首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ontogenetic changes in the absolute dimensions of the cranial system together with changes in kinematics during prey capture can cause differences in the spatiotemporal patterns of water flow generated during suction feeding. Because the velocity of this water flow determines the force that pulls prey toward and into the mouth cavity, this can affect suction feeding performance. In this study, size-related changes in the suction-induced flow patterns are determined. To do so, a mathematical suction model is applied to video recordings of prey capturing Clarias gariepinus ranging in total length from 111 to 923 mm. Although large C. gariepinus could be expected to have increasing peak velocities of water flow compared with small individuals, the results from the hydrodynamic model show that this is not the case. Yet, when C. gariepinus becomes larger, the expansive phase is prolonged, resulting in a longer sustained flow. This flow also reaches farther in front of the mouth almost proportionally with head size. Forward dynamical simulations with spherical prey that are subjected to the calculated water flows indicate that the absolute distance from which a given prey can be sucked into the mouth as well as the maximal prey diameter increase substantially with increasing head size. Consequently, the range of potential prey that can be captured through suction feeding will become broader during growth of C. gariepinus. This appears to be reflected in the natural diet of this species, where both the size and the number of evasive prey increase with increasing predator size.  相似文献   

2.
We developed models to predict the effect of water velocity on prey capture rates and on optimal foraging velocities of two sympatric juvenile salmonids, coho salmon and steelhead. Mean fish size was ~80 mm, the size of age I+ coho and steelhead during their second summer in Southeast Alaska streams, when size overlap suggests that competition might be strongest. We used experimentally determined prey capture probabilities to estimate the effect of water velocity on gross energy intake rates, and we modeled prey capture costs using experimental data for search and handling times and published models of swimming costs. We used the difference between gross energy intake and prey capture costs to predict velocities at which each species maximized net energy intake rate. Predicted prey capture rates for both species declined from ~75 to 30–40 prey/h with a velocity increase from 0.30 to 0.60 m·s−1. We found little difference between coho and steelhead in predicted optimum foraging velocities (0.29 m·s−1 for coho and 0.30 m·s−1 for steelhead). Although prey capture ability appears to be more important than are prey capture costs in determining optimum foraging velocities, capture costs may be important for models that predict fish growth. Because coho are assumed to pay a greater swimming cost due to a less hydrodynamic body form, we also modeled 10 and 25% increases in hydrodynamic drag to assess the effect of increased prey capture costs. This reduced optimum velocity by 0 and 0.01 m∙s−1, respectively. Habitat segregation among equal-sized coho and steelhead does not appear to be related to the effects of water velocity on their respective foraging abilities.  相似文献   

3.
The ability to modulate prey capture behaviors is of interest to organismal biologists as it suggests that predators can perceive features of the prey and select suitable behaviors from an available repertoire to successfully capture the item. Thus, behavior may be as important a trait as morphology in determining an organism's diet. Using high-speed video, we measured prey capture kinematics in three cheeklined wrasse, Oxycheilinus digrammus. We studied the effects of three experimental prey treatments: live fish, dead prawn suspended in the water column, and dead prawn pieces anchored to the substrate in a clip. Live prey elicited significantly more rapid strikes than dead prey suspended in the water column, and the head of the predator was expanded to significantly larger maxima. These changes in prey capture kinematics suggest the generation of more inertial suction. With greater expansion of the head, more water can be accelerated into the buccal cavity. The attached prey treatment elicited strikes as rapid as those on live prey. We suggest that the kinematics of rapid strikes on attached prey are indicative of attempts to use suction to detach the prey item. More rapid expansion of the buccal or mouth cavity should lead to higher velocities of water entering the mouth and therefore to enhanced suction. Further modulation in response to the attached prey item, such as clipping or wrenching behaviors, was not observed. J. Exp. Zool. 290:88-100, 2001.  相似文献   

4.
Experiments indicated that the initial detection of euphausiid prey by Arripis trutta is visual with the cues being shape and/or movement. Immediately before capture of prey in midwater, swimming speed of the fish increased from 15 to 33 cm s−1. The sequence of morphological events during capture is similar to that described for suction feeding in other teleosts such as Atlantic salmon Salmo salar . Occasionally prey would be ejected from the mouth after capture by means of a reversal of the mechanism used in suction feeding.  相似文献   

5.
The head of ray-finned fishes is structurally complex and is composed of numerous bony, muscular, and ligamentous elements capable of intricate movement. Nearly two centuries of research have been devoted to understanding the function of this cranial musculoskeletal system during prey capture in the dense and viscous aquatic medium. Most fishes generate some amount of inertial suction to capture prey in water. In this overview we trace the history of functional morphological analyses of suction feeding in ray-finned fishes, with a particular focus on the mechanisms by which suction is generated, and present new data using a novel flow imaging technique that enables quantification of the water flow field into the mouth. We begin with a brief overview of studies of cranial anatomy and then summarize progress on understanding function as new information was brought to light by the application of various forms of technology, including high-speed cinematography and video, pressure, impedance, and bone strain measurement. We also provide data from a new technique, digital particle image velocimetry (DPIV) that allows us to quantify patterns of flow into the mouth. We believe that there are three general areas in which future progress needs to occur. First, quantitative three-dimensional studies of buccal and opercular cavity dimensions during prey capture are needed; sonomicrometry and endoscopy are techniques likely to yield these data. Second, a thorough quantitative analysis of the flow field into the mouth during prey capture is necessary to understand the effect of head movement on water in the vicinity of the prey; three-dimensional DPIV analyses will help to provide these data. Third, a more precise understanding of the fitness effects of structural and functional variables in the head coupled with rigorous statistical analyses will allow us to better understand the evolutionary consequences of intra- and interspecific variation in cranial morphology and function.  相似文献   

6.
Suction feeding mechanics, performance, and diversity in fishes   总被引:1,自引:0,他引:1  
Despite almost 50 years of research on the functional morphologyand biomechanics of suction feeding, no consensus has emergedon how to characterize suction-feeding performance, or its morphologicalbasis. We argue that this lack of unity in the literature isdue to an unusually indirect and complex linkage between themuscle contractions that power suction feeding, the skeletalmovements that underlie buccal expansion, the sharp drop inbuccal suction pressure that occurs during expansion, the flowof water that enters the mouth to eliminate the pressure gradient,and the forces that are ultimately exerted on the prey by thisflow. This complexity has led various researchers to focus individuallyon suction pressure, flow velocity, or the distance the preymoves as metrics of suction-feeding performance. We attemptto integrate a mechanistic view of the ability of fish to performthese components of suction feeding. We first discuss a modelthat successfully relates aspects of cranial morphology to thecapacity to generate suction pressure in the buccal cavity.This model is a particularly valuable tool for studying theevolution of the feeding mechanism. Second, we illustrate themultidimensional nature of suction-feeding performance in acomparison of bluegill, Lepomis macrochirus, and largemouthbass, Micropterus salmoides, two species that represent oppositeends of the spectrum of performance in suction feeding. As anticipated,bluegills had greater accuracy, lower peak flux into the mouth,and higher flow velocity and acceleration of flow than did bass.While the differences between species in accuracy of strikeand peak water flux were substantial, peak suction velocityand acceleration were only about 50% higher in bluegill, a relativelymodest difference. However, a hydrodynamic model of the forcesthat suction feeders exert on their prey shows that this differencein velocity is amplified by a positive effect of the smallermouth aperture of bluegill on force exerted on the prey. Ourmodel indicates that the pressure gradient in front of a fishthat is feeding by suction, associated with the gradient inwater velocity, results in a force on the prey that is largerthan drag or acceleration reaction. A smaller mouth apertureresults in a steeper pressure gradient that exerts a greaterforce on the prey, even when other features of the suction floware held constant. Our work shows that some aspects of suction-feedingperformance can be determined from morphology, but that thecomplexity of the behavior requires a diversity of perspectivesto be used in order to adequately characterize performance.  相似文献   

7.
We examined the effects of variation in swimming speed, or ‘ram speed’, on the feeding kinematics of juvenile Indo-Pacific tarpon, Megalops cyprinoides. Tarpon were filmed feeding on non-elusive prey at 500 images s?1. Prey items were offered at one end of the filming tank, the opposite end where tarpon grouped, to encourage them to use a ram strategy to capture their prey. We describe tarpon as ram-suction feeders. Ram speed varied among strikes from 0.19 to 1.38 m/s and each individual produced speeds that spanned at least 0.9 m/s across trials. Although suction distances were much less variable, prey movement towards the predator was present in all feeding trials. There was a strong positive relationship between initial predator – prey distance and ram speed (r2=0.72, P<0.001). When tarpon initiated their strike from further away, they achieved higher ram speeds, but also took longer to capture their prey. All other timing variables were unaffected by ram speed whereas at higher ram speeds tarpon exhibited greater expansion of the mouth and buccal cavity. Greater buccal expansion accomplished in the same period of time implies that both the total volume of water captured and the water flow rate entering the mouth was greater in strikes at higher ram speeds. Our results demonstrate how feeding kinematics may vary as a function of ram speed, and how fish predators that lack jaw protrusion and have a large gape capacity can maximize their feeding success by altering their swimming speed.  相似文献   

8.
Analysis of videotaped feeding sequences provides novel documentation of suction feeding in captive juvenile long-finned pilot whales ( Globicephala melas ). Swimming and stationary whales were videotaped while feeding at the surface, mid-water, and bottom. The ingestion sequence includes a preparatory phase with partial gape followed by jaw opening and rapid hyoid depression to suck in prey at a mean distance of 14 cm (duration 90 msec), although prey were taken from much greater distances. Depression and retraction of the large, piston-like tongue generate negative intraoral pressures for prey capture and ingestion. Food was normally ingested without grasping by teeth yet was manipulated with lingual, hyoid, and mandibular movement for realignment; suction was then used to transport prey into the oropharynx. Whales frequently rolled or inverted before taking prey, presumably to avoid grasping and repositioning. Prey were sucked off the bottom or sides of the pool without direct contact; lateral suction was used to ingest items from the sides of the mouth.  相似文献   

9.
Foraging behaviours used by two female Australian fur seals (Arctocephalus pusillus doriferus) were documented during controlled feeding trials. During these trials the seals were presented with prey either free-floating in open water or concealed within a mobile ball or a static box feeding device. When targeting free-floating prey both subjects primarily used raptorial biting in combination with suction, which was used to draw prey to within range of the teeth. When targeting prey concealed within either the mobile or static feeding device, the seals were able to use suction to draw out prey items that could not be reached by biting. Suction was followed by lateral water expulsion, where water drawn into the mouth along with the prey item was purged via the sides of the mouth. Vibrissae were used to explore the surface of the feeding devices, especially when locating the openings in which the prey items had been hidden. The mobile ball device was also manipulated by pushing it with the muzzle to knock out concealed prey, which was not possible when using the static feeding device. To knock prey out of this static device one seal used targeted bubble blowing, where a focused stream of bubbles was blown out of the nose into the openings in the device. Once captured in the jaws, prey items were manipulated and re-oriented using further mouth movements or chews so that they could be swallowed head first. While most items were swallowed whole underwater, some were instead taken to the surface and held in the teeth, while being vigorously shaken to break them into smaller pieces before swallowing. The behavioural flexibility displayed by Australian fur seals likely assists in capturing and consuming the extremely wide range of prey types that are targeted in the wild, during both benthic and epipelagic foraging.  相似文献   

10.
Nearly all aquatic-feeding vertebrates use some amount of suction to capture prey items. Suction prey capture occurs by accelerating a volume of water into the mouth and taking a prey item along with it. Yet, until recently, we lacked the necessary techniques and analytical tools to quantify the flow regime generated by feeding fish. We used a new approach; Digital Particle Image Velocimetery (DPIV) to measure several attributes of the flow generated by feeding bluegill sunfish. We found that the temporal pattern of flow was notably compressed during prey capture. Flow velocity increased rapidly to its peak within 20 ms of the onset of the strike, and this peak corresponded to the time that the prey entered the mouth during capture. The rapid acceleration and deceleration of water suggests that timing is critical for the predator in positioning itself relative to the prey so that it can be drawn into the mouth along with the water. We also found that the volume of water affected by suction was spatially limited. Only rarely did we measure significant flow beyond 1.75 cm of the mouth aperture (in 20 cm fish), further emphasizing the importance of mechanisms, like locomotion, that place the fish mouth in close proximity to the prey. We found that the highest flows towards the mouth along the fish midline were generated not immediately in front of the open mouth, but approximately 0.5 cm anterior to the mouth opening. Away from the midline the peak in flow was closer to the mouth. We propose that this pattern indicates the presence of a bow wave created by the locomotor efforts of the fish. In this scheme, the bow wave acts antagonistically to the flow of water generated by suction, the net effect being to push the region of peak flow away from the open mouth. The peak was located farther from the mouth opening in strikes accompanied by faster locomotion, suggesting faster fish created larger bow waves.  相似文献   

11.
The feeding performances of two heterochronic morphs of the Alpine newt Triturus alpestris were investigated in laboratory experiments. Although both morphs are able to feed in the aquatic habitat, the hydrodynamics of prey capture differ between morphs. In paedomorphs water sucked with prey is expelled behind the mouth through gill bars. In metamorphs, water is expelled by the mouth as gill slits are closed. Feeding performance was better in paedomorphs than in metamorphs when foraging on aquatic crustaceans, but paedomorphs were less successful when foraging on terrestrial invertebrates caught at the water surface. These differences in prey capture success related to prey type allow the two morphs to use specific resources in their aquatic habitat. These results are consistent with previous studies that showed diet differentiation between morphs in natural populations. Such resource partitioning is a factor favouring the maintenance of facultative paedomorphosis in natural populations.  相似文献   

12.
Hiran M. Dutta 《Zoomorphology》1987,106(6):369-381
Summary Astronotus ocellatus captures its prey by creating a negative pressure in the buccal cavity which is caused by its quick expansion. Once the prey has been accommodated, the buccal cavity undergoes a compression which may propel the prey towards the pharyngeal jaws for mastication. The motion picture recordings indicate retracted premaxillae at the beginning of food intake followed by a maximum attainment of mouth gape and then mastication. During the maximum opening of the mouth the premaxillae are protruded and dentaries are at maximum depression. These events are followed by activities such as buccopharyngeal cavity expansion, bulging on the ventral surface of the head, and prominent curvature on the ventral surface anterior to the urohyal, caused by the upward movement of the glossohyal. Based on the cinematographic results, it may be inferred that the maximum mouth gape is caused by the sternohyoid-hyoid-interopercular-mandible coupling, and not by the opercular apparatus-mandible coupling, as the latter acts after the full descent of the lower jaw. Impression of the expanded buccopharyngeal cavity has been made by a paraffin mold technique, which confirms the displacement of the buccopharyngeal elements during expansion of the cavity.  相似文献   

13.
Stream-dwelling, juvenile Atlantic salmon, Salmo salar L., feed mainly on drifting invertebrates, usually by swimming upstream from a stationary position to intercept individual prey items. Laboratory experiments tested the prediction that individual salmon should reduce the distance over which they would travel (attack distance) to intercept drifting food items as the energy cost of swimming increases with increasing current velocity. Attack distance varied inversely with current velocity as expected. The fish's average speed of upstream movement relative to the substrate remained constant and the duration of individual attacks therefore declined as current velocity increased. Calculated reaction distances and a second ecperiment using tethered prey drifting at speeds independent of current velocity confirmed that these relationships were due to fish actually delaying attacks on perceived prey for longer periods as current velocity increased. Using estimated metabolic rates for burst swimming, it appears that energy expenditure per attack varies little with current velocity. Therefore, by reducing their reaction and attack distances in response to increasing current velocity, the fish reduced their energy cost of travel per attack.  相似文献   

14.
The ruff, Gymnocephalus cernua, is a European freshwater fish that feeds by sucking up small invertebrates from the bottom of ponds and slow flowing rivers. The feeding movements have been studied by simultaneous electromyography of seventeen muscles of the head and cinematographic techniques. A theoretical model of movements imposes the functional demands of suction upon an abstraction of the form of a teleost head. Three phases in the feeding act, a preparatory phase, a suction phase and a transport phase, could be correlated with the observed movements and EMGs. Differences between the predicted and the actual movement are discussed. Two different types of feeding occur. The direction, magnitude and duration of the suction forces during feeding are modified, according to the position of the prey. A mechanism preventing early mandibular depression allows sudden and strong suction. Retardation of the suspensorial abduction during the overall expansion of the buccal cavity is ascribed to kinetic interrelations with the hyoid arch. Protrusion of the upper jaws also permits an earlier closure of the mouth and directs the food-containing waterflow posteriorly. When the fish is feeding on sinking prey, protrusion occurs later in the sequence of movements than when it is feeding from the bottom. As the protruded jaws produce a downwardly pointed mouth this retardation aims the suction force.  相似文献   

15.
The nurse shark, Ginglymostoma cirratum, is an obligate suction feeder that preys on benthic invertebrates and fish. Its cranial morphology exhibits a suite of structural and functional modifications that facilitate this mode of prey capture. During suction‐feeding, subambient pressure is generated by the ventral expansion of the hyoid apparatus and the floor of its buccopharyngeal cavity. As in suction‐feeding bony fishes, the nurse shark exhibits expansive, compressive, and recovery kinematic phases that produce posterior‐directed water flow through the buccopharyngeal cavity. However, there is generally neither a preparatory phase nor cranial elevation. Suction is generated by the rapid depression of the buccopharyngeal floor by the coracoarcualis, coracohyoideus, and coracobranchiales muscles. Because the hyoid arch of G. cirratum is loosely connected to the mandible, contraction of the rectus cervicis muscle group can greatly depress the floor of the buccopharyngeal cavity below the depressed mandible, resulting in large volumetric expansion. Suction pressures in the nurse shark vary greatly, but include the greatest subambient pressures reported for an aquatic‐feeding vertebrate. Maximum suction pressure does not appear to be related to shark size, but is correlated with the rate of buccopharyngeal expansion. As in suction‐feeding bony fishes, suction in the nurse shark is only effective within approximately 3 cm in front of the mouth. The foraging behavior of this shark is most likely constrained to ambushing or stalking due to the exponential decay of effective suction in front of the mouth. Prey capture may be facilitated by foraging within reef confines and close to the substrate, which can enhance the effective suction distance, or by foraging at night when it can more closely approach prey. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
The rate and magnitude of buccal expansion are thought to determine the pattern of water flow and the change in buccal pressure during suction feeding. Feeding events that generate higher flow rates should induce stronger suction pressure and allow predators to draw prey from further away. We tested these expectations by measuring the effects of prey capture kinematics on suction pressure and the effects of the latter on the distance from which prey were drawn-termed suction distance. We simultaneously, but not synchronously, recorded 500-Hz video and buccal pressure from 199 sequences of four largemouth bass, Micropterus salmoides, feeding on goldfish. From the video, we quantified several kinematic variables associated with the head and jaws of the feeding bass that were hypothesized to affect pressure. In a multiple regression, kinematic data accounted for 79.7% of the variation among strikes in minimum pressure. Faster mouth opening and hyoid depression were correlated with lower pressures, a larger area under the pressure curve, and a faster rate of pressure reduction. In contrast, buccal pressure variables explained only 16.5% of the variation in suction distance, and no single pressure variable had a significant relationship with suction distance. Thus, although expected relationships between head kinematics and buccal pressure were confirmed, suction distance was only weakly related to buccal pressure. Three explanations are considered. First, bass may not attempt to maximize the distance from which prey are drawn. Second, the response of prey items to suction-induced flow depends on prey behavior and orientation and is, therefore, subject to considerable variation. Third, previous theoretical work indicates that water velocity decays exponentially with distance from the predator's mouth, indicating that variation among strikes in flow at the mouth opening is compressed away from the mouth. These findings are consistent with other recent data and suggest that suction distance is a poor metric of suction feeding performance.  相似文献   

17.
The larval ultrastructure of Brycon gouldingi related to swimming and feeding from hatching to total yolk absorption is described from scanning electron micrographs. Newly hatched larvae (time zero) had no mouth opening, undefined optic vesicles, an olfactory plate visible as a shallow depression, rudimentary gill arches, neural groove, embryonic fin and a primary neuromast in the dorsal region of the head. At the time of yolk absorption, 55 h post hatching, the larvae presented an optic vesicle comprising an optic cup and crystalline lens; a mouth with tongue, tapered teeth and taste buds; a ciliated olfactory cavity; branched gill arches; filled neural groove signalling central nervous system development; caudal, pectoral, dorsal and anal fins; and neuromasts distributed throughout the head and body. These characters are related to prey capture and swimming ability, key aspects of survival during the larval stage. The results of this study provide important information for exploitation and aquaculture of B. gouldingi.  相似文献   

18.
The oxygen consumption rates of two cyprinid fishes, carp (Cyprinus carpio L.) and roach (Rutilus rutilus (L.)), were analysed for a wide range of body mass and swimming speed by computerized intermittent-flow respirometry. Bioenergetic models were derived, based on fish mass (M) and swimming speed (U), to predict the minimal speed and mass-specific active metabolic rate (AMR) in these fishes (AMR=aMbUc). Mass and speed together explained more than 90% of the variance in total swimming costs in both cases. The derived models show that carp consume far more oxygen at a specific speed and body mass, thus being less efficient in energy use during swimming than roach. It was further found that in carp (AMR=0.02M0.8U0.95) the metabolic increment during swimming is more strongly effected by speed, whereas in roach (AMR=0.02M0.93U0.6) it is more strongly effected by body mass. The different swimming traits of carp and roach are suitable for their respective lifestyles and ecological demands.  相似文献   

19.
The feeding mechanism of the South American lungfish, Lepidosiren paradoxa retains many primitive teleostome characteristics. In particular, the process of initial prey capture shares four salient functional features with other primitive vertebrates: 1) prey capture by suction feeding, 2) cranial elevation at the cranio-vertebral joint during the mouth opening phase of the strike, 3) the hyoid apparatus plays a major role in mediating expansion of the oral cavity and is one biomechanical pathway involved in depressing the mandible, and 4) peak hyoid excursion occurs after maximum gape is achieved. Lepidosiren also possesses four key morphological and functional specializations of the feeding mechanism: 1) tooth plates, 2) an enlarged cranial rib serving as a site for the origin of muscles depressing the hyoid apparatus, 3) a depressor mandibulae muscle, apparently not homologous to that of amphibians, and 4) a complex sequence of manipulation and chewing of prey in the oral cavity prior to swallowing. The depressor mandibulae is always active during mouth opening, in contrast to some previous suggestions. Chewing cycles include alternating adduction and transport phases. Between each adduction, food may be transported in or out of the buccal cavity to position it between the tooth plates. The depressor mandibulae muscle is active in a double-burst pattern during chewing, with the larger second burst serving to open the mouth during prey transport. Swallowing is characterized by prolonged activity in the hyoid constrictor musculature and the geniothoracicus. Lepidosiren uses hydraulic transport achieved by movements of the hyoid apparatus to position prey within the oral cavity. This function is analogous to that of the tongue in many tetrapods.  相似文献   

20.
Synopsis Ontogenetic increases in mouth size and changes in dentition of percoid fishes may affect the size and species of prey selected, thus influencing the fundamental trophic niche. To examine the influence of oral anatomy on prey selectivity by pinfish, Lagodon rhomboides, and snook, Centropomus undecimalis, two co-occurring percoid fishes with contrasting mouth morphologies, the mouth size, dentition, stomach contents, and available prey during ontogeny were quantified. Based on the presence of prey fragments in stomach contents and direct behavioral observation, prey were categorized by the feeding mode used during capture (suction/ramfeeding or biting). Centropomus has a larger size-specific gape than Lagodon during all ontogenetic stages. Although both feeding modes were used by Lagodon during ontogeny, the amount of prey captured using suction/ram-feeding declined and the amount of prey captured by biting increased with standard length. This change in feeding mode was associated with a change in incisor shape and width: Lagodon < 39 mm SL possessed narrow, pointed incisors and strongly selected amphipods, which are captured using suction/ram-feeding; Lagodon> 40 mm SL possessed wide, flat-topped incisors and significantly increased their selectivity for polychaetes, which are captured by biting. Centropomus used ram-feeding to capture prey at all ontogenetic stages. Size-selective feeding by Centropomus was apparent but could not be due to gape-limitation alone, because average prey body depth was only 45% of gape and was not proportional to absolute mouth size increase during ontogeny. Dietary diversity was greatest during the transition from suction/ram-feeding to biting in Lagodon. Lagodon had a higher dietary diversity at all ontogenetic stages than Centropomus, due in part to Lagodon's use of multiple feeding modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号