首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Objective: Abdominal visceral (VAT) and subcutaneous adipose tissue (SAT) display significant metabolic differences, with VAT showing a functional association to metabolic/cardiovascular disorders. A third abdominal adipose layer, derived by the division of SAT and identified as deep subcutaneous adipose tissue (dSAT), may play a significant and independent metabolic role. The aim of this study was to evaluate depot‐specific differences in the expression of proteins key to adipocyte metabolism in a lean population to establish a potential physiologic role for dSAT. Research Methods and Procedures: Adipocytes and preadipocytes were isolated from whole biopsies taken from superficial SAT (sSAT), dSAT, and VAT samples obtained from 10 healthy normal weight patients (7 women and 3 men), with a mean age of 56.4 ± 4.04 years and a mean BMI of 23.1 ± 0.5 kg/m2. Samples were evaluated for depot‐specific differences in insulin sensitivity using adiponectin, glucose transport protein 4 (GLUT4), and resistin mRNA and protein expression, glucocorticoid metabolism by 11β‐hydroxysteroid dehydrogenase type‐1 (11β‐HSD1) expression, and alterations in the adipokines leptin and tumor necrosis factor‐α (TNF‐α). Results: Although no regional differences in expression were observed for adiponectin or TNF‐α, dSAT whole biopsies and adipocytes, while intermediary to both sSAT and VAT, reflected more of the VAT expression profile of 11β‐HSD1, leptin, and resistin. Only in the case of the intracellular pool of GLUT4 proteins in whole biopsies was an independent pattern of expression observed for dSAT. In an evaluation of the homeostatic model, dSAT 11β‐HSD1 protein (r = 0.9573, p = 0.0002) and TNF‐α mRNA (r = 0.8210, p = 0.0236) correlated positively to the homeostatic model. Discussion: Overall, dSAT seems to be a distinct abdominal adipose depot supporting an independent metabolic function that may have a potential role in the development of obesity‐associated complications.  相似文献   

2.
Objective: Secreted protein acidic and rich in cysteine (SPARC) is expressed in most tissues and is also secreted by adipocytes. The associations of SPARC mRNA expression in visceral adipose tissue (VAT), subcutaneous abdominal adipose tissue (SAT), serum SPARC concentration, and metabolic parameters in Korean women are investigated. Design and Methods: This is a cross‐sectional study. Fifty‐eight women were recruited, of whom 15 women who underwent bariatric surgery for morbid obesity (BMI mean ± SD: 40.2±5.7 kg/m2), 16 who underwent metabolic surgery for type 2 diabetes (BMI: 28.9±4.5 kg/m2), and, as a control group, 27 who underwent gynecological surgery (BMI: 22.7±2.4 kg/m2). Anthropometric variables, metabolic parameters, SPARC mRNA expression in adipose tissue, and serum SPARC concentration were measured. Results: In all subjects, SPARC mRNA expression was significantly higher in SAT than in VAT. Serum SPARC concentrations (mean ± SE) in morbidly obese subjects, subjects with type 2 diabetes, and normal weight subjects were 267.3±40.2 ng/mL, 130.4±33.0 ng/mL, and 53.1±2.8 ng/mL, respectively. SPARC mRNA in SAT was significantly correlated with BMI, whereas SPARC mRNA in VAT was significantly correlated with BMI and VAT area. Serum SPARC concentration was significantly correlated with BMI, waist circumference, total adipose tissue area, and SAT area. After BMI adjustment, serum SPARC concentration was significantly correlated with fasting insulin concentration and HOMA‐IR score. Multivariate regression analysis showed that BMI and HOMA‐IR were independently associated with serum SPARC concentration. Conclusions: Serum SPARC concentration is significantly correlated with obesity indices and might be influenced by insulin resistance. These findings suggest that SPARC may contribute to the metabolic dysregulation associated with obesity in humans.  相似文献   

3.
Objective : Visceral (VAT) and abdominal subcutaneous (SAT) adipose tissues contribute to obesity but may have different metabolic and atherosclerosis risk profiles. We sought to determine the associations of abdominal VAT and SAT mass with markers of cardiac and metabolic risk in a large, multiethnic, population‐based cohort of obese adults. Design and Methods : Among obese participants in the Dallas Heart Study, we examined the cross‐sectional associations of abdominal VAT and SAT mass, assessed by magnetic resonance imaging (MRI) and indexed to body surface area (BSA), with circulating biomarkers of insulin resistance, dyslipidemia, and inflammation (n = 942); and with aortic plaque and liver fat by MRI and coronary calcium by computed tomography (n = 1200). Associations of VAT/BSA and SAT/BSA were examined after adjustment for age, sex, race, menopause, and body mass index. Results : In multivariable models, VAT significantly associated with the homeostasis model assessment of insulin resistance (HOMA‐IR), lower adiponectin, smaller LDL and HDL particle size, larger VLDL size, and increased LDL and VLDL particle number (p < 0.001 for each). VAT also associated with prevalent diabetes, metabolic syndrome, hepatic steatosis, and aortic plaque (p < 0.001 for each). VAT independently associated with C‐reactive protein but not with any other inflammatory biomarkers tested. In contrast, SAT associated with leptin and inflammatory biomarkers, but not with dyslipidemia or atherosclerosis. Associations between SAT and HOMA‐IR were significant in univariable analyses but attenuated after multivariable adjustment. Conclusion : VAT associated with an adverse metabolic, dyslipidemic, and atherogenic obesity phenotype. In contrast, SAT demonstrated a more benign phenotype, characterized by modest associations with inflammatory biomarkers and leptin, but no independent association with dyslipidemia, insulin resistance, or atherosclerosis in obese individuals. These findings suggest that abdominal fat distribution defines distinct obesity sub‐phenotypes with heterogeneous metabolic and atherosclerosis risk.  相似文献   

4.
Objective: African Americans (AAs) have less visceral and more subcutaneous fat than whites, thus the relationship of adiponectin and leptin to body fat and insulin sensitivity in AA may be different from that in whites. Methods and Procedures: Sixty‐nine non‐diabetic AA (37 men and 32 women), aged 33 ± 1 year participated. The percent fat was determined by dual‐energy X‐ray absorptiometry, abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) volume by computerized tomography (CT), and insulin sensitivity by homeostasis model assessment (HOMA). Results: VAT was greater in men (1,619 ± 177 cm3 vs. 1,022 ± 149 cm3; P = 0.01); women had a higher percentage of body fat (34.1 ± 1.4 vs. 24.0 ± 1.2; P < 0.0001), adiponectin (15.8 ± 1.2 μg/ml vs. 10.4 ± 0.8 μg/ml; P = 0.0004) and leptin (23.2 ± 15.8 ng/ml vs. 9.2 ± 7.2 ng/ml; P < 0.0001). SAT and HOMA did not differ because of the sex. Adiponectin negatively correlated with VAT (r = ?0.41, P < 0.05) in men, and with VAT (r = ?0.55, P < 0.01), and SAT (r = ?0.35, P < 0.05) in women. Adiponectin negatively correlated with HOMA in men (r = ?0.38, P < 0.05) and women (r = ?0.44, P < 0.05). In multiple regression, sex (P = 0.02), HOMA (P = 0.03) and VAT (P = 0.003) were significant predictors of adiponectin (adj R 2 = 0.38, P < 0.0001). Leptin positively correlated with VAT, SAT, percent fat and HOMA in men (r = 0.79, r = 0.86, r = 0.89, and r = 0.53; P < 0.001) and women (r = 0.62, r = 0.75, r = 0.83, and r = 0.55; P < 0.01). In multiple regression VAT (P = 0.04), percent body fat (P < 0.0001) and sex (P = 0.01), but not HOMA were significant predictors of serum leptin (adj R 2= 0.82, P < 0.0001). Discussion: The relationship of adiponectin and leptin to body fat content and distribution in AA is dependent on sex. Although VAT and insulin sensitivity are significant determinants of adiponectin, VAT and percent body fat determine leptin.  相似文献   

5.
Obesity can be considered as a low‐grade inflammatory condition, strongly linked to adverse metabolic outcomes. Obesity‐associated adipose tissue inflammation is characterized by infiltration of macrophages and increased cytokine and chemokine production. The distribution of adipose tissue impacts the outcomes of obesity, with the accumulation of fat in visceral adipose tissue (VAT) and deep subcutaneous adipose tissue (SAT), but not superficial SAT, being linked to insulin resistance. We hypothesized that the inflammatory gene expression in deep SAT and VAT is higher than in superficial SAT. A total of 17 apparently healthy women (BMI: 29.3±5.5 kg/m2) were included in the study. Body fat (dual‐energy X‐ray absorptiometry) and distribution (computed tomography) were measured, and insulin sensitivity, blood lipids, and blood pressure were determined. Inflammation‐related differences in gene expression (real‐time PCR) from VAT, superficial and deep SAT biopsies were analyzed using univariate and multivariate data analyses. Using multivariate discrimination analysis, VAT appeared as a distinct depot in adipose tissue inflammation, while the SAT depots had a similar pattern, with respect to gene expression. A significantly elevated (P < 0.01) expression of the CC chemokine receptor 2 (CCR2) and macrophage migration inhibitory factor (MIF) in VAT contributed strongly to the discrimination. In conclusion, the human adipose tissue depots have unique inflammatory patterns, with CCR2 and MIF distinguishing between VAT and the SAT depots.  相似文献   

6.
Objective: To compare the inter‐rater and intra‐rater reliability and analysis time of two methods for quantifying visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) volumes from magnetic resonance (MR) images. Research Methods and Procedures: Ten subjects (BMI, 27.0 ± 2.1 kg/m2; 56 years of age ± 4 years) underwent MR imaging of the abdomen. Ten transverse T1‐weighted images were selected from each scan and analyzed using two software packages that differ in principle. The first method, ANALYZE version 5.0, represents the manual threshold method, and the second, HIPPO version 1.3, is based on the fuzzy clustering approach. Inter‐rater reliability for each method was assessed by comparing the intra‐class correlation coefficients (ICCs) for VAT and SAT results from two evaluators, and intra‐rater reliability for each method was assessed by comparing ICCs for VAT and SAT analyses performed 1 week apart by the same evaluator. The total time for analysis also was compared between methods. Results: The inter‐rater reliability for VAT was greater with HIPPO than with ANALYZE (ICC = 0.996 vs. 0.828), whereas inter‐rater reliability for SAT did not differ between methods (ICC = 0.975 and 0.987). The intra‐rater reliability was equally high with HIPPO and ANALYZE for both VAT (ICC = 0.998 vs. 0.992) and SAT (ICC = 0.996 vs. 0.992). HIPPO required less than one‐half as much analysis time as ANALYZE (15.9 ± 4.4 vs. 36.5 ± 8.2 minutes, p < 0.0001). Discussion: HIPPO software appears advantageous for the quantification of VAT from multislice MR images because inter‐rater results are more reliable, and it is more time‐efficient than less automated methods.  相似文献   

7.
Objective: The contribution of visceral adipose tissue (VAT) to insulin resistance is well‐established; however, the role of subcutaneous abdominal adipose tissue (SAT) in insulin resistance remains controversial. Sex may determine which of these two components of abdominal obesity is more strongly related to insulin resistance and its consequences. The aim of this study was to determine whether both VAT and SAT contribute to insulin resistance in African Americans and to examine the effects of sex on this relationship. Research Methods and Procedures: This was a cross‐sectional study of 78 nondiabetic African‐American volunteers (44 men, 35 women; age 33.8 ± 7.3 years; BMI 30.9 ± 7.4 kg/m2). VAT and SAT volumes were measured using serial computerized tomography slices from the dome of the diaphragm to the iliac crest. The insulin sensitivity index (SI) was determined from the minimal model using data obtained from the frequently sampled intravenous glucose tolerance test. Results: In men, both VAT and SAT were negatively correlated with SI (r for both correlations = ?0.57; p < 0.01). In women, the correlation coefficient between VAT and SI was ?0.50 (p < 0.01) and between SAT and SI was ?0.67 (p < 0.01). In women, the correlation coefficient for SI with SAT was significantly greater than the correlation coefficient with VAT (p = 0.02). Discussion: Both SAT and VAT are strongly correlated with insulin resistance in African Americans. For African‐American women, SAT may have a greater effect than VAT on insulin resistance.  相似文献   

8.
Objective: This study investigated ethnic and sex differences in the distribution of fat during childhood and adolescence. Design and Methods : A cross‐sectional sample (n = 382), aged 5–18 years, included African American males (n = 84), White males (n = 96), African American females (n = 118), and White females (n = 84). Measures for total body fat (TBF) mass and abdominal adipose tissue (total volume and L4‐L5 cross‐sectional area) for both subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depots were assessed by dual‐energy X‐ray absorptiometry and magnetic resonance image, respectively. Analyses of covariance (ANCOVAs) were used to determine ethnic and sex differences in TBF (adjusted for age) and ethnic and sex differences in SAT and VAT (adjusted for both age and TBF). Results: Age‐adjusted TBF was greater in African Americans (P = 0.017) and females (P < 0.0001) compared with Whites and males, respectively. In age‐ and TBF‐adjusted ANCOVAs, no differences were found in the SAT. The VAT volume was, however, greater in Whites (P < 0.0001) and males (P < 0.0001) compared with African Americans and females, respectively. Similar patterns were observed in SAT and VAT area at L4‐L5. Conclusions: The demonstrated ethnic and sex differences are important confounders in the prevalence of obesity and in the assignment of disease risk in children and adolescents.  相似文献   

9.
BAUMGARTNER, RICHARD N., ROBERT R. ROSS, DEBRA L. WATERS, WILLIAM M. BROOKS, JOHN E. MORLEY, GEORGE D. MONTOYA, AND PHILIP J. GARRY. Serum leptin in elderly people: associations with sex hormones, insulin, and adipose tissue volumes. Obes Res. Objective There are few data for associations of serum leptin with body fat, fat distribution, sex hormones, or fasting insulin in elderly adults. We hypothesized that the sex difference in serum leptin concentrations would disappear after adjustment for subcutaneous, but not visceral body fat. Serum leptin would not be associated with sex hormone concentrations or serum fasting insulin after adjusting for body fat and fat distribution. Research Methods and Procedures Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes were measured using magnetic resonance imaging in a cross-sectional sample of 56 nondiabetic, elderly men and women aged 64 years to 94 years. Serum leptin, sex hormones (testosterone and estrone), sex hormone-binding globulin, and fasting insulin were also measured. Nine women were taking hormone replacement, and five men were clinically hypogonadal. Results Leptin was significantly associated with both SAT and VAT in each sex. Adjustment for SAT reduced the sex difference in leptin by 56%, but adjustment for VAT increased the difference by 25%. Leptin was not associated with serum estrone or hormone replacement therapy in the women, but had a significant, negative association with testosterone in the men that was independent of SAT, but not VAT. Leptin was significantly associated with fasting insulin in both sexes independent of age, sex hormones, sex hormone-binding globulin, VAT and SAT. Discussion Sex difference in serum leptin is partly explained by different amounts of SAT. Studies including both men and women should adjust for SAT rather than total body fat that includes VAT. The sex difference in serum leptin is not due to estrogen, but may be partly explained by testosterone. Testosterone is negatively associated with leptin in men, but the association is confounded with VAT. Leptin is associated with fasting insulin in non-diabetic elderly men and women independent of body fat, fat distribution. or sex hormones.  相似文献   

10.
Visceral adipose tissue (VAT) imaged by computed tomography (CT) or magnetic resonance imaging (MRI) is associated with the metabolic syndrome features, being morphologically and functionally different from subcutaneous adipose tissue (SAT). Insulin effect is lower and catecholamine effect higher in visceral adipose tissue, with its metabolites and its secretions draining through portal system, partially at least, to the liver. Thus, visceral cells transfer and release fatty acids more extensively, have increased glucocorticoid and reduced thiazolidinedione responses, produce more angiotensinogen, interleukin-6 and plasminogen activator inhibitor-1, and secrete less leptin and adiponectin than SAT. Furthermore, there are regional differences in the intrinsic characteristics of the preadipocytes, with those of SAT presenting greater differentiation and fat cell gene expression but less apoptosis than that of VAT. All features contribute to the morbidity associated with increased VAT. To evaluate the relationship between VAT and components of the metabolic syndrome, 55 non-diabetic women, 11 lean (VAT < 68 cm 2) and 44 obese were studied. The obese with VAT within the normal range (VAT < or = 68 cm 2) had higher BMI, WHR, BP and resistance to FFA suppression during oGTT in comparison to the lean controls. The obese with VAT > 68 cm 2 compared to those with VAT < or = 68 cm 2 had similar body mass index (BMI) but significantly higher in vivo homeostasis model assessment for insulin resistance (HOMA IR ) results and triglycerides. By pooling all data, correlation analysis indicated that VAT contributes more to insulin resistance (HOMA IR ) than SAT does, but not when insulin-suppressed plasma free fatty acids during oral glucose tolerance test as an index of insulin resistance are taken into consideration.  相似文献   

11.
Objective: Both ethnicity and menopause appear to influence intra‐abdominal fat distribution. This study evaluated intra‐abdominal fat distribution and obesity‐related health risks in perimenopausal white and African American women. Research Methods and Procedures: Baseline data from a longitudinal study of changes in body composition and energy balance during menopause are reported. Healthy women (55 African Americans and 103 whites) who were on no medication and had at least five menstrual cycles in the previous 6 months were recruited. Body composition was assessed by DXA, and visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were assessed by computed tomography scan. SAT was divided into deep and superficial layers demarcated by the fascia superficialis. Results: African American women were slightly younger (46.7 ± 0.2 vs. 47.7 ± 0.2 years, p = 0.002) and fatter (42.4% ± 1.0% vs. 39.4% ± 0.8% body fat, p = 0.02) than white women. In unadjusted data, African Americans had significantly more total abdominal fat and total, deep, and superficial SAT than whites. After adjustment for percent body fat and age, only total and superficial SAT remained significantly higher in African Americans. VAT although slightly less in African American women, did not differ significantly by race. In multiple regression analysis, VAT was the strongest predictor of serum lipids, glucose, and insulin in women of both races, although superficial SAT was significantly associated with fasting glucose in whites. Conclusions: Middle‐aged African American women have larger SAT depots, adjusted for total body fatness, but do not differ from white women with regard to VAT. The complexity of the relationship between abdominal fat and metabolic risk is increased by ethnic differences in such associations.  相似文献   

12.
It is suggested that a large breast size among women may predict type 2 diabetes risk independent of BMI and waist circumference (WC). The purpose of this study was to determine the independent associations of breast volume with cardiometabolic risk factors and regional fat distribution. A total of 92 overweight or obese premenopausal women (age = 39.9 ± 6.8 years) underwent full‐body magnetic resonance imaging (MRI) for the assessment of breast volume, visceral adipose tissue (VAT), abdominal and lower‐body subcutaneous AT (SAT), and intermuscular AT (IMAT), a 2‐h oral glucose tolerance test (OGTT), and fasting phlebotomy for assessment of triglyceride, total, high‐density lipoprotein–, and low‐density lipoprotein–cholesterol levels. Breast volume was not associated with any of the cardiometabolic risk factors assessed (P > 0.05). However, VAT was consistently associated with a number of cardiometabolic risk factors (OGTT glucose, OGTT insulin, and triglyceride levels) after controlling for age, BMI, WC, breast volume, and the other AT depots. In univariate models, breast volume was positively associated with VAT, IMAT, and abdominal and lower‐body SAT (P < 0.05). After controlling for age, BMI, and WC level, breast volume remained positively associated with VAT and IMAT (P < 0.05), such that women with the highest breast volume had ~1.1 and 1.3 kg more VAT and IMAT, respectively, but no more abdominal or lower‐body SAT, by comparison to women with the smallest breast volume. Thus, the previously documented association between breast size and type 2 diabetes risk may be in part explained by excess VAT and/or IMAT deposition.  相似文献   

13.
Objective: Excess abdominal adiposity is a known risk factor for cardiovascular diseases. Computed tomography can be used to examine the visceral (VAT) and subcutaneous (SAT) components of abdominal adiposity, but it is unresolved whether single‐slice or multi‐slice protocols are needed. Research Method and Procedures: Nine computed tomography scans were obtained in the lumbar spine region of 24 adults. The nine slices were obtained at three intervertebral positions (L2–L3, L3–L4, and L4–L5) and at 7 mm above and below these locations. Intra‐site and inter‐site differences in SAT, VAT, total adipose tissue, and the VAT/SAT ratio were examined using ANOVA and confidence intervals for pairwise differences between means. Results: Intervertebral SAT values increased from 103.1 ± 50.9 (standard deviation) cm2 at L2–L3 to 153.3 ± 68.8 cm2 at L4–L5, whereas the corresponding VAT values decreased from 164.3 ± 125.4 to 126.0 ± 82.7 cm2. The VAT/SAT ratio was not constant, decreasing from 1.8 ± 1.4 to 0.9 ± 0.7. Repeated‐measures ANOVA indicated significant inter‐ and intra‐site differences (p ≤ 0.02) for SAT, VAT, and the VAT/SAT ratio at L3?L4 and L4?L5 (p < 0.001). Discussion: These differences show the limitation of using a single‐slice assessment of abdominal fat distribution, both for a subject and between subjects. Furthermore, the sizeable differences in the intra‐site scans indicate that precise repositioning is needed for longitudinal studies. In summary, our findings suggest that a multi‐site imaging protocol may provide a more complete assessment of abdominal fat stores and distribution than use of a single site.  相似文献   

14.
It is not known whether there are mechanisms linking adipose tissue mass and increased oxidative stress in obesity. This study investigated associations between decreasing general and abdominal fat depots and oxidative stress during weight loss. Subjects were severely obese women who were measured serially at baseline and at 1, 6 (n = 30), and 24 months (n = 18) after bariatric surgery. Total fat mass (FAT) and volumes of visceral (VAT) and subcutaneous abdominal adipose tissue (SAT) were related to plasma concentrations of derivatives of reactive oxidative metabolites (dROMS), a measure of lipid peroxides and oxidative stress. After intervention, BMI significantly decreased, from 47.7 ± 0.8 kg/m2 to 43.3 ± 0.8 kg/m2 (1 month), 35.2 ± 0.8 kg/m2 (6 months), and 30.2 ± 1.2 kg/m2 (24 months). Plasma dROMS also significantly deceased over time. At baseline, VAT (r = 0.46), FAT (r = 0.42), and BMI (r = 0.37) correlated with 6‐month decreases in dROMS. Similarly, at 1 month, VAT (r = 0.43) and FAT (r = 0.41) correlated with 6‐month decreases in dROMS. Multiple regression analysis showed that relationships between VAT and dROMS were significant after adjusting for FAT mass. Increased plasma dROMS at baseline were correlated with decreased concentrations of high‐density lipoprotein (HDL) at 1 and 6 months after surgery (r = ?0.38 and ?0.42). This study found longitudinal associations between general, and more specifically intra‐abdominal adiposity, and systemic lipid peroxides, suggesting that adipose tissue mass contributes to oxidative stress.  相似文献   

15.
16.
Earlier cross‐sectional studies found that a single magnetic resonance imaging (MRI) slice predicts total visceral and subcutaneous adipose tissue (VAT and SAT) volumes well. We sought to investigate the accuracy of trunk single slice imaging in estimating changes of total VAT and SAT volume in 123 overweight and obese subjects who were enrolled in a 24‐week CB‐1R inverse agonist clinical trial (weight change, ?7.7 ± 5.3 kg; SAT change, ?5.4 ± 4.9 l, VAT change, ?0.8 ± 1.0 l). VAT and SAT volumes at baseline and 24 weeks were derived from whole‐body MRI images. The VAT area 5–10 cm above L4—L5 (A+5–10) (R2 = 0.59–0.70, P < 0.001) best predicted changes in VAT volume but the strength of these correlations was significantly lower than those at baseline (R2 = 0.85–0.90, P < 0.001). Furthermore, the L4—L5 slice poorly predicted VAT volume changes (R2 = 0.24–0.29, P < 0.001). Studies will require 44–69% more subjects if (A+5–10) is used and 243–320% more subjects if the L4—L5 slice is used for equivalent power of multislice total volume measurements of VAT changes. Similarly, single slice imaging predicts SAT loss less well than cross‐sectional SAT (R2 = 0.31–0.49 vs. R2 = 0.52–0.68, P < 0.05). Results were the same when examined in men and women separately. A single MRI slice 5–10 cm above L4—L5 is more powerful than the traditionally used L4—L5 slice in detecting VAT changes, but in general single slice imaging poorly predicts VAT and SAT changes during weight loss. For certain study designs, multislice imaging may be more cost‐effective than single slice imaging in detecting changes for VAT and SAT.  相似文献   

17.
The independent effects of weight loss and exercise on plasma leptin and total (AT), subcutaneous (SAT), and visceral (VAT) adipose tissue were investigated in 52 obese men. Subjects were randomly assigned to four 12-wk protocols: 1) control (C, n = 8), 2) diet-induced weight loss (DWL, n = 14), 3) exercise-induced weight loss (EWL, n = 14), and 4) exercise with weight maintenance (EWS, n = 16). Plasma leptin was unchanged in C (from 7.8 +/- 1.3 to 7.7 +/- 1.0 ng/ml). Equivalent weight loss (7.5 kg) decreased leptin significantly but similarly (DWL, from 8.5 +/- 1.0 to 4.8 +/- 0.6 ng/ml; EWL, from 10.1 +/- 1.0 to 5.0 +/- 0.6 ng/ml). Exercise in the absence of weight loss did not alter leptin levels (from 10.1 +/- 1. 3 to 9.2 +/- 1.2 ng/ml). Changes in leptin correlated with changes in AT and SAT (both P < 0.05) but not in VAT. We conclude that reduction in adipose tissue after weight loss results in a collateral decrease in circulating leptin, and exercise, independent of its effects on weight loss, has no profound influence on leptin secretion.  相似文献   

18.
目的:探讨妊娠期糖尿病孕妇内脂素水平与糖代谢的关系.方法:检测血清中内脂素、FIN、FIG水平,计算HOMA-IR,用RT-PCR法检测脂肪组织中内脂素mRNA的表达.结果:(1)妊娠期糖尿病组孕妇血清内脂素、FPG、HOMA-IR、FIN明显高于对照组.(2)妊娠期糖尿病组孕妇内脏脂肪组织中的内脂素的表达明显高于对照组,且妊娠期糖尿病组孕妇内脏组织中内脂素的表达明显高于表皮脂肪组织.(3)血清中内脂素的水平与内脏脂肪组织及HOMA-IR呈正相关.结论:妊娠期糖尿病孕妇脂肪组织中内脂素表达上调,导致血液循环中内脂素水平升高,参与GDM孕妇血糖调节.  相似文献   

19.
Objective: To determine whether serum adiponectin is decreased in obesity and is restored toward normal level after treatment in children. Research Methods and Procedures: Subjects were 53 Japanese obese children, 33 boys and 20 girls (6 to 14 years old), and 30 age‐matched nonobese controls for measuring adiponectin (16 boys and 14 girls). Blood was drawn after an overnight fast, and the obese children were subjected to anthropometric measurements including waist and hip circumferences and skinfold thicknesses. Paired samples were obtained from 21 obese children who underwent psychoeducational therapy. Visceral adipose tissue area was measured by computed tomography. Adiponectin was assayed by an enzyme‐linked immunosorbent assay. Results: The serum levels of alanine aminotransferase, uric acid, triglyceride, total cholesterol, low‐density lipoprotein‐cholesterol, total cholesterol/high‐density lipoprotein‐cholesterol, apo B, apo B/apo A1, and insulin in obese children were higher than the reference values. Serum adiponectin level was lower in the obese children than in the controls (6.4 ± 0.6 vs. 10.2 ± 0.8 mg/L, means ± SEM, p < 0.001). In 21 obese children whose percent overweight declined during therapy, the adiponectin level increased (p = 0.002). The adiponectin level was correlated inversely with visceral adipose tissue area in obese children (r = ?0.531, p < 0.001). The inverse correlations of adiponectin with alanine aminotransferase, uric acid, and insulin were significant after being adjusted for percentage overweight, percentage body fat, or sex. Discussion: Serum adiponectin level is decreased in obese children depending on the accumulation of visceral fat and is restored toward normal level by slimming.  相似文献   

20.
Objective: To test a newly developed dual energy X‐ray absorptiometry (DXA) method for abdominal fat depot quantification in subjects with anorexia nervosa (AN), normal weight, and obesity using CT as a gold standard. Design and Methods: 135 premenopausal women (overweight/obese: n = 89, normal‐weight: n = 27, AN: n = 19); abdominal visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and total adipose tissue (TAT) areas determined on CT and DXA. Results: There were strong correlations between DXA and CT measurements of abdominal fat compartments in all groups with the strongest correlation coefficients in the normal‐weight and overweight/obese groups. Correlations of DXA and CT VAT measurements were strongest in the obese group and weakest in the AN group. DXA abdominal fat depots were higher in all groups compared to CT, with the largest % mean difference in the AN group and smallest in the obese group. Conclusion: A new DXA technique is able to assess abdominal fat compartments including VAT in premenopausal women across a large weight spectrum. However, DXA measurements of abdominal fat were higher than CT, and this percent bias was most pronounced in the AN subjects and decreased with increasing weight, suggesting that this technique may be more useful in obese individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号