首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing evidence suggests that lysosomal proteases are actively involved in apoptosis. Using HeLa cells as the model system, we show that selective lysosome disruption with L-leucyl-L-leucine methyl ester results in apoptosis, characterized by translocation of lysosomal proteases into the cytosol and by the cleavage of a proapoptotic Bcl-2-family member Bid. Apoptosis and Bid cleavage, but not translocation of lysosomal proteases to the cytosol, could be prevented by 15 microM L-trans-epoxysuccinyl(OEt)-Leu-3-methylbutylamide, an inhibitor of papain-like cysteine proteases. Incubation of cells with 15 microM N-benzoyloxycarbonyl-VAD-fluoromethyl ketone prevented apoptosis but not Bid cleavage, suggesting that cathepsin-mediated apoptosis in this system is caspase-dependent. In vitro experiments performed at neutral pH showed that papain-like cathepsins B, H, L, S, and K cleave Bid predominantly at Arg(65) or Arg(71). No Bid cleavage was observed with cathepsins C and X or the aspartic protease cathepsin D. Incubation of full-length Bid treated with cathepsins B, H, L, and S resulted in rapid cytochrome c release from isolated mitochondria. Thus, Bid may be an important mediator of apoptosis induced by lysosomal disruption.  相似文献   

2.
The poly(ADP-ribose) polymerase (PARP-1), a 113 kDa nuclear enzyme, is cleaved in fragments of 89 and 24 kDa during apoptosis. This cleavage has become a useful hallmark of apoptosis and has been shown to be done by DEVD-ase caspases, a family of proteases activated during apoptosis. Interestingly, PARP-1 is also processed during necrosis but a major fragment of 50 kDa is observed. This event is not inhibited by zVAD-fmk, a broad spectrum caspase inhibitor, suggesting that these proteases are not implicated in the necrotic cleavage of PARP-1. Since lysosomes release their content into the cytosol during necrosis, the proteases liberated could produce the cleavage of PARP-1. We therefore isolated lysosomal rich-fractions from Jurkat T cells. Our results reveal that the in vitro lysosomal proteolytic cleavage of affinity purified bovine PARP-1 is composed of fragments corresponding, in apparent molecular weight and function, to those found in Jurkat T cells treated with necrotic inducers like 0.1% H2O2, 10% EtOH or 100 microM HgCl2. Moreover, we used purified lysosomal proteases (cathepsins B, D and G) in an in vitro cleavage assay and found that cathepsins B and G cleaved PARP-1 in fragments also found with the lysosomal rich-fractions. These findings suggest that the necrotic cleavage of PARP-1 is caused in part or in totality by lysosomal proteases released during necrosis.  相似文献   

3.
Lysosomes are the major cell digestive organelles that were discovered over 50 years ago. They contain a number of hydrolases that help them to degrade intracellular and extracellular material delivered. Among the hydrolases, the cathepsins, a group of proteases enclosed in the lysosomes, have a major role. About a decade ago, the cathepsins were found to participate in apoptosis. Following their release into the cytosol, they cleave Bid and degrade antiapoptotic Bcl-2 proteins, thereby triggering the mitochondrial pathway of apoptosis, with the lysosomal membrane permeabilization being the critical step in this pathway. Lysosomal dysfunction is linked with several diseases, including cancer and neurodegenerative disorders, thereby providing a potential for therapeutic applications. In this review lysosomes and lysosomal proteases involvement in apoptosis and their possible pharmaceutical targeting are discussed.  相似文献   

4.
We previously reported that in addition to mitochondrial cytochrome c dependent activation, lysosomal cysteine proteases were also involved in the activation of caspase-3. In this study, we have separately obtained the lysosomal and mitochondrial caspase-3 activating factors in a crude mitochondrial fraction and characterized their ability to activate pro-caspase-3 in the in vitro assay system. When a rat liver crude mitochondrial fraction containing lysosomes (ML) was treated with a low concentration of digitonin, lysosomal factors were selectively released without the release of a mitochondrial factor (cytochrome c, Cyt.c). Treatment of ML with Ca(2+) in the presence of inorganic phosphate (P(i)), in contrast, released mitochondrial Cyt.c without the release of lysosomal factors. The obtained lysosomal and mitochondrial factors activated caspase-3 in different manners; caspase-3 activation by lysosomal and mitochondrial factors was specifically suppressed by E-64, a cysteine protease inhibitor, and caspase-9 inhibitor, respectively. Thus, the activation of caspase-3 by lysosomal factors was found to be distinct from the activation by mitochondrial Cyt.c dependent formation of the Apaf-1/caspase-9 complex. To further determine whether or not the activation of caspase-3 by lysosomal cysteine proteases is involved in cellular apoptosis, the effect of E-64-d, a cell-permeable inhibitor of cysteine protease, on 2,2'-azobis-(2-amidinopropane)dihydrochloride (AAPH)-induced apoptosis in HL-60 cells was investigated. As a result, DNA fragmentation induced by AAPH was found to be remarkably (up to 50%) reduced by pretreatment with E-64-d, indicating the participation of lysosomal cysteine proteases in AAPH-induced apoptosis in HL-60 cells.  相似文献   

5.
The lysosomal cysteine peptidases cathepsin B and cathepsin L are abundant and ubiquitously expressed members of the papain family, and both enzymes contribute to the terminal degradation of proteins in the lysosome. However, there is accumulating evidence for specific functions of lysosomal proteases in health and disease. The generation of 'knock out' mouse strains that are deficient in lysosomal proteases provides a valuable tool for evaluation of existing hypotheses and gaining new insights into the in vivo functions of these proteases. In this minireview, we summarise and discuss the findings obtained by analysis of mice that are devoid of cathepsin B or cathepsin L. In brief, cathepsin L appears to be critically involved in epidermal homeostasis, regulation of the hair cycle, and MHC class II-mediated antigen presentation in cortical epithelial cells of the thymus. Cathepsin B plays a major role in pathological trypsinogen activation in the early course of experimental pancreatitis and contributes significantly to TNF-alpha induced hepatocyte apoptosis.  相似文献   

6.
We investigated the mechanism of lysosome-mediated cell death using purified recombinant pro-apoptotic proteins, and cell-free extracts from the human neuronal progenitor cell line NT2. Potential effectors were either isolated lysosomes or purified lysosomal proteases. Purified lysosomal cathepsins B, H, K, L, S, and X or an extract of mouse lysosomes did not directly activate either recombinant caspase zymogens or caspase zymogens present in an NT2 cytosolic extract to any significant extent. In contrast, a cathepsin L-related protease from the protozoan parasite Trypanosoma cruzi, cruzipain, showed a measurable caspase activation rate. This demonstrated that members of the papain family can directly activate caspases but that mammalian lysosomal members of this family may have been negatively selected for caspase activation to prevent inappropriate induction of apoptosis. Given the lack of evidence for a direct role in caspase activation by lysosomal proteases, we hypothesized that an indirect mode of caspase activation may involve the Bcl-2 family member Bid. In support of this, Bid was cleaved in the presence of lysosomal extracts, at a site six residues downstream from that seen for pathways involving capase 8. Incubation of mitochondria with Bid that had been cleaved by lysosomal extracts resulted in cytochrome c release. Thus, cleavage of Bid may represent a mechanism by which proteases that have leaked from the lysosomes can precipitate cytochrome c release and subsequent caspase activation. This is supported by the finding that cytosolic extracts from mice ablated in the bid gene are impaired in the ability to release cytochrome c in response to lysosome extracts. Together these data suggest that Bid represents a sensor that allows cells to initiate apoptosis in response to widespread adventitious proteolysis.  相似文献   

7.
Lysosomal membrane permeabilization (LMP) occurs in response to a large variety of cell death stimuli causing release of cathepsins from the lysosomal lumen into the cytosol where they participate in apoptosis signaling. In some settings, apoptosis induction is dependent on an early release of cathepsins, while under other circumstances LMP occurs late in the cell death process and contributes to amplification of the death signal. The mechanism underlying LMP is still incompletely understood; however, a growing body of evidence suggests that LMP may be governed by several distinct mechanisms that are likely engaged in a death stimulus- and cell-type-dependent fashion. In this review, factors contributing to permeabilization of the lysosomal membrane including reactive oxygen species, lysosomal membrane lipid composition, proteases, p53, and Bcl-2 family proteins, are described. Potential mechanisms to safeguard lysosomal integrity and confer resistance to lysosome-dependent cell death are also discussed.  相似文献   

8.
赵凯  卫涛涛 《生命科学》2011,(11):1063-1068
在特定条件下,包括活性氧、鞘氨醇、细胞凋亡效应因子Bax等在内的多种刺激因子均可诱发溶酶体膜通透,之后溶酶体内含的蛋白酶(如组织蛋白酶等)及其他水解酶从溶酶体释放至胞浆中,通过剪切效应分子、激活包括凋亡酶在内的其他水解酶而启动细胞凋亡程序的执行。简要概括了引发溶酶体膜通透的可能机制及溶酶体参与细胞凋亡的主要途径。  相似文献   

9.
Apoptosis can be mediated by mechanisms other than the traditional caspase-mediated cleavage cascade. There is growing recognition that alternative proteolytic enzymes such as the lysosomal cathepsin proteases can initiate or propagate proapoptotic signals, but it is currently unclear how cathepsins achieve these actions. Recent in vitro evidence suggests that cathepsins cleave the proapoptotic Bcl-2 family member Bid, thereby activating it and allowing it to induce the mitochondrial release of cytochrome c and subsequent apoptosis. We have tested this hypothesis in vivo by breeding mice that lack cathepsin inhibition (cystatin B-deficient mice) to Bid-deficient mice, to determine whether the apoptosis caused by cathepsins is dependent on Bid signaling. We found that cathepsins are still able to promote apoptosis even in the absence of Bid, indicating that these proteases mediate apoptosis via a different pathway, or that some other molecule can functionally substitute for Bid in this system.  相似文献   

10.
Hydrogen peroxide is a well-known mediator of apoptosis. As a mechanism for H202-induced apoptosis, both a mitochondrial Cyt.c-dependent pathway and a lysosome-mediated pathway have been suggested. However, the relative roles of and the relation between these two pathways in H2O2-induced apoptosis remain to be discovered. In this study, to find the relative roles of the lysosomal and mitochondrial pathways, the effects of E-64-d, a cell-permeable inhibitor of lysosomal cysteine proteases, on apoptosis caused by H2O2 in HL-60 cells were investigated. It was found that the concentration of H2O2 strongly affected the inhibitory effect of E-64-d on the apoptosis in HL-60 cells: dose-dependent inhibition (up to 40%) of both DNA fragmentation and caspase-3 activation was observed when a high concentration of H2O2 (50 microM) was used to induce apoptosis, but no inhibitory effect was detected when a low concentration (10 microM) was used. Consistent with these observations, apparent lysosomal destabilization was observed only with 50 microM H2O2. The release of mitochondrial Cyt.c, in contrast, was observed at both 10 microM and 50 microM. These results indicated that the mitochondrial Cyt.c-mediated pathway predominates in the H202-induced apoptosis in HL-60 cells and the lysosomal mediated pathway is partially involved when high concentrations of H2O2 are used to induce apoptosis.  相似文献   

11.
Cathepsin-regulated apoptosis   总被引:6,自引:0,他引:6  
Apoptosis can be mediated by different mechanisms. There is growing evidence that different proteolytic enzymes are involved in the regulation of apoptosis. Cathepsins are proteases which, under physiologic conditions, are localized intralysosomally. In response to certain signals they are released from the lysosomes into the cytoplasm where they trigger apoptotic cell death via various pathways, including the activation of caspases or the release of proapoptotic factors from the mitochondria. Here, we review different mechanisms that induce the release of lysosomal enzymes, and the functional relevance of defined cathepsins in defined models of apoptosis.  相似文献   

12.
Lysosomes are membrane-bound organelles, which contain an arsenal of different hydrolases, enabling them to act as the terminal degradative compartment of the endocytotic, phagocytic and autophagic pathways. During the last decade, it was convincingly shown that destabilization of lysosomal membrane and release of lysosomal content into the cytosol can initiate the lysosomal apoptotic pathway, which is dependent on mitochondria destabilization. The cleavage of BID to t-BID and degradation of anti-apoptotic BCL-2 proteins by lysosomal cysteine cathepsins were identified as links to the mitochondrial cytochrome c release, which eventually leads to caspase activation. There have also been reports about the involvement of lysosome destabilization and lysosomal proteases in the extrinsic apoptotic pathway, although the molecular mechanism is still under debate. In the present article, we discuss the cross-talk between lysosomes and mitochondria during apoptosis and its consequences for the fate of the cell.  相似文献   

13.
Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca2+-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D.  相似文献   

14.
We investigated the mechanism of apoptosis induced by bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPase. Bafilomycin A(1) significantly inhibited the growth of MKN-1 human gastric cancer cells. Bafilomycin A(1) induced apoptosis as demonstrated by DNA ladder formation and the TUNEL method. We designed a flow cytometric assay to detect the alteration in lysosomal pH using a fluorescent probe, fluorescein isothiocyanate-conjugated dextran. This assay revealed that bafilomycin A(1) dramatically increased lysosomal pH. However, bafilomycin A(1) induced neither significant decrease in mitochondrial transmembrane potential nor the release of mitochondrial cytochrome c into the cytoplasm. Western blotting showed that cathepsin D, but not cathepsin L, was released into the cytoplasm. The activity of caspase-3 was significantly increased by bafilomycin A(1). However, cathepsin D did not directly cleave procaspase-3. These findings suggest that bafilomycin A(1)-induced apoptosis in MKN-1 cells is mediated by other proteases released after lysosomal dysfunction followed by activation of caspase-3 in a cytochrome c-independent manner. The present study showed that flow cytometric analysis of lysosomal pH can be useful to evaluate lysosomal protease-mediated apoptosis.  相似文献   

15.
Lysosomal metabolism of glycoproteins   总被引:2,自引:0,他引:2  
Winchester B 《Glycobiology》2005,15(6):1R-15R
The lysosomal catabolism of glycoproteins is part of the normal turnover of cellular constituents and the cellular homeostasis of glycosylation. Glycoproteins are delivered to lysosomes for catabolism either by endocytosis from outside the cell or by autophagy within the cell. Once inside the lysosome, glycoproteins are broken down by a combination of proteases and glycosidases, with the characteristic properties of soluble lysosomal hydrolases. The proteases consist of a mixture of endopeptidases and exopeptidases, which act in concert to produce a mixture of amino acids and dipeptides, which are transported across the lysosomal membrane into the cytosol by a combination of diffusion and carrier-mediated transport. Although the glycans of all mature glycoproteins are probably degraded in lysosomes, the breakdown of N-linked glycans has been studied most intensively. The catabolic pathways for high-mannose, hybrid, and complex glycans have been established. They are bidirectional with concurrent sequential removal of monosaccharides from the nonreducing end by exoglycosidases and proteolysis and digestion of the carbohydrate-polypeptide linkage at the reducing end. The process is initiated by the removal of any core and peripheral fucose, which is a prerequisite for the action of the peptide N-glycanase aspartylglucosaminidase, which hydrolyzes the glycan-peptide bond. This enzyme also requires free alpha carboxyl and amino groups on the asparagine residue, implying extensive prior proteolysis. The catabolism of O-linked glycans has not been studied so intensively, but many lysosomal glycosidases appear to act on the same linkages whether they are in N- or O-linked glycans, glycosaminoglycans, or glycolipids. The monosaccharides liberated during the breakdown of N- and O-linked glycans are transported across the lysosomal membrane into the cytosol by a combination of diffusion and carrier-mediated transport. Defects in these pathways lead to lysosomal storage diseases. The structures of some of the oligosaccharides that accumulate in these diseases are not digestion intermediates in the lysosomal catabolic pathways but correspond to intermediates in the biosynthetic pathway for N-linked glycans, suggesting another route of delivery of glycans to the lysosome. Incorrectly folded or glycosylated proteins that are rejected by the quality control mechanism are broken down in the ER and cytoplasm and the end product of the cytosolic degradation of N-glycans is delivered to the lysosomes. This route is enhanced in cells actively secreting glycoproteins or producing increased amounts of aberrant glycoproteins. Thus interaction between the lysosome and proteasome is important for the regulation of the biosynthesis and distribution of N-linked glycoproteins. Another example of the extralysosomal function of lysosomal enzymes is the release of lysosomal proteases into the cytosol to initiate the lysosomal pathway of apoptosis.  相似文献   

16.
Abstract

Oxidative stress has been found to cause lysosomal rupture due to iron-catalyzed intralysosomal oxidative reactions.1,2 Moderate rupture induces apoptosis, while necrosis follows a more complete relocation of this type.2 We have suggested that lysosomal cysteine proteases may directly activate the caspase cascade and, together with other lysosomal hydrolases, induce mitochondrial release of cytochrome c with ensuing further activation of the cascade.  相似文献   

17.
To better understand the role of lysosomes in apoptosis, we compared the responses to apoptotic stimuli of normal fibroblasts with those of inclusion cells (I-cells), i.e., fibroblasts with impaired function of lysosomal enzymes due to their missorting and ensuing nonlysosomal localization. Although both cell types did undergo apoptosis when exposed to the lysosomotropic detergent MSDH, the redox-cycling quinone naphthazarin, or the protein kinase inhibitor staurosporine, I-cells exerted a markedly decreased response to these agonists than did normal fibroblasts. Furthermore, leupeptin and pepstatin A (inhibitors of cysteine and aspartic proteases, respectively) suppressed staurosporine-induced apoptosis of normal fibroblasts, whereas survival of I-cells was unaffected. These findings give further support for the involvement of lysosomal enzymes in apoptosis and suggest I-cells as a suitable model for studying the role of lysosomes in programmed cell death.  相似文献   

18.
Lysosomal cysteine cathepsins: signaling pathways in apoptosis   总被引:3,自引:0,他引:3  
Stoka V  Turk V  Turk B 《Biological chemistry》2007,388(6):555-560
Apoptosis is the major mechanism by which eukaryotic organisms eliminate potentially dangerous, superfluous and damaged cells. Initially, nuclei and mitochondria were found to be the key organelles involved in the process. However, recent data suggest that lysosomes and the endoplasmic reticulum also play important roles in the process. A number of different stimuli were found to directly or indirectly target the lysosomal membrane, thereby inducing lysosomal permeabilization and the release of cysteine cathepsins and the aspartic protease cathepsin D into the cytosol. Once in the cytosol, cathepsins can trigger cell death by different mechanisms. Here we discuss the different signaling pathways used by lysosomal proteases to trigger apoptosis and their potential role in physiological processes.  相似文献   

19.
Liu J  Guo Q  Chen B  Yu Y  Lu H  Li YY 《FEBS letters》2006,580(1):245-250
Increasing evidence suggests that lysosomal cysteine proteases cathepsins contribute to the progression of cell apoptosis. Here we found that apoptosis of ovarian cancer cells OV-90 triggered by TNF was cathepsin B-depended. Two cathepsin B binding proteins, bikunin and TSRC1, were identified by yeast two-hybrid method and the interactions were confirmed in vitro and in vivo. Overexpression of bikunin could suppress TNF-induced apoptosis of OV-90 cells, and TSRC1 overexpression had an opposite effect on apoptosis. The presented results suggest that cathepsin B and its interacting proteins, bikunin and TSRC1, are involved in the apoptotic pathway of ovarian cancer cells.  相似文献   

20.
Yamashima T 《Cell calcium》2004,36(3-4):285-293
From rodents to primates, transient global brain ischemia is a well known cause of delayed neuronal death of the vulnerable neurons including cornu Ammonis 1 (CA1) pyramidal cells of the hippocampus. Previous reports using the rodent experimental paradigm indicated that apoptosis is a main contributor to such ischemic neuronal death. In primates, however, the detailed molecular mechanism of ischemic neuronal death still remains obscure. Recent data suggest that necrosis rather than apoptosis appear to be the crucial component of the damage to the nervous system during human ischemic injuries and neurodegenerative diseases. Currently, necrotic neuronal death mediated by Ca2+-dependent cysteine proteases, is becoming accepted to underlie the pathology of neurodegenerative conditions from the nematode Caenorhabditis elegans to primates. This paper reviews the role of cysteine proteases such as caspase, calpain and cathepsin in order to clarify the mechanism of ischemic neuronal death being triggered by the unspecific digestion of lysosomal proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号