首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Epigenetic indexing of chromatin domains by histone lysine methylation requires the balanced coordination of methyltransferase and demethylase activities. Here, we show that SU(VAR)3-3, the Drosophila homolog of the human LSD1 amine oxidase, demethylates H3K4me2 and H3K4me1 and facilitates subsequent H3K9 methylation by SU(VAR)3-9. Su(var)3-3 mutations suppress heterochromatic gene silencing, display elevated levels of H3K4me2, and prevent extension of H3K9me2 at pericentric heterochromatin. SU(VAR)3-3 colocalizes with H3K4me2 in interband regions and is abundant during embryogenesis and in syncytial blastoderm, where it appears concentrated at prospective heterochromatin during cycle 14. In embryos of Su(var)3-3/+ females, H3K4me2 accumulates in primordial germ cells, and the deregulated expansion of H3K4me2 antagonizes heterochromatic H3K9me2 in blastoderm cells. Our data indicate an early developmental function for the SU(VAR)3-3 demethylase in controlling euchromatic and heterochromatic domains and reveal a hierarchy in which SU(VAR)3-3-mediated removal of activating histone marks is a prerequisite for subsequent heterochromatin formation by H3K9 methylation.  相似文献   

3.
The heterochromatic domains of Drosophila melanogaster (pericentric heterochromatin, telomeres, and the fourth chromosome) are characterized by histone hypoacetylation, high levels of histone H3 methylated on lysine 9 (H3-mK9), and association with heterochromatin protein 1 (HP1). While the specific interaction of HP1 with both H3-mK9 and histone methyltransferases suggests a mechanism for the maintenance of heterochromatin, it leaves open the question of how heterochromatin formation is targeted to specific domains. Expression characteristics of reporter transgenes inserted at different sites in the fourth chromosome define a minimum of three euchromatic and three heterochromatic domains, interspersed. Here we searched for cis-acting DNA sequence determinants that specify heterochromatic domains. Genetic screens for a switch in phenotype demonstrate that local deletions or duplications of 5 to 80 kb of DNA flanking a transposon reporter can lead to the loss or acquisition of variegation, pointing to short-range cis-acting determinants for silencing. This silencing is dependent on HP1. A switch in transgene expression correlates with a switch in chromatin structure, judged by nuclease accessibility. Mapping data implicate the 1360 transposon as a target for heterochromatin formation. We propose that heterochromatin formation is initiated at dispersed repetitive elements along the fourth chromosome and spreads for approximately 10 kb or until encountering competition from a euchromatic determinant.  相似文献   

4.
5.
Genome-wide analyses in Caenorhabditis elegans show that post-translational modifications (PTMs) of histones are evolutionary conserved and distributed along functionally distinct genomic domains. However, a global profile of PTMs and their co-occurrence on the same histone tail has not been described in this organism. We used mass spectrometry based middle-down proteomics to analyze histone H3 N-terminal tails from C. elegans embryos for the presence, the relative abundance and the potential cross-talk of co-existing PTMs. This analysis highlighted that the lysine 23 of histone H3 (H3K23) is extensively modified by methylation and that tri-methylated H3K9 (H3K9me3) is exclusively detected on histone tails with di-methylated H3K23 (H3K23me2). Chromatin immunoprecipitation approaches revealed a positive correlation between H3K23me2 and repressive marks. By immunofluorescence analyses, H3K23me2 appears differentially regulated in germ and somatic cells, in part by the action of the histone demethylase JMJD-1.2. H3K23me2 is enriched in heterochromatic regions, localizing in H3K9me3 and heterochromatin protein like-1 (HPL-1)-positive foci. Biochemical analyses indicated that HPL-1 binds to H3K23me2 and interacts with a conserved CoREST repressive complex. Thus, our study suggests that H3K23me2 defines repressive domains and contributes to organizing the genome in distinct heterochromatic regions during embryogenesis.  相似文献   

6.
The KDM4 subfamily of JmjC domain-containing demethylases mediates demethylation of histone H3K36me3/me2 and H3K9me3/me2. Several studies have shown that human and yeast KDM4 proteins bind to specific gene promoters and regulate gene expression. However, the genome-wide distribution of KDM4 proteins and the mechanism of genomic-targeting remain elusive. We have previously identified Drosophila KDM4A (dKDM4A) as a histone H3K36me3 demethylase that directly interacts with HP1a. Here, we performed H3K36me3 ChIP-chip analysis in wild type and dkdm4a mutant embryos to identify genes regulated by dKDM4A demethylase activity in vivo. A subset of heterochromatic genes that show increased H3K36me3 levels in dkdm4a mutant embryos overlap with HP1a target genes. More importantly, binding to HP1a is required for dKDM4A-mediated H3K36me3 demethylation at a subset of heterochromatic genes. Collectively, these results show that HP1a functions to target the H3K36 demethylase dKDM4A to heterochromatic genes in Drosophila.  相似文献   

7.
Eukaryotic genomes are packaged in two general varieties of chromatin: gene-rich euchromatin and gene-poor heterochromatin. Each type of chromatin has been defined by the presence of distinct chromosomal proteins and posttranslational histone modifications. This review addresses recent findings that appear to blur the definitions of euchromatin and heterochromatin by pointing to the presence of typically heterochromatic modifications (including H3K9me) in euchromatin and typically euchromatic enzymes (including RNA polymerases) in heterochromatin. We discuss the implications of these new findings for the current definition of heterochromatin.  相似文献   

8.
9.
Shi J  Dawe RK 《Genetics》2006,173(3):1571-1583
We report a detailed analysis of maize chromosome structure with respect to seven histone H3 methylation states (dimethylation at lysine 4 and mono-, di-, and trimethylation at lysines 9 and 27). Three-dimensional light microscopy and the fine cytological resolution of maize pachytene chromosomes made it possible to compare the distribution of individual histone methylation events to each other and to DNA staining intensity. Major conclusions are that (1) H3K27me2 marks classical heterochromatin; (2) H3K4me2 is limited to areas between and around H3K27me2-marked chromomeres, clearly demarcating the euchromatic gene space; (3) H3K9me2 is restricted to the euchromatic gene space; (4) H3K27me3 occurs in a few (roughly seven) focused euchromatic domains; (5) centromeres and CENP-C are closely associated with H3K9me2 and H3K9me3; and (6) histone H4K20 di- and trimethylation are nearly or completely absent in maize. Each methylation state identifies different regions of the epigenome. We discuss the evolutionary lability of histone methylation profiles and draw a distinction between H3K9me2-mediated gene silencing and heterochromatin formation.  相似文献   

10.
X inactivation is the process of a chromosome-wide silencing of the majority of genes on the X chromosome during early mammalian development. This process may be aberrant in cloned animals. Here we show that repressive modifications, such as methylation of DNA, and the presence of methylated histones, H3K9me2 and H3K27me3, exhibit distinct aberrance on the inactive X chromosome in live clones. In contrast, H3K4me3, an active gene marker, is obviously missing from the inactive X chromosome in all cattle studied. This suggests that the disappearance of active histone modifications (H3K4me3) seems to be more important for X inactivation than deposition of marks associated with heterochromatin (DNA methylation, H3K27me3 and H3K9me2). It also implies that even apparently normal clones may have subtle abnormalities in repressive, but not activating epigenetic modifications on the inactive X when they survive to term. We also found that the histone H3 methylations were enriched and co-localized at q21-31 of the active X chromosome, which may be associated with an abundance of LINE1 repeat elements.  相似文献   

11.
Nisha P  Plank JL  Csink AK 《Genetics》2008,179(1):359-373
While heterochromatic gene silencing in cis is often accompanied by nucleosomal compaction, characteristic histone modifications, and recruitment of heterochromatin proteins, little is known concerning genes silenced by heterochromatin in trans. An insertion of heterochromatic satellite DNA in the euchromatic brown (bw) gene of Drosophila melanogaster results in bwDominant (bwD), which can inactivate loci on the homolog by relocation near the centric heterochromatin (trans-inactivation). Nucleosomal compaction was found to accompany trans-inactivation, but stereotypical heterochromatic histone modifications were mostly absent on silenced reporter genes. HP1 was enriched on trans-inactivated reporter constructs and this enrichment was more pronounced on adult chromatin than on larval chromatin. Interestingly, this HP1 enrichment in trans was unaccompanied by an increase in the 2MeH3K9 mark, which is generally thought to be the docking site for HP1 in heterochromatin. However, a substantial increase in the 2MeH3K9 mark was found on or near the bwD satellite insertion in cis, but did not spread further. These observations suggest that the interaction of HP1 with chromatin in cis is fundamentally different from that in trans. Our molecular data agree well with the differential phenotypic effect on bwD trans-inactivation of various genes known to be involved in histone modification and cis gene silencing.  相似文献   

12.
13.
14.
15.
The centromeric region of Costus spiralis is characteristically composed of a small heterochromatic DAPI(+) band flanked by a discrete decondensed region. High concentrations of serine 10 of histone H3 (H3S10ph) around the DAPI(+) band in pachytene chromosomes and the location of this heterochromatin at the chromosome region directed towards the poles during metaphase-anaphase I confirm its integration into the centromeric region. Antibodies against both typical components of euchromatin histones (histone H4 acetylated at lysine 5 (H4K5ac) and histone H3 dimethylated at lysine 4 (H3K4me2)) and heterochromatin (dimethylated lysine 9 of H3 (H3K9me2) and anti-5-methylcytosine (5-mC)) were used to characterize the centromeric chromatin of this species during meiosis. In pachytene chromosomes, the decondensed terminal euchromatin of the chromosome arms were seen to be richer in H4K5ac and H3K4me2 histones, while the more condensed proximal region was relatively stronger labeled with anti-H3K9me2 and anti-5-methylcytosine (5-mC). The centromeric region itself, including the DAPI(+) band, was poor in all of these chromatin modifications, but it was highly enriched in H4K5ac at pachytene. Before and after this stage, the centromeric region was poorly labeled with anti-H4K5ac. Hypomethylation and hyperacetylation of any kind of heterochromatin has rarely been reported, and it may be related to the dominant role of the centromere domain over the heterochromatin repeats.  相似文献   

16.
17.
18.

Background

Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago.

Results

Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %).

Conclusion

Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.  相似文献   

19.
Cycling cells of Quercus robur have a simple nuclear organization where most of the heterochromatin is visible as DAPI-positive chromocenters, which correspond to DAPI bands at the (peri)centromeric region of each of the 24 chromosomes of the oak complement. Immunofluorescence using 5-mC revealed dispersed distribution of the signal throughout the interphase nucleus/chromosomes without enrichment within DAPI-positive chromocenters/bands, suggesting that DNA methylation was not restricted to constitutive heterochromatin, but was associated with both euchromatic and heterochromatic domains. While H3K9ac exhibited typical euchromatin-specific distribution, the distributional pattern of histone methylation marks H3K9me1, H3K27me2, and H3K4me3 showed some specificity. The H3K9me1 and H3K27me2, both heterochromatin-associated marks, were not restricted to chromocenters, but showed additional dispersed distribution within euchromatin, while H3K27me2 mark also clustered in foci that did not co-localize with chromocenters. Surprisingly, even though H3K4me3 was distributed in the entire chromatin, many chromocenters were enriched with this euchromatin-specific modification. We discuss the distribution of the epigenetic marks in the context of the genome composition and lifestyle of Q. robur.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号