of collagen fibril thickness in the mouse decidua.  相似文献   

18.
Collagen fibrils form extracellular networks that regulate cell functions and provide mechanical strength to tissues. Collagen fibrillogenesis is an entropy-driven process promoted by warming and reversed by cooling. Here, we investigate the influence of noncovalent interactions mediated by the collagen triple helix on fibril stability. We measure the kinetics of cold-induced disassembly of fibrils formed from purified collagen I using turbimetry, probe the fibril morphology by atomic force microscopy, and measure the network connectivity by confocal microscopy and rheometry. We demonstrate that collagen fibrils disassemble by subunit release from their sides as well as their ends, with complex kinetics involving an initial fast release followed by a slow release. Surprisingly, the fibrils are gradually stabilized over time, leading to thermal memory. This dynamic stabilization may reflect structural plasticity of the collagen fibrils arising from their complex structure. In addition, we propose that the polymeric nature of collagen monomers may lead to slow kinetics of subunit desorption from the fibril surface. Dynamic stabilization of fibrils may be relevant in the initial stages of collagen assembly during embryogenesis, fibrosis, and wound healing. Moreover, our results are relevant for tissue repair and drug delivery applications, where it is crucial to control fibril stability.  相似文献   

19.
The in situ supermolecular structure of type I collagen.   总被引:1,自引:0,他引:1  
BACKGROUND: The proteins belonging to the collagen family are ubiquitous throughout the animal kingdom. The most abundant collagen, type I, readily forms fibrils that convey the principal mechanical support and structural organization in the extracellular matrix of connective tissues such as bone, skin, tendon, and vasculature. An understanding of the molecular arrangement of collagen in fibrils is essential since it relates molecular interactions to the mechanical strength of fibrous tissues and may reveal the underlying molecular pathology of numerous connective tissue diseases. RESULTS: Using synchrotron radiation, we have conducted a study of the native fibril structure at anisotropic resolution (5.4 A axial and 10 A lateral). The intensities of the tendon X-ray diffraction pattern that arise from the lateral packing (three-dimensional arrangement) of collagen molecules were measured by using a method analogous to Rietveld methods in powder crystallography and to the separation of closely spaced peaks in Laue diffraction patterns. These were then used to determine the packing structure of collagen by MIR. CONCLUSIONS: Our electron density map is the first obtained from a natural fiber using these techniques (more commonly applied to single crystal crystallography). It reveals the three-dimensional molecular packing arrangement of type I collagen and conclusively proves that the molecules are arranged on a quasihexagonal lattice. The molecular segments that contain the telopeptides (central to the function of collagen fibrils in health and disease) have been identified, revealing that they form a corrugated arrangement of crosslinked molecules that strengthen and stabilize the native fibril.  相似文献   

20.
Collagens are essential components of extracellular matrices in multicellular animals. Fibrillar type II collagen is the most prominent component of articular cartilage and other cartilage-like tissues such as notochord. Its in situ macromolecular and packing structures have not been fully characterized, but an understanding of these attributes may help reveal mechanisms of tissue assembly and degradation (as in osteo- and rheumatoid arthritis). In some tissues such as lamprey notochord, the collagen fibrillar organization is naturally crystalline and may be studied by x-ray diffraction. We used diffraction data from native and derivative notochord tissue samples to solve the axial, D-periodic structure of type II collagen via multiple isomorphous replacement. The electron density maps and heavy atom data revealed the conformation of the nonhelical telopeptides and the overall D-periodic structure of collagen type II in native tissues, data that were further supported by structure prediction and transmission electron microscopy. These results help to explain the observed differences in collagen type I and type II fibrillar architecture and indicate the collagen type II cross-link organization, which is crucial for fibrillogenesis. Transmission electron microscopy data show the close relationship between lamprey and mammalian collagen fibrils, even though the respective larger scale tissue architecture differs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号