首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to investigate the effect of exposure to a mobile phone-like radiofrequency (RF) electromagnetic field on persons experiencing subjective symptoms when using mobile phones (MP). Twenty subjects with MP-related symptoms were recruited and matched with 20 controls without MP-related symptoms. Each subject participated in two experimental sessions, one with true exposure and one with sham exposure, in random order. In the true exposure condition, the test subjects were exposed for 30 min to an RF field generating a maximum SAR(1g) in the head of 1 W/kg through an indoor base station antenna attached to a 900 MHz GSM MP. The following physiological and cognitive parameters were measured during the experiment: heart rate and heart rate variability (HRV), respiration, local blood flow, electrodermal activity, critical flicker fusion threshold (CFFT), short-term memory, and reaction time. No significant differences related to RF exposure conditions were detected. Also no differences in baseline data were found between subject groups, except for the reaction time, which was significantly longer among the cases than among the controls the first time the test was performed. This difference disappeared when the test was repeated. However, the cases differed significantly from the controls with respect to HRV as measured in the frequency domain. The cases displayed a shift in low/high frequency ratio towards a sympathetic dominance in the autonomous nervous system during the CFFT and memory tests, regardless of exposure condition. This might be interpreted as a sign of differences in the autonomous nervous system regulation between persons with MP related subjective symptoms and persons with no such symptoms.  相似文献   

2.
Low level radio-frequency (RF) signals may produce disorientation, headache and nausea. This double blind study tested nine case-subjects, who complained of various symptoms after prolonged mobile telephone use and 21 control subjects. Each subject underwent a series of trials, in which a dummy mobile telephone exposure system was held to each ear for 30 min in (a) pulsed, (b) continuous RF emission or, (c) no emission test modes. In the active pulsed and continuous modes the same mean power as the output of a typical handset was delivered at a carrier frequency of 882 MHz and at a maximum specific absorption rate (SAR) value of 1.3 W kg(-1) (+/- 30%). In Experiment I (auditory), transient evoked otoacoustic emissions (TEOAE), which assess the outer hair cells in the inner ear, were conducted. In Experiment II (vestibular) the vestibulo-ocular reflex was recorded by video-oculography (VOG), at baseline and immediately post exposure. There were no significant TEOAE changes from baseline to post-exposure recording for any of the exposures and no significant differences in the TEOAEs' change from baseline to post exposure between cases and controls. The VOG did not identify any effect of the exposure on the vestibular end organ in either cases or controls. In conclusion, 30 min exposure to mobile phone RF did not show any immediate effects on vestibulocochlear function as measured by TEOAE and the VOR.  相似文献   

3.
Neurally derived tachykinins such as substance P (SP) play a key role in modulating airway contractility (especially with inflammation). Separately, the neurotrophin brain-derived neurotrophic factor (BDNF; potentially derived from nerves as well as airway smooth muscle; ASM) and its tropomyosin-related kinase receptor, TrkB, are involved in enhanced airway contractility. In this study, we hypothesized that neurokinins and neurotrophins are linked in enhancing intracellular Ca(2+) concentration ([Ca(2+)](i)) regulation in ASM. In rat ASM cells, 24 h exposure to 10 nM SP significantly increased BDNF and TrkB expression (P < 0.05). Furthermore, [Ca(2+)](i) responses to 1 μM ACh as well as BDNF (30 min) effects on [Ca(2+)](i) regulation were enhanced by prior SP exposure, largely via increased Ca(2+) influx (P < 0.05). The enhancing effect of SP on BDNF signaling was blunted by the neurokinin-2 receptor antagonist MEN-10376 (1 μM, P < 0.05) to a greater extent than the neurokinin-1 receptor antagonist RP-67580 (5 nM). Chelation of extracellular BDNF (chimeric TrkB-F(c); 1 μg/ml), as well as tyrosine kinase inhibition (100 nM K252a), substantially blunted SP effects (P < 0.05). Overnight (24 h) exposure of ASM cells to 50% oxygen increased BDNF and TrkB expression and potentiated both SP- and BDNF-induced enhancement of [Ca(2+)](i) (P < 0.05). These results suggest a novel interaction between SP and BDNF in regulating agonist-induced [Ca(2+)](i) regulation in ASM. The autocrine mechanism we present here represents a new area in the development of bronchoconstrictive reflex response and airway hyperreactive disorders.  相似文献   

4.
Findings from prior studies of possible health and physiological effects from mobile phone use have been inconsistent. Exposure periods in provocation studies have been rather short and personal characteristics of the participants poorly defined. We studied the effect of radiofrequency field (RF) on self-reported symptoms and detection of fields after a prolonged exposure time and with a well defined study group including subjects reporting symptoms attributed to mobile phone use. The design was a double blind, cross-over provocation study testing a 3-h long GSM handset exposure versus sham. The study group was 71 subjects age 18-45, including 38 subjects reporting headache or vertigo in relation to mobile phone use (symptom group) and 33 non-symptomatic subjects. Symptoms were scored on a 7-point Likert scale before, after 1(1/2) and 2(3/4) h of exposure. Subjects reported their belief of actual exposure status. The results showed that headache was more commonly reported after RF exposure than sham, mainly due to an increase in the non-symptom group. Neither group could detect RF exposure better than by chance. A belief that the RF exposure had been active was associated with skin symptoms. The higher prevalence of headache in the non-symptom group towards the end of RF exposure justifies further investigation of possible physiological correlates. The current study indicates a need to better characterize study participants in mobile phone exposure studies and differences between symptom and non-symptom groups.  相似文献   

5.

Background

Brain-derived neurotrophic factor (BDNF) is an activity-dependent secreted protein that is critical to organization of neuronal networks and synaptic plasticity, especially in the hippocampus. We tested hypothesis that reduced CSF BDNF is associated with age-related cognitive decline.

Methodology/Principal Findings, and Conclusions/Significance

CSF concentration of BDNF, Aβ42 and total tau were measured in 128 cognitively normal adults (Normals), 21 patients with Alzheimer''s disease (AD), and nine patients with Mild Cognitive Impairment. Apolipoprotein E and BDNF SNP rs6265 genotype were determined. Neuropsychological tests were performed at baseline for all subjects and at follow-up visits in 50 Normals. CSF BDNF level was lower in AD patients compared to age-matched Normals (p = 0.02). CSF BDNF concentration decreased with age among Normals and was higher in women than men (both p<0.001). After adjusting for age, gender, education, CSF Aβ42 and total tau, and APOE and BDNF genotypes, lower CSF BDNF concentration was associated poorer immediate and delayed recall at baseline (both p<0.05) and in follow up of approximately 3 years duration (both p<0.01).

Conclusions/Significance

Reduced CSF BDNF was associated with age-related cognitive decline, suggesting a potential mechanism that may contribute in part to cognitive decline in older individuals.  相似文献   

6.
The hypothesis that there exist hypersensitive persons who perceive subjective symptoms from radiofrequency (RF) fields emitted by hand held mobile phones (cellular phones) was tested using double blind provocation experiments. We also tested whether sensitive subjects are able to determine whether the phone is on or off by sensing RF fields. The study group consisted of 20 volunteers (13 women and 7 men) who reported themselves as being sensitive to cellular phones. The RF exposure sources were one analogue NMT phone (900 MHz) and two digital GSM phones (900 and 1800 MHz). The duration of a test session was 30 min, and three or four sessions were performed in random order for each subject during 1 day. The subjects were asked to report symptoms or sensations as soon as they perceived any abnormal feelings. In addition, the subjects' blood pressure, heart rate, and breathing frequency were monitored every 5 min. The results of the study indicated that various symptoms were reported, and most of them appeared in the head region. However, the number of reported symptoms was higher during sham exposure than during real exposure conditions. In addition, none of the test persons could distinguish real RF exposure from sham exposure. Hence, we conclude that adverse subjective symptoms or sensations, though unquestionably perceived by the test subjects, were not produced by cellular phones.  相似文献   

7.
In recent years several studies regarding possible effects of radio frequency (RF) electromagnetic fields (EMFs) on cognitive brain function were reported. In many of these studies on awake humans the working tasks were presented visually to the test subjects, e.g., on a computer screen. Therefore, the question of where in the chain of visual perception, brain processing and response a possible effect could be induced seems to be of interest. In this study, possible effects of exposure to a generic 1.97 GHz UMTS-like signal on human visual perception were investigated in a double blinded, crossover study including 58 healthy volunteer subjects (29 male, 29 female), aged 29 +/- 5.1 years (mean +/- SD). Each test subject underwent a battery of four different clinical tests three times (two different exposure levels and sham exposure) to assess selected parameters of visual perception. The generic signals applied to the subjects' head represented the RF emissions of an UMTS mobile phone under constant receiving conditions and the under condition of strongly varying transmit power, i.e., the signal envelope contained low frequency components. In the high exposure condition the resulting average exposure of the test subjects in the cortex of the left temporal lobe of the brain was 0.63 W/kg (1 g averaged SAR) and 0.37 W/kg (10 g averaged SAR). Low exposure condition was one tenth of high exposure and sham was at least 50 dB (corresponding to a factor of 100,000) below low exposure. Statistical evaluation of the obtained test results revealed no statistically significant differences in the investigated parameters of visual perception between the exposure conditions and sham exposure.  相似文献   

8.
9.
The aim of the present study was to test whether the electromagnetic field emitted by standard GSM mobile phones results in changes in heart rate (HR) and heart rate variability (HRV) of 35 healthy young male and female subjects. Two parallel signals, electrocardiogram and infrared surface plethysmogram were recorded and compared to test their validity for the analysis. Plethysmographic recording is proved to be a fast and reliable method for HRV measurements. In the radiofrequency (RF) exposure study, there was no significant difference in the values of HR and HRV between the RF and the sham groups. Our preliminary study demonstrates that, in our experimental conditions, RF fields emitted by cellular phones do not cause observable effects on the regulation of heart rate of healthy, young adults.  相似文献   

10.
Several studies in the past reported influences of electromagnetic emissions of GSM phones on reaction time in humans. However, there are currently only a few studies available dealing with possible effects of the electromagnetic fields emitted by UMTS mobile phones. In our study, 40 healthy volunteers (20 female, 20 male), aged 26.0 years (range 21-30 years) underwent four different computer tests measuring reaction time and attention under three different UMTS mobile phone-like exposure conditions (two exposure levels plus sham exposure). Exposure of the subjects was accomplished by small helical antennas operated close to the head and fed by a generic signal representing the emissions of a UMTS mobile phone under constant receiving conditions as well as under a condition of strongly varying transmit power. In the high exposure condition the resulting peak spatial average exposure of the test subjects in the cortex of the left temporal lobe of the brain was 0.63 W/kg (min. 0.25 W/kg, max. 1.49 W/kg) in terms of 1 g averaged SAR and 0.37 W/kg (min. 0.16 W/kg, max. 0.84 W/kg) in terms of 10 g averaged SAR, respectively. Low exposure condition was one-tenth of high exposure and sham was at least 50 dB below low exposure. Statistical analysis of the obtained test parameters showed that exposure to the generic UMTS signal had no statistically significant immediate effect on attention or reaction. Therefore, this study does not provide any evidence that exposure of UMTS mobiles interferes with attention under short-term exposure conditions.  相似文献   

11.
A recent study raised concern about increase of resting blood pressure after a 35 min exposure to the radiofrequency (RF) field emitted by a 900 MHz cellular phone. In this randomized, double blind, placebo controlled crossover trial, 32 healthy subjects were submitted to 900 MHz (2 W), 1800 MHz (1 W) cellular phone exposure, and to sham exposure in separate sessions. Arterial blood pressure (arm cuff method) and heart rate were measured during and after the 35 min RF and sham exposure sessions. We evaluated cardiovascular responses in terms of blood pressure and heart rate during controlled breathing, spontaneous breathing, head-up tilt table test, Valsalva manoeuvre and deep breathing test. Arterial blood pressure and heart rate did not change significantly during or after the 35 min RF exposures at 900 MHz or 1800 MHz, compared to sham exposure. The results of this study indicate that exposure to a cellular phone, using 900 MHz or 1800 MHz with maximal allowed antenna powers, does not acutely change arterial blood pressure and heart rate.  相似文献   

12.
Brain-derived neurotrophic factor (BDNF) is critical for the function and survival of neurons that degenerate in the late stage of Alzheimer's disease (AD). There are two forms of BDNF, the BDNF precursor (proBDNF) and mature BDNF, in human brain. Previous studies have shown that BDNF mRNA and protein, including proBDNF, are dramatically decreased in end-stage AD brain. To determine whether this BDNF decrease is an early or late event during the progression of cognitive decline, we used western blotting to measure the relative amounts of BDNF proteins in the parietal cortex of subjects clinically classified with no cognitive impairment (NCI), mild cognitive impairment (MCI) or mild to moderate AD. We found that the amount of proBDNF decreased 21 and 30% in MCI and AD groups, respectively, as compared with NCI, consistent with our previous results of a 40% decrease in end-stage AD. Mature BDNF was reduced 34 and 62% in MCI and AD groups, respectively. Thus, the decrease in mature BDNF and proBDNF precedes the decline in choline acetyltransferase activity which occurs later in AD. Both proBDNF and mature BDNF levels were positively correlated with cognitive measures such as the Global Cognitive Score and the Mini Mental State Examination score. These results demonstrate that the reduction of both forms of BDNF occurs early in the course of AD and correlates with loss of cognitive function, suggesting that proBDNF and BDNF play a role in synaptic loss and cellular dysfunction underlying cognitive impairment in AD.  相似文献   

13.
Radiofrequency (RF) emission during mobile phone use has been suggested to impair cognitive functions, that is, working memory. This study investigated the effects of a 2 1/2 h RF exposure (884 MHz) on spatial memory and learning, using a double-blind repeated measures design. The exposure was designed to mimic that experienced during a real-life mobile phone conversation. The design maximized the exposure to the left hemisphere. The average exposure was peak spatial specific absorption rate (psSAR10g) of 1.4 W/kg. The primary outcome measure was a "virtual" spatial navigation task modeled after the commonly used and validated Morris Water Maze. The distance traveled on each trial and the amount of improvement across trials (i.e., learning) were used as dependent variables. The participants were daily mobile phone users, with and without symptoms attributed to regular mobile phone use. Results revealed a main effect of RF exposure and a significant RF exposure by group effect on distance traveled during the trials. The symptomatic group improved their performance during RF exposure while there was no such effect in the non-symptomatic group. Until this new finding is further investigated, we can only speculate about the cause.  相似文献   

14.
In recent years, the widespread use of mobile phones has been accompanied by public debate about possible adverse consequences on human health. The auditory system is a major target of exposure to electromagnetic fields (EMF) emitted by cellular telephones; the aim of this study was the evaluation of possible effects of cellular phone-like emissions on the functionality of rat's cochlea. Distortion Products OtoAcoustic Emission (DPOAE) amplitude was selected as cochlea's outer hair cells (OHC) status indicator. A number of protocols, including different frequencies (the lower ones in rat's cochlea sensitivity spectrum), intensities and periods of exposure, were used; tests were carried out before, during and after the period of treatment. No significant variation due to exposure to microwaves has been evidenced.  相似文献   

15.
ContextHyperthermia is known to be beneficial to patients affected by various diseases. Brain Derived Neurotrophic Factor (BDNF) is a marker of neuroplasticity usually increased as response to acute exposure to human body stressors. Little is known about BDNF changes after repeated exposure to hyperthermia.ObjectiveTo investigate the effect of a repeated hyperthermia exposure programme (HTC) on serum BDNF in healthy humans.Design, setting, participantsRandomized, single-blind, controlled trial in healthy humans conducted at Sechenov University Physiology Laboratory between December 2016 and November 2018. The treatment period was 10 weeks. Researchers analysing serum BDNF and questionnaires data were blinded to participants allocation.ParticipantsWere 34 healthy male (age 20.2 ± 1.6 years).InterventionRepeated Hyperthermia exposure programme, HTC, versus Light Intermittent Exercise, LIE, programme as control (10 weeks).Main outcome measureChange in BDNF from baseline to final visit three days after treatment completion.Results25 participants were analyzed. One participant withdrew before signing the informed consent and 8 participants (n = 3 in HTC and n = 5 in LIE) could not undertake the first assessment and were excluded. Mean change in BDNF was higher in HTC group vs LIE after both time points (after 12 and after 24 sessions). After 24 sessions BDNF was 30170 (SD 5268) pg/ml in HTC group a value that was significantly higher than 24104 (SD 2876) pg/ml measured in LIE group. BDNF concentrations were significantly higher than baseline values in HTC group only, 30170 (SD 5268) vs 26710 (SD 5437) pg/ml.ConclusionA 10-week programme consisting of repeated exposure to hyperthermia resulted in a significantly higher increase of circulating BDNF compared to a programme consisting of intermittent light intensity exercise.  相似文献   

16.
《Biomarkers》2013,18(1):84-88
Abstract

Possession of the apolipoprotein E (APOE) ε4 genotype is a major predictor of progression to Alzheimer’s disease (AD), particularly in patients with mild cognitive impairment (MCI). However, the use of APOE genotyping in the diagnosis of MCI is limited due to its low sensitivity and specificity, which often results in a high false-positive rate. In this study, we found that there was a significant decrease in serum BDNF and notable increase in urine AD7c-NTP in MCI patients who harbored the APOE ε4 allele. Both serum BDNF and urine AD7c-NTP had higher positive predictive values and were more sensitive biomarkers of MCI. Additionally, a testing strategy employing serum BDNF and urine AD7c-NTP revealed increases in sensitivity, positive and negative predictive values, and predictive ability compared with the use of either biomarker alone, suggested that combinatorial detection might have great potential for translation to the clinic.  相似文献   

17.
GSM phone signal does not produce subjective symptoms   总被引:8,自引:0,他引:8  
The influence of pulsed radiofrequency (RF) electromagnetic fields of digital GSM mobile phones (902 MHz, 217 Hz pulse modulation) on subjective symptoms or sensations in healthy subjects were studied in two single-blind experiments. The duration of the RF exposure was about 60 min in Experiment 1 and 30 min in Experiment 2. Each subject rated symptoms or sensations in the beginning of the experimental session and at the end of both the exposure and the nonexposure conditions. The symptoms rated were headache, dizziness, fatigue, itching or tingling of the skin, redness on the skin, and sensations of warmth on the skin. The results did not reveal any differences between exposure and non-exposure conditions, suggesting that a 30-60 min exposure to this RF field does not produce subjective symptoms in humans.  相似文献   

18.
The potential health risks of radiofrequency electromagnetic fields (RF EMFs) emitted by mobile phones are currently of considerable public interest. The present study investigated the effect of exposure to 900 MHz GSM radiofrequency radiation on steroid (cortisol and testosterone) and pituitary (thyroid-stimulating hormone, growth hormone, prolactin and adrenocorticotropin) hormone levels in 20 healthy male volunteers. Each subject was exposed to RF EMFs through the use of a cellular phone for 2 h/day, 5 days/ week, for 4 weeks. Blood samples were collected hourly during the night and every 3 h during the day. Four sampling sessions were performed at 15-day intervals: before the beginning of the exposure period, at the middle and the end of the exposure period, and 15 days later. Parameters evaluated included the maximum serum concentration, the time of this maximum, and the area under the curve for hormone circadian patterns. Each individual's pre-exposure hormone concentration was used as his control. All hormone concentrations remained within normal physiological ranges. The circadian profiles of prolactin, thyroid-stimulating hormone, adrenocorticotropin and testosterone were not disrupted by RF EMFs emitted by mobile phones. For growth hormone and cortisol, there were significant decreases of about 28% and 12%, respectively, in the maximum levels when comparing the 2-week (for growth hormone and cortisol) and 4-week (for growth hormone) exposure periods to the pre-exposure period, but no difference persisted in the postexposure period. Our data show that the 900 MHz EMF exposure, at least under our experimental conditions, does not appear to affect endocrine functions in men.  相似文献   

19.
Exposure to a radiofrequency (RF) signal at a specific absorption rate (SAR) of 4 W/kg can increase the body temperature by more than 1 °C. In this study, we investigated the effect of anesthesia on the body temperature of rats after exposure to an RF electromagnetic field at 4 W/kg SAR. We also evaluated the influence of body mass on rats’ body temperature. Rats weighing 225 and 339 g were divided into sham- and RF-exposure groups. Each of the resulting four groups was subdivided into anesthetized and non-anesthetized groups. The free-moving rats in the four RF-exposure groups were subjected to a 915 MHz RF identification signal at 4 W/kg whole-body SAR for 8 h. The rectal temperature was measured at 1-h intervals during RF exposure using a small-animal temperature probe. The body temperatures of non-anesthetized, mobile 225 and 339 g rats were not significantly affected by exposure to an RF signal. However, the body temperatures of anesthetized 225 and 339 g rats increased by 1.9 °C and 3.3 °C from baseline at 5 and 6 h of RF exposure, respectively. Three of the five 339 g anesthetized and exposed rats died after 6 h of RF exposure. Thus, anesthesia and body mass influenced RF exposure-induced changes in the body temperature of rats. Bioelectromagnetics. 2020;41:104–112. © 2019 Bioelectromagnetics Society.  相似文献   

20.
The proximity of a mobile phone to the human eye raises the question as to whether radiofrequency (RF) electromagnetic fields (EMF) affect the visual system. A basic characteristic of the human eye is its light sensitivity, making the visual discrimination threshold (VDThr) a suitable parameter for the investigation of potential effects of RF exposure on the eye. The VDThr was measured for 33 subjects under standardized conditions. Each subject took part in two experiments (RF-exposure and sham-exposure experiment) on different days. In each experiment, the VDThr was measured continuously in time intervals of about 10 s for two periods of 30 min, having a break of 5 min in between. The sequence of the two experiments was randomized, and the study was single blinded. During the RF exposure, a GSM signal of 902.4 MHz (pulsed with 217 Hz) was applied to the subjects. The power flux density of the electromagnetic field at the subject location (in the absence of the subject) was 1 W/m(2), and numerical dosimetry calculations determined corresponding maximum local averaged specific absorption rate (SAR) values in the retina of SAR(1 g) = 0.007 W/kg and SAR(10 g) = 0.003 W/kg. No statistically significant differences in the VDThr were found in comparing the data obtained for RF exposure with those for sham exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号