首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T R Krugh  J W Laing  M A Young 《Biochemistry》1976,15(6):1224-1228
A proton magnetic resonance study of the chemical shifts of a series of ribodinucleoside monophosphates in neutral H2O solution has been recorded in the 1-100 mM concentration range. The self-complementary dinucleoside monophosphates CpG and GpC and the complementary mixture GpU + ApC form intermolecular hydrogen-bonded complexes at low temperatures. The amino proton chemical shifts in the CpG and GpC spectra are consistent with the formation of a miniature double helical dimer in neutral aqueous solution at low temperatures (approximately 2 degrees C). The complementary mixture of dinucleosides GpU + ApC formed much less stable complexes than either GpC or CpG, while UpA did not show any indication of the formation of intermolecular hydrogen-bonded complexes. This result is consistent with the well-known observation that the stability of a double helix is proportional to the percent of G-C base pairs present.  相似文献   

2.
The self-interaction of two deoxydinucleotides, pdG-dC and pdG-dT, was studied (in aqueous solution) by 100 MHz FT NMR spectroscopy. Concentration studies show that the self-complementary pdG-dC forms hydrogen bonded complexes. An analysis based on the concentration dependence of the chemical shift of the guanine amino protons strongly suggests that hydrogen bonded dimer formation occurs with a K for the dimerization equilibrium of 7.8 ± 0.7 M?1. On the other hand, the non-self-complementary pdG-dT does not give evidence of similar complex formation in the same concentration range which thus illustrates the importance of complementarity in the formation of hydrogen bonded complexes of deoxydinucleotides. Further impetus is therefore provided for the use of dinucleotides in modeling interactions common to nucleic acids.  相似文献   

3.
The variation of the proton chemical shifts due to the formation intermolecular hydrogen bonds is computed for a number of complexes which can be formed between the bases of the nucleic acids. The shifts expected for the isolated base pairs, in particular for the G-N1 H, T(or U)-N3H protons and the protons of the amino groups of A, G c, when combined with previous computations on the shifts to be expected upon base stacking, may enable a refined analysis of the high resolution NMR spectra of self complementary polynucleotides or tRNAs. Two examples are presented of a direct computation of proton shits associated with helix-coil transitions, helpful for deducing the helical structure in solution.  相似文献   

4.
The solution complexes of ethidium bromide with nine different deoxydinucleotides and the four self-complementary ribodinucleoside monophosphates as well as mixtures of complementary and noncomplementary deoxydinucleotides were studied as models for the binding of the drug to DNA and RNA. Ethidium bromide forms the strongest complexes with pdC-dG and CpG and shows a definite preference for interaction with pyrimidine–purine sequence isomers. Cooperativity is observed in the binding curves of the self-complementary deoxydinucleotides pdC-dG and pdG-dC as well as the ribodinucleoside monophosphates CpG and GpC, indicating the formation of a minihelix around ethidium bromide. The role of complementarity of the nucleotide bases was evident in the visible and circular dichroism spectra of mixtures of complementary and noncomplementary dinucleotides. Nuclear magnetic resonance measurements on an ethidium bromide complex with CpG provided evidence for the intercalation model for the binding of ethidium bromide to double-stranded nucleic acids. The results also suggest that ethidium bromide may bind to various sequences on DNA and RNA with significantly different binding constants.  相似文献   

5.
Computations are performed on the proton chemical shifts due to hydrogen bonding between the purine and pyrimidine bases of the nucleic acids and water molecules of their first hydration shell. The water molecules should produce measurable shifts essentially for protons of the bases located close to the site of interaction. For the imino protons of the bases G-N1H and U-N3H participating in hydrogen bonding, the calculated delta delta is larger for the interaction of a base with a complementary base than for its interaction with water. Base pairing will thus produce a downfield shift in water but the measured delta delta due to pairing in this solvent will be smaller than in an inert solvent. Also, the chemical shift difference between G-N1H and U-N3H in water will be larger if the molecules are engaged in pairs than if they are not.  相似文献   

6.
D J Patel 《Biopolymers》1976,15(3):533-558
The Watson–Crick imino and amino exchangeable protons, the nonexchangeable base and sugar protons, and the backbone phosphates for d-CpG(pCpG)n, n = 1 and 2, have been monitored by high-resolution nmr spectroscopy in aqueous solution over the temperature range 0°–90°C. The temperature dependence of the chemical shifts of the tetramer and hexamer resonances is consistent with the formation of stable duplexes at low temperature in solution. Comparison of the spectral characteristics of the tetranucleotide with those of the hexanucleotide with temperature permits the differentiation and assignment of the cytosine proton resonances on base pairs located at the end of the helix from those in an interior position. There is fraying at the terminal base pairs in the tetranucleotide and hexanucleotide duplexes. The Watson–Crick ring imino protons exchange at a faster rate than the Watson–Crick side-chain amino protons, with exchange occurring by transient opening of the double helix. The structure of the d-CpG(pCpG)n double helices has been probed by proton relaxation time measurements, sugar proton coupling constants, and the proton chemical shift changes associated with the helix–coil transition. The experimental data support a structural model in solution, which incorporates an anti conformation about the glycosyl bonds, C(3) exo sugar ring pucker, and base overlap geometries similar to the B-DNA helix. Rotational correlation times of 1.7 and 0.9 × 10?9 sec have been computed for the hexanucleotide and tetranucleotide duplexes in 0.1 M salt, D2O, pH 6.25 at 27°C. The well-resolved 31P resonances for the internucleotide phosphates of the tetramer and hexamer sequences at superconducting fields shift upfield by 0.2–0.5 ppm on helix formation. These shifts reflect a conformational change about the ω,ω′ phosphodiester bonds from gauche-gauche in the duplex structure to a distribution of gauche-trans states in the coil structure. Significant differences are observed in the transition width and midpoint of the chemical shift versus temperature profiles plotted in differentiated form for the various base and sugar proton and internucleotide phosphorous resonances monitoring the d-CpG(pCpG)n helix–coil transition. The twofold symmetry of the d-CpGpCpG duplex is removed on complex formation with the antibiotic actinomycin-D. Two phosphorous resonances are shifted downfield by ~2.6 ppm and ~1.6 ppm on formation of the 1:2 Act-D:d-CpGpCpG complex in solution. Model studies on binding of the antibiotic to dinucleotides of varying sequence indicate that intercalation of the actinomycin-D occurs at the GpC site in the d-CpGpCpG duplex and that the magnitude of the downfield shifts reflects strain at the O-P-O backbone angles and hydrogen bonding between the phenoxazone and the phosphate oxygens. Actinomycin-D is known to bind to nucleic acids that exhibit a B-DNA conformation; this suggests that the d-CpG(pCpG)n duplexes exhibit a B-DNA conformation in solution.  相似文献   

7.
The 1H and 13C nuclear magnetic resonance spectra of melanostatin (Pro-Leu-Gly-NH2) and related peptides (Pro-Leu-Gly, Z-Pro-Leu-Gly, Z-Pro-Leu-Gly-NH2 and Z-Pro-Leu-Gly-OCH3, where Z = benzyloxycarbonyl) were analysed in a variety of solvents. At physiological pH, the melanostatin molecule is N-protonated in aqueous solution. The concentration dependences of the chemical shifts of amide-proton and carbonyl-carbon resonances and of proton spin-lattice relaxation times were observed in relation to molecular aggregations. In dimethylsulfoxide solution, aggregations were observed for N-protonated melanostatin and Pro-Leu-Gly prepared with HCl and for the Na salt of Z-Pro-Leu-Gly but not for N-protonated melanostatin prepared with HClO4 or HNO3, unprotonated melanostatin, Z-Pro-Leu-Gly-NH2, or Z-Pro-Leu-Gly-OCH3. The leucine NH and glycine CO groups of N-protonated melanostatin are involved in the intermolecular hydrogen bonds of aggregates. The leucine NH group of N-protonated Pro-Leu-Gly also forms the intermolecular hydrogen bond. The solvent and temperature dependences of the chemical shifts of amide-proton and carbonyl-carbon resonances were measured to determine intramolecular hydrogen bonding. In dimethylsulfoxide solution, N-protonated melanostatin molecules in part take the beta-turn structure and the trans carboxamide NH proton and carbonyl oxygen of the proline residue form an intramolecular hydrogen bond.  相似文献   

8.
The heteroassociation of the antibacterial antibiotic norfloxacin with aromatic vitamins nicotineamide and flavin mononucleotide in aqueous solution has been studied by 1H NMR spectroscopy (503 MHz). Equilibrium constants, induced proton chemical shifts, and the thermodynamic parameters (deltaH, deltaS) of the heteroassociation of molecules were determined from the concentration and temperature dependences of chemical shifts of protons of interacting aromatic molecules. An analysis of the results indicates the formation of heterocomplexes between the molecules of the vitamins and norfloxacin, which is caused by stacking interactions between aromatic chromophores and an additional intermolecular hydrogen bond in the norfloxacin-nicotinamide system. Based on the analysis of induced chemical shifts of protons of molecules, the most probable spatial structures 1:1 of norfloxacin-flavin mononucleitide and norfloxacin-nicotinamide heterocomolexes were determined by the methods of molecular modeling using the X-PLOR program.  相似文献   

9.
T K Harris  A S Mildvan 《Proteins》1999,35(3):275-282
We have compared hydrogen bond lengths on enzymes derived with high precision (< or = +/- 0.05 A) from both the proton chemical shifts (delta) and the fractionation factors (phi) of the proton involved with those obtained from protein X-ray crystallography. Hydrogen bond distances derived from proton chemical shifts were obtained from a correlation of 59 O--H....O hydrogen bond lengths, measured by small molecule high-resolution X-ray crystallography, with chemical shifts determined by solid-state nuclear magnetic resonance (NMR) in the same crystals (McDermott A, Ridenour CF, Encyclopedia of NMR, Sussex, U.K.: Wiley, 1996:3820-3825). Hydrogen bond distances were independently obtained from fractionation factors that yield distances between the two proton wells in quartic double minimum potential functions (Kreevoy MM, Liang TM, J Am Chem Soc, 1980;102:3315-3322). The high-precision hydrogen bond distances derived from their corresponding NMR-measured proton chemical shifts and fractionation factors agree well with each other and with those reported in protein X-ray structures within the larger errors (+/-0.2-0.8 A) in distances obtained by protein X-ray crystallography. The increased precision in measurements of hydrogen bond lengths by NMR has provided insight into the contributions of short, strong hydrogen bonds to catalysis for several enzymatic reactions.  相似文献   

10.
T R Krugh  Y C Chen 《Biochemistry》1975,14(22):4912-4922
The use of proton and carbon-13 magnetic resonance spectroscopy for the determination of the geometry and the stoichiometry of the actinomycin D-deoxyguanosine 5'-monophosphate complex is outlined. The dimerization of actinomycin D has been reexamined by recording the proton magnetic resonance spectrum of actinomycin D to much lower concentrations through the use of Fourier transform nuclear magnetic resonance techniques. The effect of the actinomycin D dimerization on the observed chemical shifts that results from the additon of nucleotides to an actinomycin D solution is directly demonstrated by comparing the actinomycin D-nucleotide titrations at both low (approximately 0.3 mM) and high (approximately 12 mM) concentrations of actinomycin D. In the presence of excess nucleotide the chemical shifts of the actinomycin D groups were essentially the same for both the low and high concentration titrations. The complexes of actinomycin D with pdG-dC, dG-dC, deoxyguanosine 3'-monophosphate, G-C, C-G, dIMP(5'), 2, 6-diaminopurine deoxyribose, and other nucleotides were also investigated by proton magnetic resonance and visible spectral titrations. These data were interpreted in terms of the molecular geometry of the complexes and in terms of the effect of the structure of the nucleotide base on the relative binding affinity of the nucleotides for the two nucleotide binding sites of actinomycin D. The carbon-13 chemical shifts of dGMP(5') were measured as a function of concentration over the concentration range of 0.5-0.025 M. The infinite dilution carbon-13 chemical shifts were graphically estimated from the dilution curves. These values were used to calculate the changes in the chemical shifts of the dGMP carbons that result from the formation of an actinomycin D-(dGMP)2 complex. It was not possible to interpret these carbon-13 chemical shift changes in terms of only ring current effects, which thus rules out the use of carbon-13 spectroscopy in the determination of the geometries of the actinomycin D complexes with the mono- and dinucleotides. The induced chemical shifts in the proton spectra may be used in the determination of the geometries of the complexes. A consideration of these data for the above nucleotide series shows that the predominant complex formed is one in which the guanine rings in the two nucleotide binding sites of actinomycin D are oriented in a manner very similar to that observed in the cocrystalline complex of actinomycin D with deoxyguanosine.  相似文献   

11.
Two-dimensional NMR studies of the antimicrobial peptide NP-5   总被引:5,自引:0,他引:5  
A C Bach  M E Selsted  A Pardi 《Biochemistry》1987,26(14):4389-4397
Nearly complete proton resonance assignment of the rabbit antimicrobial peptide NP-5 has been made from two-dimensional NMR data taken at a single temperature. The assignment procedure involved acquisition of phase-sensitive double-quantum-filtered correlation spectra, relayed coherence-transfer spectra, total correlation (homonuclear Hartmann-Hahn) spectra, double- and triple-quantum spectra, and nuclear Overhauser effect spectra. The combination of these complementary experiments simplified and accelerated resonance assignment of the peptide. Individual assignments were made at 20 degrees C for all amide and C alpha protons in the peptide, and for all nonlabile side-chain protons on 26 of the 33 amino acid residues in NP-5. Analysis of the proton-proton nuclear Overhauser effect connectivities, the slowly exchanging amide protons, and the proton chemical shifts in NP-5 indicates that the peptide has a stable, ordered structure in solution. These data also indicate that residues 19-29 in NP-5 are involved in an antiparallel beta-sheet that has a hairpin conformation.  相似文献   

12.
Ab inito computations of the different contributions to chemical shift variations due to intra and interstrand stacking are reported for the GC, CG, AT and TA sequences of a B DNA helix. The results obtained for the non hydrogen atoms of the GC stacks show that the chemical shift variations are mainly due to the polarization contribution, the term which decreases slowly with the intermolecular distance. Because of the weaker polarity of adenine and thymine the geometric and polarization contributions are of closer absolute magnitude for the non hydrogen atoms of the intrastrand stacks but the polarization term is the determining contribution in the corresponding interstrand stacks. For the protons which undergo smaller shifts due to the polarization (or electric field effects) the role of the geometric contribution is more important and is even the leading one for the hydrogens of cytosine and thymine in the case of intrastrand stacking. The charge transfer plus exchange term has a non negligeable value for a limited number of cases corresponding to the shortest intermolecular interatomic distances. These results are discussed in relation with the qualitative differences observed between the proton and carbon spectra of dinucleotides and B-DNA duplexes.  相似文献   

13.
X L Gao  D J Patel 《Biochemistry》1988,27(5):1744-1751
We report on two-dimensional proton NMR studies of echinomycin complexes with the self-complementary d(A1-C2-G3-T4) and d(T1-C2-G3-A4) duplexes in aqueous solution. The exchangeable and nonexchangeable antibiotic and nucleic acid protons in the 1 echinomycin per tetranucleotide duplex complexes have been assigned from analyses of scalar coupling and distance connectivities in two-dimensional data sets recorded in H2O and D2O solution. An analysis of the intermolecular NOE patterns for both complexes combined with large upfield imino proton and large downfield phosphorus complexation chemical shift changes demonstrates that the two quinoxaline chromophores of echinomycin bisintercalate into the minor groove surrounding the dC-dG step of each tetranucleotide duplex. Further, the quinoxaline rings selectively stack between A1 and C2 bases in the d(ACGT) complex and between T1 and C2 bases in the d(TCGA) complex. The intermolecular NOE patterns and the base and sugar proton chemical shifts for residues C2 and G3 are virtually identical for the d(ACGT) and d(TCGA) complexes. A change in sugar pucker from the C2'-endo range to the C3'-endo range is detected at C2 on formation of the d(ACGT) and d(TCGA) complexes. In addition, the sugar ring protons of C2 exhibit upfield shifts and a large 1 ppm separation between the H2' and H2" protons for both complexes. The L-Ala amide protons undergo large downfield complexation shifts consistent with their participation in intermolecular hydrogen bonds for both tetranucleotide complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The 220-MHz proton magnetic resonance spectrum of the cyclic decapeptide antibiotic, mono-N-methylleucine gramicidin S, is reported and all the resonances have been assigned to specific protons of the constituent amino acids. Three methods--temperature dependence and solvent mixture (methanol-trifluoroethanol and dimethyl sulfoxide-trifluoroethanol) dependence of peptide NH proton chemical shifts and proton deuteron exchange--habe been utilized to delineate peptide NH protons. The results of the above methods, coupled with the observed vicinal alpha-CH-NH coupling constants and chemical shifts, indicate that in trifluoroethanol the peptide NH PROTONS OF D-Phe4, D-Phe9, L-Orn2, and L-Val6 are exposed to the sovent, and those of L-Val1, L-Orn7, and L-Leu8 are solvent shielded and intramolecularly hydrogen bonded. In trifluoroethanol, dimethyl sulfoxide, and methanol, the decapeptide has no C2 symmetry, and there are only minor conformational differences in the different solvents. In the proposed conformation in trifluoroethanol, one-half of the decapeptide retained the hydrogen bonding pattern of gramicidin S, i.e. cyclo-(L-Val1 NH--O-C L-Leu8) (a beta turn) and cyclo-(L-Leu8 NH--O-C L-Val1). The second half of the molecule exhibits a different type of stable beta turn involving the ten-atom hydrogen-bonded ring, cyclo-(L-Orn7-NH--O-C D-PHE4).  相似文献   

15.
A heteroassociation of the antitumor antibiotic novatrone (NOV) and flavin mononucleotide (FMN) in aqueous solution was studied by one- and two-dimentional 1H NMR spectroscopy (500 MHz) to elucidate the molecular mechanism of the possible combined action of the antibiotic and the vitamin. The equilibrium reaction constants, the induced proton chemical shifts, and the thermodynamic parameters (ΔH and ΔS) of the NOV and FMN heteroassociation were determined from the concentration and temperature dependences of proton chemical shifts of the aromatic molecules. The most favorable structure of the 1 : 1 NOV-FMN complex was determined by both the method of molecular mechanics (X-PLOR software) and the induced proton chemical shifts of the molecules. An analysis of the results suggests that the NOV-FMN intermolecular complexes are mainly stabilized by stacking interactions of their aromatic chromophores. An additional stabilization is possible due to intermolecular hydrogen bonds. It was concluded that the aromatic molecules of vitamins, in particular, FMN, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solutions, which could result in a modulation of their medical and biological action.  相似文献   

16.
The aim of this study was to attempt to determine the extent to which the chemical shifts of the nonexchangeable base protons of a DNA helix depend upon the base sequence. We measured the proton NMR spectra of twelve decadeoxynucleotides in order to carry out a "statistical" treatment. In the helices, the chemical shifts were found to be determined within +/- 0.04 ppm, largely by the nearest neighbor residues on the 5'-side, and to a smaller extent by the residue on the 3'-side. The theoretical chemical shift calculations reproduced very well the polymerization shifts measured for H2 protons of adenosines if the electrostatic field effect was taken into account. A fair agreement was also obtained for H8 protons of the adenosine and guanosine residues. However, theory underestimates the polarization effects of the base protons of cytidine. This discrepancy suggests that the conformation of this residue is different in the mononucleotides relative to double helices.  相似文献   

17.
A heteroassociation of antitumor antibiotic novatrone (NOV) and flavin mononucleotide (FMN) in aqueous solution was studied by one- and two-dimentional 1H NMR spectroscopy (500 MHz) to elucidate the molecular mechanism of the possible combined action of the antibiotic and vitamin. The equilibrium reaction constants, induced proton chemical shifts, and the thermodynamic parameters (deltaH and deltaS) of the NOV and FMN heteroassociation were determined from the concentration and temperature dependences of proton chemical shifts of the aromatic molecules. The most favorable structure of the 1 : 1 NOV-FMN complex was determined by both the method of molecular mechanics (X-PLOR software) and the induced proton chemical shifts of the molecules. An analysis of the results suggests that the NOV-FMN intermolecular complexes are mainly stabilized by stacking interactions of their aromatic chromophores. An additional stabilization is possible due to intermolecular hydrogen bonds. It was concluded that the aromatic molecules of vitamins, in particular, FMN, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solutions, which could result in a modulation of their medical and biological action.  相似文献   

18.
L S Kan  P N Borer  P O Ts'o 《Biochemistry》1975,14(22):4864-4869
A self-complementary ribohexanucleotide, ApApGpCpUpU, was synthesized and its NH-N hydrogen-bonded protons were studied by proton magnetic resonance. At 1 degree C, 0.17 M Na+, pH 7.6 with 10 mM phosphate-0.1 mM EDTA in H2O, three proton resonances are found in the low-field region with the following chemical shifts and line widths at half-height: 13.2 ppm (80 Hz), 13.5 ppm (30 Hz), and 14.2 ppm (44 Hz). The existence of these resonances indicates the formation of a self-complementary, hydrogen-bonded duplex under these conditions. Upon elevation of temperature, these three resonances sequentially broaden and finally all disappear near 35 degrees C. Unambiguous assignments of these three resonances can be made to the terminal A(1)-U(6) pairs, interior A(2)-U(5) pairs, and to the middle G(3)-C(4) pairs. The assignments were based on (i) the differential sensitivities of the line widths of these resonances to thermal variation, as well as on (ii) a comparison of the computed chemical shifts with the observed chemical shifts. The quantitative aspects of the NH proton transfer between helix, coil, and water are discussed in relationship to the line widths of these resonances and the lifetime of the helix state. The computed chemical shifts of the NH-N resonances based on the A-RNA (or A'-RNA) model agree more closely with the observed chemical shifts than the computed values based on the B-DNA model. These results suggest that the helical duplex of A2GCU2 assumes a conformation similar to A-RNA (or A'-RNA) in aqueous solution. The results on both the NH-N resonances and the C-H resonances are summarized and discussed in terms of the helical conformation of (A2GCU2)2.  相似文献   

19.
Molecular recognition between Big Endothelin (Big ET) and a computer generated peptide hydropathically complementary to Big ET[16-29] sequence has been studied by analytical high performance liquid affinity chromatography (HPLAC), circular dichroism (CD) and nuclear magnetic resonance (NMR) experiments. Specific binding was observed between solid support immobilized complementary peptide and Big ET[1-38], [1-32], and [16-32], but not with Big ET fragments [1-21], [16-21], [22-32], and [22-38], obtained by chymotrypsin proteolytic degradation. Selectivity in the recognition process was clearly demonstrated by the ability of complementary peptide affinity column to purify the Big ET molecule from complex peptide mixtures, even when present in very low concentrations. Similar selectivity was evidenced with the Big ET fragment [16-32], [NH2-HLDIIWVNTPEHIVPYG-COOH] containing the entire hydropathically complementary sequence. Binding was followed by marked spectroscopic changes, as monitored by circular dichroism and one- and two-dimensional nuclear magnetic resonance experiments. The NMR spectra of the complementary peptides 1:1 mixture showed variations in the chemical shifts of proton resonances in several residues, both in the main chain (amide protons) and in the side chains (aliphatic and aromatic protons). These data support the hypothesis of a multilocalized type of interaction between complementary peptides, where many residues along the peptide chains participate in co-operative stabilizing contacts in the forming complex.  相似文献   

20.
The preceding article shows that there are eight highly protected amide protons in the S-peptide moiety of RNAase S at pH 5, 0 degrees C. The residues with protected NH protons are 7 to 13, whose amide protons are H-bonded in the 3 to 13 alpha-helix, and Asp 14, whose NH proton is H-bonded to the CO group of Val47. We describe here the exchange behavior of these eight protected protons as a function of pH. Exchange rates of the individual NH protons are measured by 1H nuclear magnetic resonance in D2O. A procedure is used for specifically labeling with 1H only these eight NH protons. The resonance assignments of the eight protons are made chiefly by partial exchange, through correlating the resonance intensities in spectra taken when the peptide is bound and when it is dissociated from S-protein in 3.5 M-urea-d4, in D2O, pH 2.3, -4 degrees C. The two remaining assignments are made and some other assignments are checked by measurements of the nuclear Overhauser effect between adjacent NH protons of the alpha-helix. There is a transition in exchange behavior between pH 3, where the helix is weakly protected against exchange, and pH 5 where the helix is much more stable. At pH 3.1, 20 degrees C, exchange rates are uniform within the helix within a factor of two, after correction for different intrinsic exchange rates. The degree of protection within the helix is only 10 to 20-fold at this pH. At pH 5.1, 20 degrees C, the helix is more stable by two orders of magnitude and exchange occurs preferentially from the N-terminal end. At both pH values the NH proton of Asp 14, which is just outside the helix, is less protected by an order of magnitude than the adjacent NH protons inside the helix. Opening of the helix can be observed below pH 3.7 by changes in chemical shifts of the NH protons in the helix. At pH 2.4 the changes are 25% of those expected for complete opening. Helix opening is a fast reaction on the n.m.r. time scale (tau much less than 1 ms) unlike the generalized unfolding of RNAase S which is a slow reaction. Dissociation of S-peptide from S-protein in native RNAase S at pH 3.0 also is a slow reaction. Opening of the helix below pH 3.7 is a two-state reaction, as judged by comparing chemical shifts with exchange rates. The exchange rates at pH 3.1 are predicted correctly from the changes in chemical shift by assuming that helix opening is a two-state reaction. At pH values above 3.7, the nature of the helix opening reaction changes. These results indicate that at least one partially unfolded state of RNAase S is populated in the low pH unfolding transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号