首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirus-encoded protein viral CC chemokine inhibitor (vCCI), a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes and may represent a potent method to stop inflammation. Previously, our structure of the vCCI·MIP-1β (macrophage inflammatory protein-1β) complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1β N terminus, 20s region and 40s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), a CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI·MIP-1β complex and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin-1. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1 (monocyte chemoattractant protein-1), MIP-1β, and RANTES (regulated on activation normal T cell expressed and secreted), were determined as 1.1, 1.2, and 0.22 nm, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and multiple CC chemokines.  相似文献   

2.
Many poxviruses express a secreted protein that binds CC chemokines with high affinity and has been called viral CC chemokine inhibitor (vCCI). This protein is unrelated to any known cellular protein, yet can compete with host cellular CC chemokine receptors to modulate host inflammatory and immune responses. Although several strains of vaccinia virus (VV) express a vCCI, the best characterized VV strains Western Reserve and Copenhagen do not. In this study, we have expressed the vCCI from VV strain Lister in a recombinant Western Reserve virus (v Delta B8R-35K) and characterized its binding properties in vitro and its effect on virulence in vivo relative to wild-type virus (v Delta B8R) or a revertant virus (v Delta B8R-R) where Lister 35-kDa had been removed. Cells infected with v Delta B8R-35K secreted a 35-kDa protein that bound the CC chemokine macrophage-inflammatory protein 1 alpha. Expression of vCCI attenuated the virus in a murine intranasal model, characterized by reduced mortality and weight loss, decreased virus replication and spread, and a reduced recruitment of inflammatory cells into the lungs of VV-infected mice. The CC chemokines macrophage-inflammatory protein 1 alpha, eotaxin, and macrophage chemotactic protein 1 were detected in bronchoalveolar lavage fluids from v Delta B8R-infected mice; however, bronchoalveolar lavage fluids from v Delta B8R-35K-infected mice had lower levels of chemokines and a reduced chemotactic activity for murine leukocytes in vitro. These observations suggest that vCCI plays an important role in regulating leukocyte trafficking to the lungs during VV infection by binding to CC chemokines and blocking their chemotactic activities.  相似文献   

3.
The EVM1 protein encoded by Ectromelia virus is a member of a highly conserved family of poxvirus chemokine binding proteins that interfere with host immune surveillance processes. EVM1 is abundantly expressed early during mousepox infection and is able to selectively bind CC chemokines and inhibit their interactions with host receptors. Here, we characterize the interaction between EVM1 and the human and murine chemokines CCL3 (MIP-1alpha), CCL2 (MCP-1), and CCL5 (RANTES). Each of these CC chemokines binds EVM1 with 1:1 stoichiometry and equilibrium dissociation constants ranging from 29 pM to 20 nM. The interactions are characterized by rapid-association kinetics between acidic EVM1 and generally basic chemokines with half-lives enduring up to 30 min. The 2.6-A crystal structure of EVM1 reveals a globular beta sandwich with a large, sequence-conserved surface patch encircled by acidic residues on one face of the protein. To determine whether this conserved cluster of residues is involved in chemokine engagement, a structure-based mutational analysis of EVM1 was employed. Mapping of the mutational results onto the surface of EVM1 reveals that a cluster of five residues (I173, S171, S134, N136, and Y69) emanating from one beta sheet is critical for CCL2 and CCL3 sequestration. Additionally, we find that the extended beta2-beta4 loop flanking this conserved cluster is also essential for high-affinity, lasting interactions with chemokines. This analysis provides insight into the mechanism of CC-chemokine inhibition employed by the poxvirus family of chemokine decoy receptors.  相似文献   

4.
In compiling a comprehensive map of the ligand binding capacity of elements within the chemokine system, we have determined the spectrum of chemokines capable of interacting with the poxvirus-encoded viral CC chemokine inhibitor, vCCI. More than 80 chemokines were tested in parallel for their ability to displace radiolabeled signature chemokines from vCCI. Of these chemokines, 26 showed potential high affinity interactions. These interactions revealed an expanded spectrum of binding capacity for vCCI to now include molecules such as human myeloid progenitor inhibitory factor-1 as ligands. In addition, high affinity viral protein-protein interactions were revealed. For example, binding between poxvirus vCCI and the herpesvirus vMIP-II from HHV8 occurs with IC(50) approximately 10-50 nm. Unusual dissociation kinetics were observed between certain chemokines and vCCI. Notably, many ligands displayed a precipitous displacement profile, suggesting marked positive cooperativity of binding. Finally, heterologous competition provided evidence for overlapping but distinct binding sites for the many chemokines that bind to vCCI. The determination of the binding fingerprint and unusual binding interactions of vCCI with a large number of chemokines suggest a finely honed evolutionary strategy of chemokine sequestration during viral infection.  相似文献   

5.
Chemokines are important immune system proteins, many of which mediate inflammation due to their function to activate and cause chemotaxis of leukocytes. An important anti-inflammatory strategy is therefore to bind and inhibit chemokines, which leads to the need for biophysical studies of chemokines as they bind various possible partners. Because a successful anti-chemokine drug should bind at low concentrations, techniques such as fluorescence anisotropy that can provide nanomolar signal detection are required. To allow fluorescence experiments to be carried out on chemokines, a method is described for the production of fluorescently labeled chemokines. First, a fusion-tagged chemokine is produced in Escherichia coli, then efficient cleavage of the N-terminal fusion partner is carried out with lab-produced enterokinase, followed by covalent modification with a fluorophore, mediated by the lab-produced sortase enzyme. This overall process reduces the need for expensive commercial enzymatic reagents. Finally, we utilize the product, vMIP-fluor, in binding studies with the chemokine binding protein vCCI, which has great potential as an anti-inflammatory therapeutic, showing a binding constant for vCCI:vMIP-fluor of 0.37 ± 0.006 nM. We also show how a single modified chemokine homolog (vMIP-fluor) can be used in competition assays with other chemokines and we report a Kd for vCCI:CCL17 of 14 μM. This work demonstrates an efficient method of production and fluorescent labeling of chemokines for study across a broad range of concentrations.  相似文献   

6.
Monocyte chemoattractant protein-1 (MCP-1) is a chemotactic cytokine mainly acting on monocytes and T cells that elicits its biological effects by interacting with the seven-transmembrane helix receptor CCR2B. The vaccinia virus strain Lister and many other poxviruses express soluble proteins (vCCI) that bind MCP-1 and other CC chemokines and inhibit their function. In order to define the interaction site of MCP-1 with vCCI from vaccinia, surface exposed residues of MCP-1 were identified and mutated to alanine. The MCP-1 variants were expressed, purified, and their interaction with vCCI was characterized. The site on MCP-1 for vCCI binding is dominated by arginine 18 with important additional contributions from tyrosine 13 and arginine 24. These residues define a binding site that largely overlaps with the CCR2B receptor interaction site. The viral chemokine-binding protein vCCI thus inhibits the biological function of MCP-1 by directly masking its CCR2B receptor-binding site.  相似文献   

7.
Poxviruses encode a number of secreted virulence factors that modulate the host immune response. The vaccinia virus A41 protein is an immunomodulatory protein with amino acid sequence similarity to the 35-kDa chemokine binding protein, but the host immune molecules targeted by A41 have not been identified. We report here that the vaccinia virus A41 ortholog encoded by ectromelia virus, a poxvirus pathogen of mice, named E163 in the ectromelia virus Naval strain, is a secreted 31-kDa glycoprotein that selectively binds a limited number of CC and CXC chemokines with high affinity. A detailed characterization of the interaction of ectromelia virus E163 with mutant forms of the chemokines CXCL10 and CXCL12α indicated that E163 binds to the glycosaminoglycan binding site of the chemokines. This suggests that E163 inhibits the interaction of chemokines with glycosaminoglycans and provides a mechanism by which E163 prevents chemokine-induced leukocyte migration to the sites of infection. In addition to interacting with chemokines, E163 can interact with high affinity with glycosaminoglycan molecules, enabling E163 to attach to cell surfaces and to remain in the vicinity of the sites of viral infection. These findings identify E163 as a new chemokine binding protein in poxviruses and provide a molecular mechanism for the immunomodulatory activity previously reported for the vaccinia virus A41 ortholog. The results reported here also suggest that the cell surface and extracellular matrix are important targeting sites for secreted poxvirus immune modulators.  相似文献   

8.
Glycosaminoglycans (GAGs), such as heparin or heparan sulfate, are required for the in vivo function of chemokines. Chemokines play a crucial role in the recruitment of leukocyte subsets to sites of inflammation and lymphocytes trafficking. GAG-chemokine interactions mediate cell migration and determine which leukocyte subsets enter tissues. Identifying the exact GAC sequences that bind to particular chemokines is key to understand chemokine function at the molecular level and develop strategies to interfere with chemokine-mediated processes. Here, we characterize the heparin binding profiles of eight chemokines (CCL21, IL-8, CXCL12, CXCL13, CCL19, CCL25, CCL28, and CXCL16) by employing heparin microarrays containing a small library of synthetic heparin oligosaccharides. The chemokines differ significantly in their interactions with heparin oligosaccharides: While some chemokines, (e.g., CCL21) strongly bind to a hexasaccharide containing the GlcNSO3(6-OSO3)-IdoA(2-OSO3) repeating unit, CCL19 does not bind and CXCL12 binds only weakly. The carbohydrate microarray binding results were validated by surface plasmon resonance experiments. In vitro chemotaxis assays revealed that dendrimers coated with the fully sulfated heparin hexasaccharide inhibit lymphocyte migration toward CCL21. Migration toward CXCL12 or CCL19 was not affected. These in vitro homing assays indicate that multivalent synthetic heparin dendrimers inhibit the migration of lymphocytes toward certain chemokine gradients by blocking the formation of a chemokine concentration gradient on GAG endothelial chains. These findings are in agreement with preliminary in vivo measurements of circulating lymphocytes. The results presented here contribute to the understanding of GAG-chemokine interactions, a first step toward the design of novel drugs that modulate chemokine activity.  相似文献   

9.
Glycosaminoglycans (GAGs) have recently been demonstrated to be required for the in vivo activity of several chemokines. Minimally, the interaction is thought to provide a mechanism for retention at the site of secretion and the formation of chemokine gradients that provide directional cues for receptor bearing cells, particularly in the presence of shear forces. Thus, a key issue will be to determine the sequence and structure of the GAGs that bind to specific chemokines. Herein, we describe a mass spectrometry assay that was developed to detect protein-oligosaccharide noncovalent complexes, in this case chemokine-GAG interactions, and to select for high affinity GAGs. The process is facilitated by the ability of electrospray ionization to transfer the intact noncovalent complexes from solution into the gas phase. The elemental composition as well as the binding stoichiometry can be calculated from the mass of the complex. Ligands of the chemokine receptor, CCR2 (MCP-1/CCL2, MCP-2/CCL8, MCP-3/CCL7, MCP-4/CCL13, and Eotaxin/CCL11), and the CCR10 ligand CTACK/CCL27 were screened against a small, highly sulfated, heparin oligosaccharide library with limited structural variation. The results revealed heparin octasaccharides with 11 and 12 sulfates as binders. Oligomerization of some chemokines was observed upon GAG binding, whereas in other instances only the monomeric noncovalent complex was identified. The results indicate that, in contrast to the apparent redundancy in the chemokine system, where several chemokines bind and activate the same receptor, these chemokines could be differentiated into two groups based on the stoichiometry of their complexes with the heparin oligosaccharides.  相似文献   

10.
Human cytomegalovirus (HCMV) is the causative agent of life-threatening systemic diseases in immunocompromised patients as well as a risk factor for vascular pathologies, like atherosclerosis, in immunocompetent individuals. HCMV encodes a G-protein-coupled receptor (GPCR), referred to as US28, that displays homology to the human chemokine receptor CCR1 and binds several chemokines of the CC family as well as the CX3C chemokine fractalkine with high affinity. Most importantly, following HCMV infection, US28 activates several intracellular pathways, either constitutively or in a chemokine-dependent manner. In this study, our goal was to understand the molecular interactions between chemokines and the HCMV-encoded US28 receptor. To achieve this goal, a double approach has been used, consisting in the analysis of both receptor and ligand mutants. This approach has led us to identify several amino acids located in the N terminus of US28 that differentially contribute to the high affinity binding of CC versus CX3C chemokines. Additionally, our results highlight the importance of secondary modifications occurring at US28, such as sulfation, for ligand recognition. Finally, the effects of chemokine dimerization and interaction with glycosaminoglycans (GAGs) on chemokine binding and activation of US28 were investigated as well using CCL4 as model ligand. In line with the two-state model describing chemokine/receptor interaction, we show that an aromatic residue in the N-loop region of CCL4 promotes tight binding to US28, whereas receptor activation depends on the presence of the N terminus of CCL4, as shown previously for CCR5.  相似文献   

11.
Chemokines participate in well documented interactions with glycosaminoglycans (GAGs). Although many chemokine amino acid residues involved in binding have been identified, much less is known about the bound regions of GAG. Heparan sulfate (HS) is the predominant cell surface GAG, and its heterogeneous nature offers proteins a variety of structural motifs with which to interact. In the present study, we describe the interactions of three CC chemokines, MCP-1/CCL2, MCP-2/CCL8, and MCP-3/CCL7, with HS-derived oligosaccharides. To this end, we generated and characterized a complex HS octasaccharide library containing 17 different octasaccharide compositions based on acetyl and sulfate group content. Electrospray ionization mass spectrometry was used to detect chemokine-HS octasaccharide complexes in the bound state, and an affinity purification protocol was used to select and identify chemokine-binding octasaccharides from the complex mixture. The results indicate that HS octasaccharide sulfation is the foremost requirement for chemokine binding. However, within octasaccharides of constant charge density, acetylation is also observed to augment binding, suggesting that there may be as yet undiscovered specificity in the chemokine-HS interaction.  相似文献   

12.
The myxoma virus T7 protein M-T7 is a functional soluble gamma interferon receptor homolog that has previously been shown to bind gamma interferon and inhibit its antiviral activities in a species-specific manner, but gene knockout analysis has suggested a further role for M-T7 in blocking leukocyte influx into infected lesions. We purified M-T7 to apparent homogeneity and showed that M-T7 is an N-linked glycoprotein that appears to be a stable homotrimer with a molecular mass of approximately 113 kDa in solution. M-T7, in addition to forming inhibitory complexes with rabbit gamma interferon, was also shown to bind to human interleukin-8, a prototypic member of the chemokine superfamily. Moreover, M-T7 was able to interact promiscuously with all members of the CXC, CC, and C chemokine subfamilies tested. Binding of human RANTES to M-T7 can be competed by rabbit gamma interferon and also by cold RANTES competitor with a 50% inhibitory concentration of 900 nM. Although M-T7 retains binding to a number of interleukin-8 N-terminal (ELR) deletion mutants, binding to mutants containing deletions in the C-terminal heparin-binding domain of interleukin-8 is abrogated. Furthermore, heparin effectively competes the interaction of M-T7 with the chemokine RANTES but not with rabbit gamma interferon. We propose that this novel M-T7 interaction with members of the chemokine superfamily may be facilitated through the conserved heparin-binding domains found in a wide spectrum of chemokines and that M-T7 may function by modulating chemokine-glycosaminoglycan interactions in virus-infected tissues.  相似文献   

13.
Despite the wide range of sequence diversity among chemokines, their tertiary structures are remarkably similar. Furthermore, many chemokines form dimers or higher order oligomers, but all characterized oligomeric structures are based primarily on two dimerization motifs represented by CC-chemokine or CXC-chemokine dimer interfaces. These observations raise the possibility that some chemokines could form unique hetero-oligomers using the same oligomerization motifs. Such interactions could modulate the overall signaling response of the receptors, thereby providing a general mechanism for regulating chemokine function. For some chemokines, homo-oligomerization has also been shown to be coupled to glycosaminoglycan (GAG)-binding. However, the effect of GAG binding on chemokine hetero-oligomerization has not yet been demonstrated. In this report, we characterized the heterodimerization of the CCR2 ligands MCP-1 (CCL2), MCP-2 (CCL8), MCP-3 (CCL7), MCP-4 (CCL13), and eotaxin (CCL11), as well as the effects of GAG binding, using electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. Strong heterodimerization was observed between CCL2 and CCL8 at the expense of homodimer formation. Using NMR, we showed that the heterodimer is predominant in solution and forms a specific CC chemokine-like dimer. By contrast, only moderate heterodimer formation was observed between CCL2.CCL13, CCL2.CCL11 and CCL8.CCL13, and no heterodimerization was observed when any other CCR2 ligand was added to CCL7. To investigate the effect of a highly sulfated GAG on the formation of heterodimers, each chemokine pair was mixed with the heparin pentasaccharide, Arixtra, and assayed by ESI-FTICR mass spectrometry. Although no CCL8.CCL11 heterodimer was observed in the absence of GAG, abundant ions corresponding to the ternary complex, CCL8.CCL11.Arixtra, were observed upon addition of Arixtra. Heterodimerization between CCL2 and CCL11 was also enhanced in the presence of Arixtra. In summary, these results indicate that some CCR2 ligands can form stable heterodimers in preference to homodimers and that these interactions, like those of homo-oligomers, can be influenced by some GAGs.  相似文献   

14.
Chemokine-mediated recruitment of leukocytes in vivo depends on interactions with cell surface glycosaminoglycans. Lymphotactin, the unique member of the "C" chemokine subclass, is a highly basic protein that binds heparin, a glycosaminoglycan, with high affinity (approximately 10 nm). We detected lymphotactin-heparin binding by NMR and mapped this interaction to a narrow surface that wraps around the protein. Substitutions in and around this binding site and surface plasmon resonance analysis of heparin binding affinity identified two arginine residues of lymphotactin as critical for glycosaminoglycan binding. Both arginine mutant proteins and the combined double mutant had dramatically diminished in vivo activity in a leukocyte recruitment assay, suggesting that the lymphotactin-glycosaminoglycan interactions detected in vitro are important for the function of this chemokine. Our results demonstrate that like other chemokines, lymphotactin utilizes highly specific glycosaminoglycan-binding sites that represent potential targets for drug development.  相似文献   

15.
Fractalkine, or neurotactin, is a chemokine that is present in endothelial cells from several tissues, including brain, liver, and kidney. It is the only member of the CX(3)C class of chemokines. Fractalkine contains a chemokine domain (CDF) attached to a membrane-spanning domain via a mucin-like stalk. However, fractalkine can also be proteolytically cleaved from its membrane-spanning domain to release a freely diffusible form. Fractalkine attracts and immobilizes leukocytes by binding to its receptor, CX(3)CR1. The x-ray crystal structure of CDF has been solved and refined to 2.0 A resolution. The CDF monomers form a dimer through an intermolecular beta-sheet. This interaction is somewhat similar to that seen in other dimeric CC chemokine crystal structures. However, the displacement of the first disulfide in CDF causes the dimer to assume a more compact quaternary structure relative to CC chemokines, which is unique to CX(3)C chemokines. Although fractalkine can bind to heparin in vitro, as shown by comparison of electrostatic surface plots with other chemokines and by heparin chromatography, the role of this property in vivo is not well understood.  相似文献   

16.
Ticks are blood-feeding parasites that secrete a number of immuno-modulatory factors to evade the host immune response. Saliva isolated from different species of ticks has recently been shown to contain chemokine neutralizing activity. To characterize this activity, we constructed a cDNA library from the salivary glands of the common brown dog tick, Rhipicephalus sanguineus. Pools of cDNA clones from the library were transfected into HEK293 cells, and the conditioned media from the transfected cells were tested for chemokine binding activity by chemical cross-linking to radiolabeled CCL3 followed by SDS-PAGE. By de-convolution of a single positive pool of 270 clones, we identified a full-length cDNA encoding a protein of 114 amino acids, which after signal peptide cleavage was predicted to yield a mature protein of 94 amino acids that we called Evasin-1. Recombinant Evasin-1 was produced in HEK293 cells and in insect cells. Using surface plasmon resonance we were able to show that Evasin-1 was exquisitely selective for 3 CC chemokines, CCL3 and CCL4 and the closely related chemokine CCL18, with K(D) values of 0.16, 0.81, and 3.21 nm, respectively. The affinities for CCL3 and CCL4 were confirmed in competition receptor binding assays. Analysis by size exclusion chromatography demonstrated that Evasin-1 was monomeric and formed a 1:1 complex with CCL3. Thus, unlike the other chemokine-binding proteins identified to date from viruses and from the parasitic worm Schistosoma mansoni, Evasin-1 is highly specific for a subgroup of CC chemokines, which may reflect a specific role for these chemokines in host defense against parasites.  相似文献   

17.
The binding of chemokines to glycosaminoglycans is thought to play a crucial role in chemokine functions. It has recently been shown that stromal cell-derived factor-1alpha (SDF-1alpha), a CXC chemokine with potent anti-human immunodeficiency virus activity, binds to heparan sulfate through a typical consensus sequence for heparin recognition (BBXB, where B is a basic residue KHLK, amino acids 24-27). Calculation of the accessible surface, together with the electrostatic potential of the SDF-1alpha dimer, revealed that other amino acids (Arg-41 and Lys-43) are found in the same surface area and contribute to the creation of a positively charged crevice, located at the dimer interface. GRID calculations confirmed that this binding site will be the most energetically favored area for the interaction with sulfate groups. Site-directed mutagenesis and surface plasmon resonance-based binding assays were used to investigate the structural basis for SDF-1alpha binding to heparin. Among the residues clustered in this basic surface area, Lys-24 and Lys-27 have dominant roles and are essential for interaction with heparin. Amino acids Arg-41 and Lys-43 participate in the binding but are not strictly required for the interaction to take place. Direct binding assays and competition analysis with monoclonal antibodies also permitted us to show that the N-terminal residue (Lys-1), an amino acid critical for receptor activation, is involved in complex formation. Binding studies with selectively desulfated heparin, heparin oligosaccharides, and heparitinase-resistant heparan sulfate fragments showed that a minimum size of 12-14 monosaccharide units is required for efficient binding and that 2-O- and N-sulfate groups have a dominant role in the interaction. Finally, the heparin-binding site was identified on the crystal structure of SDF-1alpha, and a docking study was undertaken. During the energy minimization process, heparin lost its perfect ribbon shape and fitted the protein surface perfectly. In the model, Lys-1, Lys-24, Lys-27, and Arg-41 were found to have the major role in binding a polysaccharide fragment consisting of 13 monosaccharide units.  相似文献   

18.
Luz JG  Yu M  Su Y  Wu Z  Zhou Z  Sun R  Wilson IA 《Journal of molecular biology》2005,352(5):1019-1028
Viral macrophage inflammatory protein I (vMIP-I) is a chemokine encoded by the Kaposi's sarcoma-associated herpesvirus (KSHV) that selectively activates the CC chemokine receptor 8 (CCR8), for which the endogenous ligand is CCL1. The crystal structure of vMIP-I was determined at 1.7A for comparison with other chemokines, especially those that bind CCR8, such as vMIP-II from KSHV, a CCR8 antagonist and the closest homolog (40% identical). vMIP-I has a typical chemokine fold consisting of an extended N-terminal loop, followed by a three-stranded antiparallel beta-sheet and a C-terminal alpha-helix. The four molecules in the asymmetric unit comprise two MIP-1beta-like dimers. Electrostatic surface representations of CCR8-binding chemokines reveal only minor areas of correlating surface potential, which must be reconciled with promiscuity in receptor and glycosaminoglycan (GAG) binding. In addition, the biological relevance of chemokine oligomerization is examined by comparing the oligomeric states of all chemokine structures deposited to date in the RCSB PDB.  相似文献   

19.
Chemokines selectively recruit and activate a variety of cells during inflammation. Interactions between cell surface glycosaminoglycans (GAGs) and chemokines drive the formation of haptotactic or immobilized gradients of chemokines at the site of inflammation, directing this recruitment. Chemokines bind to glycosaminoglycans on human umbilical vein endothelial cells (HUVECs) with affinities in the micromolar range: RANTES > MCP-1 > IL-8 > MIP-1alpha. This binding can be competed with by soluble glycosaminoglycans: heparin, heparin sulfate, chondroitin sulfate, and dermatan sulfate. RANTES binding showed the widest discrimination between glycosaminoglycans (700-fold), whereas MIP-1alpha was the least selective. Almost identical results were obtained in an assay using heparin sulfate beads as the source of immobilized glycosaminoglycan. The binding of chemokines to glycosaminoglycan fragments has a strong length dependence, and optimally requires both N- and O-sulfation. Isothermal titration calorimetry data confirm these results; IL-8 binds heparin fragments with a K(d) of 0.39-2.63 microM, and requires five saccharide units to bind each monomer of chemokine. In membranes from cells expressing the G-protein-coupled chemokine receptors CXCR1, CXCR2, and CCR1, soluble GAGs inhibit the binding of chemokine ligands to their receptors. Consistent with this, heparin and heparin sulfate could inhibit IL-8-induced neutrophil calcium flux. Chemokines can therefore form complexes with both cell surface and soluble GAGs; these interactions have different functions. Soluble GAG chemokines complexes are unable to bind the receptor, resulting in a block of the biological activity. Previously, we have shown that cell surface GAGs present chemokines to the G-protein-coupled receptors, by increasing the local concentration of protein. A model is presented which brings together all of these data. The selectivity in the chemokine-GAG interaction suggests selective disruption of the haptotactic gradient may be an achievable therapeutic approach in inflammatory disease.  相似文献   

20.
CC chemokines mediate mononuclear cell recruitment and activation in chronic inflammation. We have shown previously that gene transfer using recombinant adenoviruses, encoding a soluble CC chemokine-binding protein of vaccinia virus 35K, can dramatically reduce atherosclerosis and vein graft remodeling in apolipoprotein E knockout mice. In this study, we report the development of a membrane-bound form of 35K (m35K), tagged with GFP, which allows for localized, broad-spectrum CC chemokine blockade. In vitro experiments indicate that m35K-expressing cells no longer undergo CC chemokine-induced chemotaxis, and m35K-expressing cells can locally deplete the CC chemokines RANTES (CCL5) and MIP-1alpha (CCL3) from supernatant medium. This sequestration of CC chemokines can prevent chemotaxis of bystander cells to CC, but not CX(3)C chemokines. Intraperitoneal injection of mice with an adenovirus-encoding m35K leads to a significant (44%) decrease in leukocyte recruitment into the peritoneal cavity in a sterile peritonitis model. Intravenous adenovirus-encoding m35K delivery leads to m35K expression in hepatocytes, which confers significant protection against liver damage (75% reduction in liver enzymes) in a Con A-induced hepatitis model. In summary, we have generated a membrane-bound CC chemokine-binding protein (m35K) that provides localized broad-spectrum CC chemokine inhibition in vitro and in vivo. m35K may be a useful tool to study the role of CC chemokines in leukocyte trafficking and block the recruitment of monocytes in chronic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号