首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We have isolated and characterized a new yeast mutation in the glucosylation steps of lipid-linked oligosaccharide biosynthesis, alg8-1. Cells carrying the alg8-1 mutation accumulate Glc1Man9GlcNAc2-lipid both in vivo and in vitro. We present evidence showing that the alg8-1 mutation blocks addition of the second alpha 1,3-linked glucose. alg8-1 cells transfer Glc1Man9GlcNAc2 to protein instead of the wild type oligosaccharide, Glc3Man9GlcNAc2. Pulse-chase studies indicate that the Glc1Man9GlcNAc2 transferred is processed more slowly than the wild type oligosaccharide. The yeast mutation gls1-1 lacks glucosidase I activity (Esmon, B., Esmon, P.C., and Schekman, R. (1984) J. Biol. Chem. 259, 10322-10327), the enzyme responsible for removing the alpha 1,2-linked glucose residues from protein-linked oligosaccharides. We demonstrate that gls1-1 cells contain glucosidase II activity (which removes alpha 1,3-linked glucose residues) and have constructed the alg8-1 gls1-1 haploid double mutant. The Glc1Man9GlcNAc2 oligosaccharide was trimmed normally in these cells, demonstrating that the alg8-1 oligosaccharide contained an alpha 1,3-linked glucose residue. A novel Glc2 compound was probably produced by the action of the biosynthetic enzyme that normally adds the alpha 1,2-linked glucose to lipid-linked Glc2Man9GlcNAc2. This enzyme may be able to slowly add alpha 1,2-linked glucose residue to protein-bound Glc1Man9GlcNAc2. The relevance of these findings to similar observations in other systems where glucose residues are added to asparagine-linked oligosaccharides and the possible significance of the reduced rate of oligosaccharide trimming in the alg mutants are discussed.  相似文献   

2.
Inhibitors of the biosynthesis and processing of N-linked oligosaccharides   总被引:15,自引:0,他引:15  
A number of glycoproteins have oligosaccharides linked to protein in a GlcNAc----asparagine bond. These oligosaccharides may be either of the complex, the high-mannose or the hybrid structure. Each type of oligosaccharides is initially biosynthesized via lipid-linked oligosaccharides to form a Glc3Man9GlcNAc2-pyrophosphoryl-dolichol and transfer of this oligosaccharide to protein. The oligosaccharide portion is then processed, first of all by removal of all three glucose residues to give a Man9GlcNAc2-protein. This structure may be the immediate precursor to the high-mannose structure or it may be further processed by the removal of a number of mannose residues. Initially four alpha 1,2-linked mannoses are removed to give a Man5 - GlcNAc2 -protein which is then lengthened by the addition of a GlcNAc residue. This new structure, the GlcNAc- Man5 - GlcNAc2 -protein, is the substrate for mannosidase II which removes the alpha 1,3- and alpha 1,6-linked mannoses . Then the other sugars, GlcNAc, galactose, and sialic acid, are added sequentially to give the complex types of glycoproteins. A number of inhibitors have been identified that interfere with glycoprotein biosynthesis, processing, or transport. Some of these inhibitors have been valuable tools to study the reaction pathways while others have been extremely useful for examining the role of carbohydrate in glycoprotein function. For example, tunicamycin and its analogs prevent protein glycosylation by inhibiting the first step in the lipid-linked pathway, i.e., the formation of Glc NAc-pyrophosphoryl-dolichol. These antibiotics have been widely used in a number of functional studies. Another antibiotic that inhibits the lipid-linked saccharide pathway is amphomycin, which blocks the formation of dolichyl-phosphoryl-mannose. In vitro, this antibiotic gives rise to a Man5GlcNAc2 -pyrophosphoryl-dolichol from GDP-[14C]mannose, indicating that the first five mannose residues come directly from GDP-mannose rather than from dolichyl-phosphoryl-mannose. Other antibodies that have been shown to act at the lipid-level are diumycin , tsushimycin , tridecaptin, and flavomycin. In addition to these types of compounds, a number of sugar analogs such as 2-deoxyglucose, fluoroglucose , glucosamine, etc. have been utilized in some interesting experiments. Several compounds have been shown to inhibit glycoprotein processing. One of these, the alkaloid swainsonine , inhibits mannosidase II that removes alpha-1,3 and alpha-1,6 mannose residues from the GlcNAc- Man5GlcNAc2 -peptide. Thus, in cultured cells or in enveloped viruses, swainsonine causes the formation of a hybrid structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Incubations of thyroid microsomes with radiolabeled dolichyl pyrophosphoryl oligosaccharide (Glc3Man9-GlcNAc2) under conditions optimal for the N-glycosylation of protein resulted in the release, by apparently independent enzymatic reactions, of two types of neutral glucosylated polymannose oligosaccharides which differed from each other by terminating either in an N-acetylglucosamine residue (Glc3Man9GlcNAc1) or a di-N-acetylchitobiose moiety (Glc3Man9GlcNAc2). The first mentioned oligosaccharide, which was released in a steady and slow process unaffected by the addition of EDTA, appeared to be primarily the product of endo-beta-N-acetylglucosaminidase action on newly synthesized glycoprotein and such an enzyme with a neutral pH optimum capable of hydrolyzing exogenous glycopeptides and oligosaccharides (Km = 18 microM) was found in the thyroid microsomal fraction. The Glc3Man9GlcNAc2 oligosaccharide, in contrast, appeared to originate from the oligosaccharide-lipid by a rapid hydrolysis reaction which closely paralleled the N-glycosylation step, progressing as long as oligosaccharide transfer to protein occurred and terminating when carbohydrate attachment ceased either due to limitation of lipid-saccharide donor or addition of EDTA. There was a striking similarity between oligosaccharide release and transfer to protein with lipid-linked Glc3Man9GlcNAc2 serving as a 10-fold better substrate for both reactions than lipid-linked Man9-8GlcNAc2. The coincidence of transferase and hydrolase activities suggest the possibility of the existence of one enzyme with both functions. The physiological relevance of oligosaccharide release was indicated by the formation of such molecules in thyroid slices radiolabeled with [2-3H]mannose. Large oligosaccharides predominated (12 nmol/g) and consisted of two families of components; one group terminating in N-acetylglucosamine, ranged from Glc1Man9GlcNAc1 to Man5GlcNAc1 while the other contained the di-N-acetylchitobiose sequence and included Glc3Man9GlcNAc2, Glc1Man9GlcNAc2, and Man9GlcNAc2.  相似文献   

4.
Madin-Darby canine kidney (MDCK) cells normally form lipid-linked oligosaccharides having mostly the Glc3Man9GlcNAc2 oligosaccharide. However, when MDCK cells are incubated in 1 to 10 mM mannosamine and labeled with [2-3H]mannose, the major oligosaccharides associated with the dolichol were Man5GlcNAc2 and Man6GlcNAc2 structures. Since both of these oligosaccharides were susceptible to digestion by endo-beta-N-acetylglucosaminidase H, the Man5GlcNAc2 must be different in structure than the Man5GlcNAc2 usually found as a biosynthetic intermediate in the lipid-linked oligosaccharides. Methylation analysis also indicated that this Man5GlcNAc2 contained 1----3 linked mannose residues. Since pulse chase studies indicated that the lesion was in biosynthesis, it appears that mannosamine inhibits the in vivo formation of lipid-linked oligosaccharides perhaps by inhibiting the alpha-1,2-mannosyl transferases. Although the lipid-linked oligosaccharides produced in the presence of mannosamine were smaller in size than those of control cells and did not contain glucose, the oligosaccharides were still transferred in vivo to protein. Furthermore, the oligosaccharide portions of the glycoproteins were still processed as shown by the fact that the glycopeptides were of the complex and hybrid types and were labeled with [3H]mannose or [3H]galactose. In contrast, control cells produced complex and high-mannose structures but no hybrid oligosaccharides were detected. The inhibition by mannosamine could be overcome by adding high concentrations of glucose to the medium.  相似文献   

5.
We have previously reported that the oligosaccharides transferred in vivo from dolichol-P-P derivatives in protein N-glycosylation in trypanosomatids are devoid of glucose residues and contain 2 N-acetylglucosamine and 6, 7, or 9 mannose units depending on the species. In this respect trypanosomatids differ from wild type mammalian, plant, insect, and fungal cells in which Glc3Man9GlcNAc2 is transferred. We are now reporting that incubation of Glc1-3Man9GlcNAc2-P-P-dolichol and Man7-9GlcNAc2-P-P-dolichol with membranes of Trypanosoma cruzi, Leptomonas samueli, Crithidia fasciculata, and Blastocrithidia culicis and an acceptor hexapeptide leads to the transfer of the six above mentioned lipid-linked oligosaccharides at the same rate. Control experiments performed under similar conditions but with rat liver and Saccharomyces cerevisiae membranes showed that, as already known, Glc3Man9GlcNAc2 is preferentially transferred in the latter systems. We have also previously reported that, once transferred to protein, the oligosaccharides become transiently glucosylated in trypanosomatids. Depending on the species, protein-linked Glc1Man5-9GlcNAc2 have been transiently detected in cells incubated with [14C] glucose. We are now reporting that glucosidase activities degrading both Glc1Man9GlcNAc2 and Glc2Man9GlcNAc2 were detected in T. cruzi, L. samueli, and C. fasciculata. The enzymatic activities were associated with a membrane fraction; they had a neutral optimum pH value, and similarly to mammalian glucosidase II, the enzyme acting on the monoglucosylated substrate showed a decreased affinity when the latter contained fewer mannose residues. No glucosidase I-like enzyme acting on Glc3Man9GlcNAc2 was detected in any of the three above-mentioned protozoan species. This result is consistent with the fact that no oligosaccharides containing 3 glucose units occur in trypanosomatids.  相似文献   

6.
The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for N-linked glycosylation of proteins in the endoplasmic reticulum (ER), is catalyzed by different glycosyltransferases located at the membrane of the ER. We report on the identification and characterization of the ALG12 locus encoding a novel mannosyltransferase responsible for the addition of the alpha-1,6 mannose to dolichol-linked Man7GlcNAc2. The biosynthesis of the highly branched oligosaccharide follows an ordered pathway which ensures that only completely assembled oligosaccharide is transferred from the lipid anchor to proteins. Using the combination of mutant strains affected in the assembly pathway of lipid-linked oligosaccharides and overexpression of distinct glycosyltransferases, we were able to define the substrate specificities of the transferases that are critical for branching. Our results demonstrate that branched oligosaccharide structures can be specifically recognized by the ER glycosyltransferases. This substrate specificity of the different transferases explains the ordered assembly of the complex structure of lipid-linked Glc3Man9GlcNAc2 in the endoplasmic reticulum.  相似文献   

7.
We have previously shown that the glucosidase inhibitor, N-methyl-1-deoxynojirimycin (MedJN), only partially inhibited N-linked complex oligosaccharide biosynthesis in F9 teratocarcinoma cells whereas the alpha-mannosidase I inhibitor, manno-1-deoxynojirimycin, completely prevented this synthesis (Romero, P. A. and Herscovics, A. (1986) Carbohydr. Res. 151, 21-28). In order to determine whether a pathway independent of processing glucosidases can occur, F9 cells were pulse-labeled for 2 min with D-[2-3H]mannose in the presence or absence of 2 mM MedJN. In control cells, Man7GlcNAc was identified in the protein-bound oligosaccharides released with endo-beta-N-acetylglucosaminidase H, in addition to the expected Glc1-3Man9GlcNAc and Man9GlcNAc arising from processing of Glc3Man9GlcNAc. MedJN completely prevented the removal of glucose residues from Glc3Man9GlcNAc, but did not greatly affect the appearance of Man7GlcNAc associated with protein. Labeled Man7GlcNAc was also found in the lipid-linked oligosaccharides of both control and treated cells. The 2-min pulse-labeled Man7GlcNAc obtained from both the lipid and protein fractions were shown to have identical structures by concanavalin A-Sepharose chromatography and by acetolysis and were clearly different from the Man7GlcNAc obtained from the usual processing pathway. These results demonstrate that transfer of a nonglucosylated oligosaccharide (Man7GlcNAc2) from dolichyl pyrophosphate to protein occurs in F9 cells.  相似文献   

8.
Misfolded glycoproteins synthesized in the endoplasmic reticulum (ER) are degraded by cytoplasmic proteasomes, a mechanism known as ERAD (ER-associated degradation). In the present study, we demonstrate that ERAD of the misfolded genetic variant-null Hong Kong alpha1-antitrypsin is enhanced by overexpression of the ER processing alpha1,2-mannosidase (ER ManI) in HEK 293 cells, indicating the importance of ER ManI in glycoprotein quality control. We showed previously that EDEM, an enzymatically inactive mannosidase homolog, interacts with misfolded alpha1-antitrypsin and accelerates its degradation (Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A., and Nagata, K. (2001) EMBO Rep. 2, 415-422). Herein we demonstrate a combined effect of ER ManI and EDEM on ERAD of misfolded alpha1-antitrypsin. We also show that misfolded alpha1-antitrypsin NHK contains labeled Glc1Man9GlcNAc and Man5-9GlcNAc released by endo-beta-N-acetylglucosaminidase H in pulse-chase experiments with [2-3H]mannose. Overexpression of ER ManI greatly increases the formation of Man8GlcNAc, induces the formation of Glc1Man8GlcNAc and increases trimming to Man5-7GlcNAc. We propose a model whereby the misfolded glycoprotein interacts with ER ManI and with EDEM, before being recognized by downstream ERAD components. This detailed characterization of oligosaccharides associated with a misfolded glycoprotein raises the possibility that the carbohydrate recognition determinant triggering ERAD may not be restricted to Man8GlcNAc2 isomer B as previous studies have suggested.  相似文献   

9.
Two complementing mutations in lipid-linked oligosaccharide biosynthesis have been isolated following a [3H]mannose suicide enrichment. Rather than making the wild type precursor oligosaccharide, Glc3man9Glc-NA2-P-P-dolichol, the mutants, alg5-1 and alg6-1, accumulate Man9GlcNAc2-P-P-dolichol as their largest lipid-linked oligosaccharide in vivo and in vitro. When UDP-[3H]Glc was added to microsomal membranes of each mutant, neither could elongate Man9GlcNAc2-P-P-dolichol and only alg6-1 could synthesize dolichol-phosphoglucose. When dolicholphospho[3H]glucose was added to microsomes from alg5-1, alg6-1, or the parental strain, only alg5-1 and the parental strain made glucosylated lipid-linked oligosaccharides. These results indicate that alg5-1 cells are unable to synthesize dolichol phosphoglucose while alg6-1 cells are unable to transfer glucose from dolichol phosphoglucose to the unglucosylated lipid-linked oligosaccharide. We also present evidence that both mutants transfer Man9GlcNAc2 to protein.  相似文献   

10.
Protein glycosylation mutants in the mouse mammary carcinoma cell line FM3A were selected for ability to withstand exposure to [2-3H]mannose at 39 degrees C. G258 , one of the mutant cells isolated, has been characterized. G258 cells were temperature-sensitive for cell growth. Moreover, G258 cells showed temperature sensitivity for [3H]mannose incorporation into the TCA-insoluble fraction. To study the biochemical basis of the defect in glycoprotein biosynthesis, the formation of lipid-linked saccharides was examined. The results showed that the formation of lipid-linked oligosaccharides was severely inhibited in G258 cells at 39 degrees C. At 33 degrees C, G258 cells synthesized Glc3Man9GlcNAc2-PP-Dol, the fully assembled lipid-linked oligosaccharides, but at 39 degrees C, G258 cells were able to synthesize merely the smaller lipid-linked oligosaccharides (approximately up to Man3GlcNAc2 -PP-Dol), but were unable to synthesize the larger lipid-linked oligosaccharides.  相似文献   

11.
Membrane transport of sugar donors to the glycosylation sites   总被引:1,自引:0,他引:1  
The assembly of N-linked glycoproteins in eukaryotic cells begins with the segregation of these molecules within the lumen of intracellular vesicles. Since the sugar nucleotides are cytoplasmic molecules, translocation of the sugar moiety across the membrane appears as a crucial event in the glycoprotein synthesis. This N-glycosylation process occurs in two different cytological sites: in the rough endoplasmic reticulum, the stepwise synthesis of a large lipid-linked oligosaccharide takes place, as well as its transfer to protein; then after trimming the immature glycoprotein is further elongated in the Golgi apparatus. In this paper, a brief review will be given of the present knowledge on the sugar donor transport across the membrane barrier to the glycosylation site. Based upon the transmembrane orientation of oligosaccharide lipid intermediates and on the localization of the glycosyltransferase active sites, the different processes required to translocate the sugar moieties during the preassembly of the dolichyl-pyrophosphate-oligosaccharides will be examined. Combining the different results, obtained in several laboratories, it is suggested that the Man5-GlcNAc2-lipid is synthesized on the cytoplasmic side directly from the sugar-nucleotides and then translocated to the lumenal face where the Glc3-Man9-GlcNAc2-lipid is completed using Man-P-Dol and Glc-P-Dol as transmembrane carriers of these sugars. Concerning the elongation process leading to assembly of the antennae of N-acetyllactosamine type oligosaccharides, specific carriers for sugar nucleotides have been described as Golgi markers. Several authors have characterized such carriers for UDP-Gal, GDP-Fuc, CMP-NeuAc, UDP-GlcNAc and UDP-Glc using microsomal vesicles and similar results have been obtained in our laboratory using plasma membrane permeabilized cells. This carrier-mediated process leads to the formation of an intralumenal pool whose biological significance will be discussed. The translocation process of sugar donors occurring in the rough endoplasmic reticulum via lipid intermediates as well as in the Golgi apparatus via specific carriers would represent a regulation step based on the availability of the substrates for the glycosylation.  相似文献   

12.
We have previously described that in certain parasitic protozoa, namely the trypanosomatids, the dolichol-P-P-linked oligosaccharides synthesized in vivo and transferred to protein are devoid of glucose residues and contain 6, 7, or 9 mannose units depending on the species. We have now conducted a cell-free characterization of the enzymatic patterns responsible for these phenotypes. Microsomes from Trypanosoma cruzi, Crithidia fasciculata, Leishmania enriettii, and Blastocrithidia culicis were found to synthesize dolichol-P-[14C]Man but not dolichol-P-[14C]Glc when incubated with rat liver dolichol-P and GDP-[14C]Man or UDP-[14C]Glc, thus providing for an explanation to the absence of glucosylated dolichol-P-P derivatives. Formation of dolichol-P-P-oligosaccharides was assayed in incubation mixtures containing rat liver dolichol-P, GDP-[14C]Man, microsomes, and unlabeled Man5-8GlcNAc2-P-P-dolichol from bovine liver. Membranes from species synthesizing dolichol-P-P-linked Man6GlcNAc2 or Man7GlcNAc2 in vivo were found to synthesize the same compounds but not the higher homologues in the cell-free assay. Species forming Man9GlcNAc2-P-P-dolichol in vivo were found to synthesize lipid-linked Man7GlcNAc2, Man8GlcNAc2, and Man9GlcNAc2 in vitro. It is concluded that there are at least three and probably four different dolichol-P-Man-dependent enzymatic activities involved in the synthesis of dolichol-P-P-linked Man9GlcNAc2 and that microorganisms not forming that compound are devoid of all mannosyltransferases responsible for the addition of the missing residues and not only of the enzyme involved in the synthesis of the homologue higher than the oligosaccharide occurring in vivo by a single mannose unit.  相似文献   

13.
We have examined the synthesis and processing of asparagine-linked oligosaccharides from Aedes albopictus C6/36 mosquito cells. These cells synthesized a glucose-containing lipid-linked oligosaccharide with properties identical to that of Glc3Man9GlcNAc2-PP-dolichol. Results of brief pulse label experiments with [3H]mannose were consistent with the transfer of Glc3Man9GlcNAc2 to protein followed by the rapid removal of glucose residues. Pulse-chase experiments established that further processing of oligosaccharides in C6/36 cells resulted in the removal of up to six alpha-linked mannose residues yielding Man3GlcNAc2 whose structure is identical to that of the trimannosyl "core" of N-linked oligosaccharides of vertebrate cells and yeast. Complex-type oligosaccharides were not observed in C6/36 cells. When Sindbis virus was grown in mosquito cells, Man3GlcNAc2 glycans were preferentially located at the two glycosylation sites which were previously shown to have complex glycans in virus grown in vertebrate cells. These Man3GlcNAc2 structures are the most extensively processed oligosaccharides in A. albopictus, and as such, are analogous to the complex glycans of vertebrate cells. We suggest that determinants of oligosaccharide processing which reside in the polypeptide are universally recognized despite evolutionary divergence of the oligosaccharide-processing pathway between insects and vertebrates.  相似文献   

14.
The lipid-linked oligosaccharide Glc3-Man9(GlcNAc)2 (Glc, glucose; Man, mannose; GlcNAc, N-acetylglucosamine) serves as a precursor for the biosynthesis of the inner core portion of the asparagine-linked polysaccharide of Saccharomyces cerevisiae mannoproteins. It has been shown previously that incubation of a microsomal preparation from this organism with UDP-N-acetylglucosamine and GDP-[14C]mannose gives rise to a series of lipid-linked oligosaccharides of the general structure Mann(GlcNAc)2, with n from 1 to 9. A structural characterization of Man1- to Man5(GlcNAc)2 oligosaccharides indicated that the major structures among these were identical to the intermediates proposed for the biosynthesis of animal glycoproteins (C. Prakash and I. K. Vijay, Biochemistry 21:4810-4818, 1982). In the present study, the structural characterization of the Man6- through Man9(GlcNAc)2 species was conducted. The Man6- through Man8(GlcNAc)2 species have two isomers, whereas Man9(GlcNAc)2 is monoisomeric. One isomer each of Man6- through Man8(GlcNAc)2 and the monoisomeric Man9(GlcNAc)2 are identical to the intermediates for the biosynthesis of asparagine-linked glycoproteins in animal systems. It is proposed that the steps of the lipid-linked assembly of the carbohydrate precursor for S. cerevisiae mannoproteins are identical to those of the major pathway in animal systems. A lack of acceptor substrate specificity by the mannosyltransferases, as observed with in vitro studies with animal systems, also might be responsible for the biosynthesis of multiple isomers reported here.  相似文献   

15.
The potential role of degradative mechanisms in controlling the level of the dolichyl pyrophosphate-linked Glc3Man9GlcNAc2 required for protein N-glycosylation has been explored in thyroid slices and endoplasmic reticulum (ER) vesicles, focusing on cleavage of the oligosaccharide from its lipid attachment and on the enzymatic removal of peripheral monosaccharide residues. Vesicle incubations demonstrated a substantial release of free Glc3Man9GlcNAc2 (at 30 min approximately 35% of that transferred to protein) which was inhibited in the presence of exogenous peptide acceptor and was sensitive to disruption of membrane integrity by detergent. In thyroid slices glucosylated oligosaccharides terminating in the di-N-acetylchitobiose sequence were also noted and these continued to be formed even during inhibition by puromycin of both protein synthesis and the attendant N-glycosylation. These observations indicated that the oligosaccharide originated from the lipid donor and suggested, together with previously reported similarities in substrate specificity and cofactor requirements, that the oligosaccharyltransferase can carry out in vivo both the hydrolytic and transfer functions. In addition to the release of the intact Glc3Man9GlcNAc2, we also obtained evidence that the lipid-linked oligosaccharide can be modified by the in vivo action of ER glycosidases. Since radiolabeling of the oligosaccharide-lipid in thyroid slices indicated a preferential turnover of the glucose residues, the possible existence of a glucosyltransferase-glucosidase shuttle was explored with the use of castanospermine. In the presence of this glucosidase inhibitor, the formation of under-glucosylated and nonglucosylated oligosaccharides was not observed, even under conditions of energy deprivation in which they accumulate. Glucosidase inhibition in ER vesicle incubations likewise prevented the appearance of incompletely glucosylated oligosaccharide-lipids. Studies employing the mannosidase inhibitor 1-deoxymannojirimycin in thyroid slices furthermore indicated that in vivo removal of at least one mannose residue from the dolichyl pyrophosphate-linked oligosaccharide can occur.  相似文献   

16.
Assembly of the dolichol-linked oligosaccharide precursor (Glc(3) Man(9) GlcNAc(2) ) is highly conserved among eukaryotes. In contrast to yeast and mammals, little is known about the biosynthesis of dolichol-linked oligosaccharides and the transfer to asparagine residues of nascent polypeptides in plants. To understand the biological function of these processes in plants we characterized the Arabidopsis thaliana homolog of yeast ALG10, the α1,2-glucosyltransferase that transfers the terminal glucose residue to the lipid-linked precursor. Expression of an Arabidopsis ALG10-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed a reticular distribution pattern resembling endoplasmic reticulum (ER) localization. Analysis of lipid-linked oligosaccharides showed that Arabidopsis ALG10 can complement the yeast Δalg10 mutant strain. A homozygous Arabidopsis T-DNA insertion mutant (alg10-1) accumulated mainly lipid-linked Glc(2) Man(9) GlcNAc(2) and displayed a severe protein underglycosylation defect. Phenotypic analysis of alg10-1 showed that mutant plants have altered leaf size when grown in soil. Moreover, the inactivation of ALG10 in Arabidopsis resulted in the activation of the unfolded protein response, increased salt sensitivity and suppression of the phenotype of α-glucosidase I-deficient plants. In summary, these data show that Arabidopsis ALG10 is an ER-resident α1,2-glucosyltransferase that is required for lipid-linked oligosaccharide biosynthesis and subsequently for normal leaf development and abiotic stress response.  相似文献   

17.
Glucosylated oligomannose N-linked oligosaccharides (Glc(x)Man9GlcNAc2 where x = 1-3) are not normally found on mature glycoproteins but are involved in the early stages of glycoprotein biosynthesis and folding as (i) recognition elements during protein N-glycosylation and chaperone recognition and (ii) substrates in the initial steps of N-glycan processing. By inhibiting the first steps of glycan processing in CHO cells using the alpha-glucosidase inhibitor N-butyl-deoxynojirimycin, we have produced sufficient Glc3Man7GlcNAc2 for structural analysis by nuclear magnetic resonance (NMR) spectroscopy. Our results show the glucosyl cap to have a single, well-defined conformation independent of the rest of the saccharide. Comparison with the conformation of Man9GlcNAc2, previously determined by NMR and molecular dynamics, shows the mannose residues to be largely unaffected by the presence of the glucosyl cap. Sequential enzymatic cleavage of the glucose residues does not affect the conformation of the remaining saccharide. Modelling of the Glc3Man9GlcNAc2, Glc2Man9GlcNAc2 and Glc1Man9GlcNAc2 conformations shows the glucose residues to be fully accessible for recognition. A more detailed analysis of the conformations allows potential recognition epitopes on the glycans to be identified and can form the basis for understanding the specificity of the glucosidases and chaperones (such as calnexin) that recognize these glycans, with implications for their mechanisms of action.  相似文献   

18.
Formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 was detected in rat liver slices and Phaseolus vulgaris seeds incubated with [U-14C]glucose. Similar compounds were not synthesized in Saccharomyces cerevisiae cells incubated under similar conditions. Rat liver microsomes were incubated with [glucose-U-14C] Glc3Man9GlcNAc2-P-P-dolichol or UDP-[U-14C]Glc as glycosyl donors. Only in the latter condition protein-linked Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 were formed. Addition of mannooligosaccharides that strongly inhibited alpha 1-2-mannosidases to incubation mixtures containing rat liver microsomes and UDP-[U-14C]Glc did not prevent formation of protein-bound Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 . Furthermore, the presence of amphomycin in reaction mixtures containing liver membranes and UDP-[U-14C]Glc completely abolished synthesis of glucosylated derivatives of dolichol without affecting formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 . The results reported above indicated that under the experimental conditions employed protein-bound Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 were formed by glucosylation of unglucosylated oligosaccharides. Results obtained in pulse-chase experiments performed in vitro also supported this conclusion. UDP-Glc appeared to be the donor of the glucosyl residues. The rough endoplasmic reticulum was found to be the main subcellular site of protein glucosylation. It is tentatively suggested that this process could prevent extensive degradation of oligosaccharides by mannosidases during transit of glycoproteins through the endoplasmic reticulum.  相似文献   

19.
Rush  JS; Waechter  CJ 《Glycobiology》1998,8(12):1207-1213
In the current model for Glc3Man9GlcNAc2-P-P-Dol assembly, Man5GlcNAc2- P-P-Dol, Man-P-Dol, and Glc-P-Dol are synthesized on the cytoplasmic face of the ER and diffuse transversely to the lumenal leaflet where the synthesis of the lipid-bound precursor oligosaccharide is completed. To establish the topological sites of Glc-P-Dol synthesis and the lipid-mediated glucosyltransfer reactions involved in Glc3Man9GlcNAc2-P-P-Dol synthesis in ER vesicles from pig brain, the trypsin-sensitivity of Glc-P-Dol synthase activity and the Glc-P- Dol:Glc0-2Man9GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) was examined in sealed microsomal vesicles. Since ER vesicles from brain do not contain glucose 6-phosphate (Glc 6-P) phosphatase activity, the latency of the lumenally oriented, processing glucosidase I/II activities was used to assess the intactness of the vesicle preparations. Comparative enzymatic studies with sealed ER vesicles from brain and kidney, a tissue that contains Glc 6-P phosphatase, demonstrate the reliability of using the processing glucosidase activities as latency markers for topological studies with microsomal vesicles from non-gluconeogenic tissues lacking Glc 6-P phosphatase. The results obtained from the trypsin-sensitivity assays with sealed microsomal vesicles from brain are consistent with a topological model in which Glc-P-Dol is synthesized on the cytoplasmic face of the ER, and subsequently utilized by the three Glc-P-Dol-mediated GlcTases after "flip-flopping" to the lumenal monolayer.   相似文献   

20.
Glucosidase II (Glc'ase II) is a glycan-processing enzyme that trims two alpha1,3-linked Glc residues in succession from the glycoprotein oligosaccharide Glc2Man9GlcNAc2 to give Glc1Man9GlcNAc2 and Man9GlcNAc2 in the endoplasmic reticulum (ER). Monoglucosylated glycans, such as Glc1-Man9GlcNAc2, generated by this process play a key role in glycoprotein quality control in the ER, because they are primary ligands for the lectin chaperones calnexin (CNX) and calreticulin (CRT). A precise analysis of the substrate specificity of Glc'ase II is expected to further our understanding of the molecular basis to glycoprotein quality control, because Glc'ase II potentially competes with CNX/CRT for the same glycans, Glc1Man7-9GlcNAc2. In this study, a quantitative analysis of the specificity of Glc'ase II using a series of structurally defined synthetic glycans was carried out. In the presence of CRT, Glc'ase II-mediated trimming from Glc2Man9GlcNAc2 stopped at Glc1Man9GlcNAc2, supporting the notion that the glycan structure delivered to the CNX/CRT cycle is Glc1Man9GlcNAc2. Unexpectedly, our experiments showed that Glc1Man8(B)GlcNAc2 had nearly the same reactivity as Glc1Man9GlcNAc2, which was markedly greater than that of its positional isomer Glc1Man8(C)GlcNAc2. An analysis with glycoprotein-like probes revealed the stepwise formation of Glc1Man9GlcNAc2 and Man9GlcNAc2 from Glc2Man9GlcNAc2, even in the presence of CRT. It was also shown that Glc1Man8(B)GlcNAc2 had even greater reactivity than Glc1Man9GlcNAc2 at the glycoprotein level. Moreover, inhibitory activities by nonglucosylated glycans suggested that Glc'ase II recognized the C arm (Manalpha1, 2Manalpha1, 6Man-) of high mannose-type glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号