首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrogens along with progesterone/progestins, and other hormones, are important determinants of cancer in the breast, endometrium and ovary. Estrogens may increase the risk of breast cancer through various mechanisms and at various phases of life, with a possible synergistic effect of progesterone/progestins. Exposure to high doses of placental hormones, such as estrogens and/or progesterone, during pregnancy may play a pivotal role in reducing subsequent breast cancer susceptibility. Estrogens cause endometrial cancer, an effect that can be reduced, prevented or reversed by progesterone/progestin — if allowed to act for a sufficiently long period of each cycle. The role of sex hormones seems important for ovarian carcinogenesis. Intake of combined oral contraceptives has a substantial and well-documented protective effect on endometrial and ovarian cancer risks. Epidemiological observations and experimental data from an animal model indicate that estrogens may have an adverse effect, while progesterone/progestins have a risk reducing effect directly on the ovarian epithelium. Thus, estrogens and other sex hormones have potential effects on the three most important female cancers. Research has yet to define how some of the risk factors can be modified or treatment regimens can be improved to reduce these cancer risks.  相似文献   

2.
Hormones and cancer in humans   总被引:4,自引:0,他引:4  
Hormones play a major role in the aetiology of several of the commonest cancers worldwide, including cancers of the endometrium, breast and ovary in women and cancer of the prostate in men. It is likely that the main mechanisms by which hormones affect cancer risk are by controlling the rate of cell division, the differentiation of cells and the number of susceptible cells. Hormones have very marked effects on cell division in the endometrium; oestrogens stimulate mitosis whereas progestins oppose this effect. The risk for endometrial cancer increases with late menopause, oestrogen replacement therapy and obesity, and decreases with parity and oral contraceptive use; thus risk increases in proportion to the duration of exposure to oestrogens unopposed by progestins, probably because unopposed oestrogens stimulate endometrial cell division. The effects of hormones on breast epithelial cell division in non-pregnant women are much less clear-cut than their effects on the endometrium, but both oestrogens and progestins appear to stimulate mitosis. Breast cancer risk increases with early menarche, late menopause and oestrogen replacement therapy, probably due to increased exposure of the breasts to oestrogen and/or progesterone. Early first pregnancy and multiparity reduce the risk for breast cancer, probably due to the hormonally-induced differentiation of breast cells and the corresponding reduction in the number of susceptible cells. Hormones do not have marked direct effects on the epithelial cells covering the ovaries, but hormones stimulate ovulation which is followed by cell division during repair of the epithelium. Risk for ovarian cancer increases with late menopause and decreases with parity and oral contraceptive use, suggesting that the lifetime number of ovulations may be a determinant of risk. For all three of these cancers risk changes within a few years of changes in exposure to sex hormones and some of the changes in risk persist for many years, indicating that hormones can affect both early and late stages of carcinogenesis. Understanding of the role of sex hormones in the aetiology of prostate cancer and of some rarer cancers is less complete.  相似文献   

3.
The steroid hormones 17 beta-estradiol and progesterone play a central role in the pathogenesis of breast cancer and regulate key phases of mammary gland development. This suggests that developmental regulatory molecules whose activity is influenced by ovarian hormones may also contribute to mammary carcinogenesis. In a screen designed to identify protein kinases expressed in the mammary gland, we previously identified a novel SNF1-related serine/threonine kinase, Hunk (hormonally upregulated Neu-associated kinase). During postnatal mammary development, Hunk mRNA expression is restricted to a subset of mammary epithelial cells and is temporally regulated with highest levels of expression occurring during early pregnancy. In addition, treatment of mice with 17 beta-estradiol and progesterone results in the rapid and synergistic upregulation of Hunk expression in a subset of mammary epithelial cells, suggesting that the expression of this kinase may be regulated by ovarian hormones. Consistent with the tightly regulated pattern of Hunk expression during pregnancy, mammary glands from transgenic mice engineered to misexpress Hunk in the mammary epithelium manifest temporally distinct defects in epithelial proliferation and differentiation during pregnancy, and fail to undergo normal lobuloalveolar development. Together, these observations suggest that Hunk may contribute to changes in the mammary gland that occur during pregnancy in response to ovarian hormones.  相似文献   

4.
5.
Androgens influence the development and growth of the mammary gland in women. Treatment of animals and cultured cells with androgens has either inhibitory or stimulatory effects on the proliferation of mammary epithelia and cancer cells; the mechanisms for these dual functions are still not very clear and are discussed in this review. Epidemiological data suggest that, similar to increased estrogens, elevated androgens in serum may be associated with the development of breast cancer. Experiments in rodents have also shown that simultaneous treatment of androgen and estrogen synergizes for mammary gland carcinogenesis. Similar synergistic effects of both hormones have been observed for carcinogenesis of the uterine myometrium of female animals and for carcinogenesis of the prostate and deferens of males. There are also clinical and experimental indications for a possible association of elevated levels of both androgens and estrogens with the development of ovarian and endometrial cancers. A hypothesis is thus proposed that concomitant elevation in both androgens and estrogens may confer a greater risk for tumorigenesis of the mammary gland, and probably other female reproductive tissues than an elevation of each hormone alone.  相似文献   

6.
Research from this laboratory and others have concluded that significant glandular atypia, and often neoplasia, occurs in the breast tissues of rodents and humans under conditions of iodine deprivation. These cellular changes caused by iodine deficiency are intensified, by aging, steroid hormones, and pituitary hormones. There has been controversy concerning the effect of iodine deficiency on stimulation and maintenance of cancer of the breast in rodents when the cancer is induced chemically or by transplantation. However, neither within this induced neoplastic framework nor with the dysplastic changes seen by deficiency alone have laboratory studies of thepathway of intracellular iodine been previously possible. The new research data addresses the question of whether organification occurs and whether iodine significantly affects the intracellular structures. An hypothesis will be presented that places the inorganic element, iodine, into association with receptor protein complexes that may be responsible for intracellular sex hormone activity. The relationship of this mechanism to carcinogenesis in breast tissue will be considered.  相似文献   

7.
8.
9.
Onapristone and other antiprogestins proved to possess a potent antitumor activity in several hormone-dependent experimental breast cancer models. This activity is as strong or even better than that of tamoxifen or ovariectomy in the MXT-mammary tumor of the mouse and the DMBA- and MNU-induced mammary tumor of the rat. The antitumor activity is evident in these models in spite of elevated serum levels of ovarian and pituitary hormones. The detailed analysis of all our data including the morphological (ultrastructure) studies of the mammary tumors of treated animals and the effects on growth and cell cycle kinetics using DNA flow cytometry indicates that the antitumor action of antiprogestins is mediated via the progesterone receptor and related to the induction of terminal cell differentiation leading to increased cell death. The strong antitumor activity of antiprogestins in our experimental breast cancer models does not primarily depend on a classical anti-hormonal mechanism. The antiprogestin-related reduction of the number of mammary tumor cells in the S-phase in our experimental tumor models (G0G1 arrest) emphasizes the unique innovative mechanism of action of these new agents in the treatment of human breast cancer.  相似文献   

10.
11.
Ligr M  Patwa RR  Daniels G  Pan L  Wu X  Li Y  Tian L  Wang Z  Xu R  Wu J  Chen F  Liu J  Wei JJ  Lee P 《PloS one》2011,6(10):e26250
  相似文献   

12.
13.
14.
Ivermectin is a broad-spectrum antiparasitic drug that has recently been demonstrated to exhibit potent anticancer activity against colon cancer, ovarian cancer, melanoma and leukemia. However, the molecular mechanism underlying this anticancer effect remains poorly understood. We recently found that ivermectin markedly inhibits the growth of breast cancer cells by stimulating cytostatic macroautophagy/autophagy in vitro and in vivo. Ivermectin inhibits the AKT-MTOR signaling pathway by promoting ubiquitination-mediated degradation of PAK1 (p21 [RAC1] activated kinase 1), leading to increased autophagic flux. Together, our work unravels the molecular mechanism underpinning ivermectin-induced cytostatic autophagy in breast cancer, and characterizes ivermectin as a potential therapeutic option for breast cancer treatment.  相似文献   

15.
Breast cancer is the most common malignancy in women and a significant cause of morbidity and mortality. Sub-types of breast cancer defined by the expression of steroid hormones and Her2/Neu oncogene have distinct prognosis and undergo different therapies. Besides differing in their phenotype, sub-types of breast cancer display various molecular lesions that participate in their pathogenesis. BRCA1 is one of the common hereditary cancer predisposition genes and encodes for an ubiquitin ligase. Ubiquitin ligases or E3 enzymes participate together with ubiquitin activating enzyme and ubiquitin conjugating enzymes in the attachment of ubiquitin (ubiquitination) in target proteins. Ubiquitination is a post-translational modification regulating multiple cell functions. It also plays important roles in carcinogenesis in general and in breast carcinogenesis in particular. Ubiquitin conjugating enzymes are a central component of the ubiquitination machinery and are often perturbed in breast cancer. This paper will discuss ubiquitin and ubiquitin-like proteins conjugating enzymes participating in breast cancer pathogenesis, their relationships with other proteins of the ubiquitination machinery and their role in phenotype of breast cancer sub-types.  相似文献   

16.
Ovarian cancer is the gynecological cancer exhibiting the highest morbidity and improvement of treatments is still required. Previous studies have shown that Estrogen-receptor beta (ERβ) levels decreased along with ovarian carcinogenesis. Here, we present evidence that reintroduction of ERβ in BG-1 epithelial ovarian cancer cells, which express ERα, leads in vitro to a decrease of basal and estradiol-promoted cell proliferation. ERβ reduced the frequency of cells in S phase and increased the one of cells in G2/M phase. At the molecular level, we found that ERβ downregulated total retinoblastoma (Rb), phosphorylated Rb and phospho-AKT cellular content as well as cyclins D1 and A2. In addition, ERβ had a direct effect on ERα, by strongly inhibiting its expression and activity, which could explain part of the anti-proliferative action of ERβ. By developing a novel preclinical model of ovarian cancer based on a luminescent orthotopic xenograft in athymic Nude mice, we further revealed that ERβ expression reduces tumor growth and the presence of tumor cells in sites of metastasis, hence resulting in improved survival of mice. Altogether, these findings unveil a potential tumor-suppressor role of ERβ in ovarian carcinogenesis, which could be of potential clinical relevance for the selection of the most appropriate treatment for patients.  相似文献   

17.
The risk of developing breast cancer increases after long term use of oestrogen and progestagen, and carcinogenesis in the breast is partly due to oxidative damage to DNA bases. Therefore, we studied the effects of 17 β-oestradiol and progesterone on the antioxidative status and the vulnerability to oxidative stress exhibited by normal human breast epithelial cells in culture. After exposure to hydrogen peroxide, cells grown with oestradiol alone or with both oestradiol and progesterone showed significantly decreased viability compared to cells grown in medium without added hormones. There was, however, no difference in hydrogen peroxide degradation rate between controls and hormone treated cultures. When desferrioxamine was added, the viability increased and the hydrogen peroxide degradation rate decreased. The levels of several antioxidants were altered in cells grown in the presence of oestradiol and progesterone: the concentrations of glutathione reductase and catalase decreased significantly while the levels of glutathione peroxidase and reduced glutathione did not change. The alterations in enzyme activity and cell vulnerability were more pronounced in cultures treated with a combination of oestradiol and progesterone.

We conclude that the redox balance in the cultured normal human breast epithelial cells was altered by treatment with oestradiol and progesterone, and that this change led to the increased death of cells subsequently exposed to hydrogen peroxide. This effect may have implications for sex hormone dependent diseases of the breast.  相似文献   

18.
Oxidative stress and alterations in the antioxidative defense system may be involved in carcinogenesis. We have previously shown that the levels of glutathione (GSH) in vivo in both breast tissue and subcutaneous fat were higher in the luteal phase compared with the follicular phase, suggesting an overall increase in GSH. This result was confirmed in the present study. Moreover, we exposed normal breast tissue in vivo, breast epithelial cells in vitro, and hepatocytes in culture to ovarian hormones. We found that local perfusion with estradiol, using microdialysis, in normal human breast tissue did not alter the local GSH levels in vivo. In vitro, treatment with estradiol and progesterone of normal human breast epithelial cells did not alter GSH levels. However, levels of GSH in hepatocytes were after 8 h estradiol exposure initially decreased, 76.6 +/- 5% of control cells, p <.05, whereas 20 h exposure more than doubled GSH, 209 +/- 26% compared with control cells, p <.01. Progesterone had no additional effect. Exposure of hepatocytes to estradiol increased the cellular content of gamma-glutamylcysteine synthetase, the rate-limiting enzyme in GSH synthesis. In conclusion we suggest that estradiol affects the GSH homeostasis mainly by effects on hepatocytes, whereas local production in the breast is unaffected by estradiol.  相似文献   

19.
Although proteasomes (multiproteinase protein complexes) are known to play an important role in cancer pathogenesis, there is little information about their activity in human tumor tissues. The chymotrypsin-like activity of proteasomes in breast cancer (BC) and endometrial cancer (EC) tissues was studied. It was shown that the chymotrypsin-like total proteasome activity and the 20S and 26S proteasome pool activities were significantly higher in malignant than in normal tissues. An increase in the size of either BC or EC tumors did not affect the proteasome activity, whereas the propagation of a malignant process did. If compared with BC non-metastatic tumors, a reliable decrease in the total activity and the 26S proteasome activity was observed in BC tumors with regional lymph node metastases. In EC tissues, the total proteasome activity and the 20S and 26S proteasome pool activities increased when the depth of tumor myometrial invasion grew. These data demonstrated that the proteasome activity significantly varied in the process of carcinogenesis. Further proteasome studies could serve as the basis for the development of new criteria for prognosis of female reproductive system cancer and the search for effective antitumor agents in targeted therapy.  相似文献   

20.
HER-2/neu癌基因在许多肿瘤,如乳腺癌、卵巢癌、非小细胞肺癌等肿瘤中高表达,在肿瘤的发生与发展中起重要作用,与肿瘤的转化、转移、复发、预后差、患者生存期缩短有关。HER-2/neu在乳腺癌过度表达率约为20%~30%,编码蛋白P185HER2属生长因子受体家族,抗P185HER2单克隆抗体(Herceptin)作为靶向药物已临床应用治疗HER2/neu高表达乳腺癌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号