首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 为探讨禁食和胰岛素对解偶联蛋白 - 1、2、3基因 (UCP1 ,2 ,3)表达的影响 ,应用 RT- PCR方法观察了在不同禁食时间和应用胰岛素条件下大鼠白色脂肪组织、棕色脂肪组织和骨骼肌中 UCP1 ,2 ,3m RNA水平的变化 .UCP1基因只在大鼠棕色脂肪组织中表达 .UCP2 ,3基因在三种组织中均有表达 ,在白色脂肪组织中以 UCP2表达为主 ;在骨骼肌中以 UCP3表达为主 .过夜禁食使棕色脂肪组织 UCP1 ,3m RNA水平明显下降 (P<0 .0 1 ) ;UCP2 m RNA水平在三种组织中均呈上升反应 ,以白色脂肪组织中表现最为明显 (P<0 .0 5) ;而对白色脂肪组织和骨骼肌中 UCP3基因表达无明显影响 .禁食时间延长至 48h,除棕色脂肪组织中 UCP2 ,3基因有明显下降外 ,各组织中UCPs基因表达基本调节至正常或高于对照组水平 .胰岛素对 UCPs基因表达水平有一定的上调作用 ,这一作用对棕色脂肪组织 UCPs各基因及骨骼肌中 UCP3基因表现得尤为明显 (P<0 .0 5) .大鼠 UCPs基因表达有一定的组织特异性 ;禁食时间对三种组织中 UCPs各成员基因表达的影响有时相上的区别 ;胰岛素可以调 UCPs各成员基因的表达 .结果反映了 UCPs各成员在能量代谢调节上的不同作用 ,这为理解膳食 -产热与体重调节的关系 ,及其能量代谢平衡与疾病关系提供了实验依据  相似文献   

2.
Streptozotocin (STZ)-induced diabetic animals are vulnerable to cold stress. Uncoupling proteins (UCPs) play an important role in regulating thermogenesis. We investigated the gene expressions of UCPs in brown adipose tissue (BAT), white adipose tissue (WAT), liver and gastrocnemius muscle of STZ-diabetic rats using Northern blot. UCP-1, -2 and -3 mRNA expressions in BAT were all remarkably lower in STZ-diabetic rats than those in control rats. Both UCP-2 and -3 gene expressions in gastrocnemius muscle were substantially elevated in STZ-diabetic rats and insulin treatment restored UCP gene expressions to normal levels. These results suggest that in STZ-diabetic rats, the overexpression of UCP-2 and UCP-3 in skeletal muscle provides a defense against hypothermogenesis caused by decreased UCPs in BAT.  相似文献   

3.
Chronic administration of leptin has been shown to reduce adiposity through energy intake and expenditure. The present study aims to examine how acute central infusion of leptin regulates peripheral lipid metabolism, as assessed by markers indicative of their mobilization and utilization. A bolus infusion of 1 microg/rat leptin into the third cerebroventricle increased the expression of mRNA for hormone-sensitive lipase (HSL), an indicator of lipolysis, in white adipose tissue (WAT). This was accompanied by elevation of plasma levels of glycerol, but not of free fatty acids, as compared to the saline control (P < 0.03). The same treatment with leptin decreased plasma insulin levels but did not affect the plasma glucose level (P < 0.05 for insulin). Among the major regulators of the transportation or utilization of energy substrates, leptin treatment increased expression of mRNA for uncoupling protein 1 (UCP1) in brown adipose tissue (BAT), UCP2 in WAT, and UCP3 in quadriceps skeletal muscle, but not those for fatty acid-binding protein in WAT, carnitine phosphate transferase-1, a marker for beta oxidation of fatty acids in muscle, nor glucose transporter 4 in WAT and muscle (P < 0.01 for HSL, P < 0.05 for UCP1, and P < 0.005 for UCP2 and UCP3). These results indicate that, even in a single bolus, leptin may regulate the mobilization and/or utilization of energy substrates such as fatty acids by affecting lipolytic activity in WAT and by increasing the expression of UCPs in BAT, WAT, and muscle.  相似文献   

4.
The vulnerability of streptozotocin (STZ)-induced diabetic rats to cold stress has been established. One of the elements controlling body temperature is thermogenesis, in which uncoupling protein (UCP) is known to play an important role. We have examined UCP2 and UCP3 expressions in brown adipose tissue (BAT), white adipose tissue (WAT), and skeletal muscle (MSL) during the acute and chronic phases of STZ-induced diabetes in rats. The long-term effect and the effect of insulin treatment thereafter were also unexplored previously and are examined in this study. In the acute phase of diabetes (2.5 days after STZ injection), UCP2 gene expression in BAT, WAT, and MSL, and UCP3 expression in the muscle were significantly increased. In the chronic phase of diabetes (21 days after STZ injection), UCP2 and UCP3 expression in the MSL were restored to the control levels without insulin supplementation. UCP2 in BAT and WAT remained high in the chronic phase, whereas UCP3 expression in BAT and WAT, which did not change in the acute phase, was significantly decreased. Insulin supplementation restored UCP2 expression in BAT and WAT, but over-corrected UCP3 in WAT above the control and did not affect UCP3 expression in BAT. Insulin supplementation depressed UCP3 expression in the MSL below control. These results indicate that the effects of STZ-induced diabetes on UCPs gene expression are tissue-specific as well as dependent on the duration of diabetes.  相似文献   

5.
The effects of ovariectomy (OVX) and estrogen substitution on body weight, body composition, food intake, weight gain, and expression of uncoupling proteins (UCPs) in brown adipose tissue (BAT), white adipose tissue (WAT), and skeletal muscle were studied in four groups of rats: (1) Sham-operated rats (N = 8), (2) ovariectomized rats (OVX - E) (N = 8), (3) estrogen-treated OVX rats (OVX + E) (N = 8), and (4) OVX rats on energy restriction (OVX - E + D) (N = 8). OVX was associated with an increase in food intake and body weight gain during a 5-week study period compared to sham-operated rats. The estrogen-substituted rats had a significantly lower food intake and weight gain during the 5 weeks compared to the sham-operated group. However, we also included a nontreated OVX group that was allowed to eat only enough chow to match the weight gain of the sham-operated group. To match the weight gain in the two groups, the OVX group had to consume 16% less chow than the sham-operated group. In BAT, the UCP1 expression was significantly lower in estrogen-deficient rats compared to either intact rats or estrogen-substituted rats, whereas UCP2 and UCP3 mRNA expression was similar in BAT from all four groups. In WAT, both estrogen-deficient groups had significantly lower UCP2 mRNA expression compared to the control rats and estrogen-treated rats; In contrast, the UCP3 mRNA expression in WAT was similar in all four groups. Finally, in skeletal muscle the OVX group on mild energy restriction had reduced UCP3 mRNA expression compared to control, OVX, and estrogen-treated rats. In contrast, the UCP2 mRNA expression in skeletal muscle was similar in all four groups. Thus, the findings that estrogen deficiency is followed by reduced UCP1 expression in BAT and reduced UCP2 expression in WAT in association with weight gain probably caused by a decrease in energy expenditure might indicate that UCPs play a role for the estrogen-mediated changes in body weight and energy expenditure.  相似文献   

6.
Up-regulation of uterine UCP2 and UCP3 in pregnant rats.   总被引:2,自引:0,他引:2  
Pregnancy produces profound changes in hormone dynamics, thermoregulation and energy metabolism. Uncoupling proteins (UCPs) have been identified in a variety of tissues and UCP1 is known to play important roles in energy homeostasis, while the regulation of UCP2 and UCP3 is still unclear. The present study aimed to investigate the effects of the changes during pregnancy on UCP gene expression in the uterus, as well as in brown adipose tissue (BAT), white adipose tissue (WAT), soleus muscle (Muscle), and liver, throughout the estrus and metestrus periods, at early, middle and late stages in pregnancy, and during post-gestational stages. The expression of uterine UCP2 and UCP3 were up-regulated by 3.2- and 1. 5-fold, respectively, during the late stage of pregnancy with an increase of WAT leptin mRNA expression and exogenous administration of leptin resulted in induction of the uterine UCP2 and UCP3 levels. Contrary to uterine UCPs, UCP1 mRNA expression in BAT was down-regulated by 0.5-fold and there were no remarkable changes in WAT or liver UCP2, or Muscle UCP3 expression throughout the periods. These results indicate that UCP gene expressions during pregnancy are regulated tissue-dependently, and up-regulation of uterine UCP2 and UCP3 mRNA may be due to increased leptin levels.  相似文献   

7.
Uncoupling proteins (UCPs) are supposed to be involved in diet-induced thermogenesis. Their activities are usually elevated by feeding and reduced by fasting in normal animals. To investigate whether fasting affects the expression of UCPs mRNA in brown adipose tissue (BAT) of bilateral ventromedial hypothalamus (VMH)-lesioned rats, we determined the gene expression of UCP1, UCP2 or UCP3 in BAT of VMH-lesioned rats and examined oxygen consumption in these rats under fed or 48-h fasted conditions. Northern blotting revealed no difference in the expression of UCPs mRNA in BAT between VMH-lesioned and sham-operated rats under the fed condition, however, expressions were increased markedly in BAT of VMH-lesioned rats under the fasted condition. Under the fed condition, no difference in oxygen consumption was observed between VMH-lesioned and sham-operated rats. Under the fasted condition, oxygen consumption decreased in both rats, however, it decreased in VMH-lesioned less than in sham operated rats. To explore the mechanism that fasting elevated BAT UCPs mRNA in VMH-lesioned rats, we measured peroxisome proliferator-activated receptor (PPAR)-gamma mRNA and protein in BAT, because PPAR-gamma agonist can elevate UCPs mRNA levels in BAT. Under the fed condition, no differences in the expression of PPAR-gamma mRNA and protein content were observed between in BAT of VMH-lesioned and sham-operated rats. Under the fasted condition, however, both increased in BAT of VMH-lesioned rats. These results suggest that VMH-lesions enhance the gene expression of UCPs in BAT under long-term fasting as a defensive reaction to inhibit the reduction of body temperature through an increase in PPAR-gamma activity.  相似文献   

8.
9.
We examined the effect of dietary conjugated linoleic acid (CLA) on lipid parameters in the liver, white adipose tissue (WAT) and brown adipose tissue (BAT) of Sprague-Dawley rats and found that it reduced the levels of triglycerides and non-esterified fatty acid in the liver and WAT without significant change in the BAT lipid levels. These results suggest that CLA has an obesity-preventing action.  相似文献   

10.
The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.  相似文献   

11.
Evidence points to a role of the mammalian target of rapamycin (mTOR) signaling pathway as a regulator of adiposity, yet its involvement as a mediator of the positive actions of peroxisome proliferator-activated receptor (PPAR)γ agonism on lipemia, fat accretion, lipid uptake, and its major determinant lipoprotein lipase (LPL) remains to be elucidated. Herein we evaluated the plasma lipid profile, triacylglycerol (TAG) secretion rates, and adipose tissue LPL-dependent lipid uptake, LPL expression/activity, and expression profile of other lipid metabolism genes in rats treated with the PPARγ agonist rosiglitazone (15 mg/kg/day) in combination or not with the mTOR inhibitor rapamycin (2 mg/kg/day) for 15 days. Rosiglitazone stimulated adipose tissue mTOR complex 1 and AMPK and induced TAG-derived lipid uptake (136%), LPL mRNA/activity (2- to 6-fold), and fat accretion in subcutaneous (but not visceral) white adipose tissue (WAT; 50%) and in brown adipose tissue (BAT; 266%). Chronic mTOR inhibition attenuated the upregulation of lipid uptake, LPL expression/activity, and fat accretion induced by PPARγ activation in both subcutaneous WAT and BAT, which resulted in hyperlipidemia. In contrast, rapamycin did not affect most of the other WAT lipogenic genes upregulated by rosiglitazone. Together these findings demonstrate that mTOR is a major regulator of adipose tissue LPL-mediated lipid uptake and a critical mediator of the hypolipidemic and lipogenic actions of PPARγ activation.  相似文献   

12.
Agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma) are insulin sensitizers that potently improve lipemia in rodents. This study aimed to determine the contribution of lipid secretion vs. clearance and the involvement of white adipose tissue (WAT) and brown adipose tissue (BAT) in the rapid hypolipidemic action of PPARgamma agonism. Male rats were treated with rosiglitazone (RSG; 15 mg x kg(-1) x day(-1)) for 1 to 4 days, and determinants of lipid metabolism were assessed postprandially. Serum triglycerides (TG) were lowered (-54%) after 3 days of RSG treatment, due to accelerated clearance from blood without contribution of changes in secretion rates. Both BAT and WAT were the major sites of RSG action on TG clearance, the increase in TG-derived fatty acid (FA) uptake reaching threefold in BAT and 60-90% in WAT depots. Accelerated TG clearance was associated with increased lipoprotein lipase (LPL) activity mostly in BAT. Serum nonesterified FA were lowered (-20%) by a single dose of RSG, an effect associated with increased expression levels of FA binding/transport (fatty acid binding protein-4), esterification (diacylglycerol acyltransferase-1), and recycling glycerol kinase and phosphoenolpyruvate carboxykinase enzymes in BAT and WAT, suggesting FA trapping. After 4 days of RSG treatment, nonesterified fatty acid (NEFA) uptake was also stimulated in both BAT (2.5-fold) and WAT (40%). These findings demonstrate the causal involvement of increased efficiency of LPL-mediated TG clearance and reveal the important contribution of TG-derived and albumin-bound FA uptake by BAT in the rapid hypolipidemic action of PPARgamma agonism in the rat.  相似文献   

13.
Energy balance in animals is a metabolic state that exists when total body energy expenditure equals dietary energy intake. Energy expenditure, or thermogenesis, can be subcategorized into groups of obligatory and facultative metabolic processes. Brown adipose tissue (BAT), through the activity of uncoupling protein 1 (UCP1), is responsible for nonshivering thermogenesis, a major component of facultative thermogenesis in newborn humans and in small mammals. UCP1, found in the mitochondrial inner membrane in BAT, uncouples energy substrate oxidation from mitochondrial ATP production and hence results in the loss of potential energy as heat. Mice that do not express UCP1 (UCP1 knockouts) are markedly cold sensitive. The recent identification of four new homologs to UCP1 expressed in BAT, muscle, white adipose tissue, brain, and other tissues has been met by tremendous scientific interest. The hypothesis that the novel UCPs may regulate thermogenesis and/or fatty acid metabolism guides investigations worldwide. Despite several hundred publications on the new UCPs, there are a number of significant controversies, and only a limited understanding of their physiological and biochemical properties has emerged. The discovery of UCP orthologs in fish, birds, insects, and even plants suggests the widespread importance of their metabolic functions. Answers to fundamental questions regarding the metabolic functions of the new UCPs are thus pending and more research is needed to elucidate their physiological functions. In this review, we discuss recent findings from mammalian studies in an effort to identify potential patterns of function for the UCPs.  相似文献   

14.
Mitochondrial uncoupling protein 1 (UCP1) is usually expressed only in brown adipose tissue (BAT) and a key molecule for metabolic thermogenesis to avoid an excess of fat accumulation. However, there is little BAT in adult humans. Therefore, UCP1 expression in tissues other than BAT is expected to reduce abdominal fat. Here, we show reduction of abdominal white adipose tissue (WAT) weights in rats and mice by feeding lipids from edible seaweed, Undaria pinnatifida. Clear signals of UCP1 protein and mRNA were detected in WAT of mice fed the Undaria lipids, although there is little expression of UCP1 in WAT of mice fed control diet. The Undaria lipids mainly consisted of glycolipids and seaweed carotenoid, fucoxanthin. In the fucoxanthin-fed mice, WAT weight significantly decreased and UCP1 was clearly expressed in the WAT, while there was no difference in WAT weight and little expression of UCP1 in the glycolipids-fed mice. This result indicates that fucoxanthin upregulates the expression of UCP1 in WAT, which may contribute to reducing WAT weight.  相似文献   

15.
To examine the involvement of ghrelin in obesity, we investigated the effects of treatment with peripherally administered ghrelin on food intake, adiposity, and expression of uncoupling protein (UCP) mRNA in brown (BAT) and white (WAT) adipose tissue in mice. Acute bolus administration of ghrelin at a dose of 120 nmol/kg increased cumulative food intake over 4 and 24 h as compared to controls (p<0.05 for each), whereas 12 nmol/kg/day ghrelin showed no remarkable effect (p>0.1). Chronic repeated treatment with 12 nmol/kg/day ghrelin for 7 days increased body weight and adiposity assessed by the weight of adipose tissue, triglyceride content in WAT (p<0.05 for each versus control). In addition, the same treatment decreased and increased mRNA expression of BAT UCP1 and WAT UCP2, respectively (p<0.05 for each). In conclusion, ghrelin can regulate body weight, adiposity and UCPs mRNA expression in mice. The present results provide evidence for a new regulatory loop involving ghrelin and UCP, and add novel insights into the regulatory mechanisms of obesity.  相似文献   

16.
17.
All-trans-retinoic acid (RA), an active metabolite of vitamin A, induces the gene expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and suppresses leptin gene expression in white adipose tissue (WAT) when given as an acute dose. These contrasting effects of RA leave in doubt the overall effect of chronic RA or vitamin A supplementation on energy homeostasis. To investigate the effects of dietary vitamin A supplementation on leptin and UCP1 gene expression, rats were fed either a normal diet (2.6 retinol/kg diet) or a vitamin A-supplemented diet (129 mg retinol/kg diet) for 8 weeks, and adiposity, serum leptin levels, leptin mRNA levels in perirenal WAT, UCP1 and UCP2 mRNA levels in BAT, and beta3-adrenergic receptor mRNA levels in BAT and WAT were examined. Rats on both diets gained a similar amount of weight, but there was a small 9% decrease in the adiposity index in the vitamin A-supplemented rats. Dietary vitamin A supplementation increased UCP1 gene expression in BAT by 31%, but suppressed leptin gene expression by 44% and serum leptin levels by 65%. UCP2 and beta3-adrenergic receptor gene expression in BAT and perirenal WAT were unchanged by the vitamin A diet. These data suggest that dietary vitamin A has a role in regulating energy homeostasis by enhancing UCP1 gene expression and decreasing serum leptin levels.  相似文献   

18.
Objective: The aim of this study was to determine the sex‐dependent differences in the response of key parameters involved in thermogenesis and control of body weight in brown adipose tissue (BAT) and white adipose tissue (WAT) in postcafeteria‐fed rats, a model of dietary obesity. Research Methods and Procedures: BAT and WAT were obtained from male and female control and postcafeteria‐fed Wistar rats. Postcafeteria‐fed rats were initially fed with cafeteria diet from day 10 of life until day 110 (cafeteria period) and with standard chow diet from then until day 180 of life (postcafeteria period). Body mass and energy intake were evaluated. Biometric parameters were analyzed in interscapular BAT (IBAT). Levels of uncoupling protein 1 (UCP1), α2‐adrenergic receptor (AR), and β3‐AR proteins and UCP1, UCP2, UCP3, β3‐AR, and leptin mRNAs, in IBAT or WAT, were studied by Western blot and Northern blot analyses, respectively. Results: Rats attained 59% (females) and 39% (males) increase in body weight at the end of the cafeteria period. During the postcafeteria period, the rats showed a loss of body weight, which was higher in females. Postcafeteria‐fed female rats also presented higher activation of thermogenic parameters in IBAT, including UCP1, UCP2, and UCP3 mRNAs. Female control rats showed lower levels of both α2 and β3‐ARs in BAT compared with male rats, but these levels in postcafeteria‐fed female and male rats were the same, because males tended to down‐regulate them. Levels of leptin mRNA in response to the postcafeteria state depended on gender and the specific WAT depot studied. Discussion: It is suggested that in postcafeteria‐fed female rats, BAT thermogenic capacity becomes more efficiently activated than in males. Female rats also showed a bigger weight loss. The parallel regulation of the levels of UCP2 and UCP3 mRNAs, with respect to UCP1 mRNA, with higher activation in female postcafeteria‐fed rats, suggests a possible role of both UCP2 and UCP3 in the regulation of energy expenditure and in the control of body weight. The distinct responses to overweight of α2 and β3‐ARs—which were sex dependent—and leptin mRNA—which depended on both sex and WAT depot—also support the different response of thermogenesis‐related parameters between overweight males and females.  相似文献   

19.
Brown adipose tissue (BAT) is a thermogenic organ with a vital function in small mammals and potential as metabolic drug target in humans. By using high-resolution LC-tandem-mass spectrometry, we quantified 329 lipid species from 17 (sub)classes and identified the fatty acid composition of all phospholipids from BAT and subcutaneous and gonadal white adipose tissue (WAT) from female and male mice. Phospholipids and free fatty acids were higher in BAT, while DAG and TAG levels were higher in WAT. A set of phospholipids dominated by the residue docosahexaenoic acid, which influences membrane fluidity, showed the highest specificity for BAT. We additionally detected major sex-specific differences between the BAT lipid profiles, while samples from the different WAT depots were comparatively similar. Female BAT contained less triacylglycerol and more phospholipids rich in arachidonic and stearic acid whereas another set of fatty acid residues that included linoleic and palmitic acid prevailed in males. These differences in phospholipid fatty acid composition could greatly affect mitochondrial membranes and other cellular organelles and thereby regulate the function of BAT in a sex-specific manner.  相似文献   

20.
BackgroundBrown adipose tissue (BAT) activation is a promising therapeutic target to treat hyperlipidemia with obesity. Huang-Qi San (HQS), an traditional Chinese medicine, can ameliorate hyperlipidemia with obesity, but its mechanism of action (MOA) is not understood.PurposeTo articulate the MOA for HQS with animal models.MethodsThe main chemical constituents of HQS were identified by high-performance liquid chromatography (HPLC) based assay. Hyperlipidemia with obesity rat models induced by high-fat diet were employed in the study. The levels of the fasting plasma glucose (FPG), triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and high-density lipoprotein-cholesterol (HDL-C) were measured to evaluate the ability of HQS to ameliorate hyperlipidemia with obesity. Pathological analyses of organs were conducted with Oil Red O staining, hematoxylin-eosin (H&E) staining and transmission electron microscopy. The expression of mRNAs related to thermogenic genes, fatty acid oxidation-related genes and mitochondria biogenic genes were examined by quantitative real-time PCR. The protein expressions of uncoupling protein 1 (UCP1) were investigated by immunohistochemistry and western blot. Simultaneously, the protein expression of PR domain containing 16 (PRDM16), ATP synthase F1 subunit alpha (ATP5A) was detected by western blot.ResultsHQS ameliorates metabolic disorder, lipid ectopic deposition, obesity and maintained glucose homeostasis in hyperlipidemia with obesity rats. HQS can significantly increase the number of mitochondria and reduced the size of the intracellular lipid droplets in BAT, and increase the expression of BAT activation-related genes (UCP1, PGC1α, PGC1β, Prdm16, CD137, TBX1, CPT1a, PPARα, Tfam, NRF1 and NRF2) in vivo. Furthermore, UCP1, PRDM16 and ATP5A proteins of BAT were increased.ConclusionHQS can activate BAT and browning of S-WAT (subcutaneous white adipose tissue) through activating the PRDM16/PGC1α/UCP1 pathway, augmenting mitochondrial biogenesis and fatty acid oxidation to increase thermogenesis and energy expenditure, resulting in a significant amelioration of hyperlipidemia with obesity. Therefore, HQS is an effective therapeutic medicine for the treatment of hyperlipidemia with obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号