首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to evaluate protocols for synchronizing ovulation in beef cattle. In Experiment 1, Nelore cows (Bos indicus) at random stages of the estrous cycle were assigned to 1 of the following treatments: Group GP controls (nonlactating, n=7) received GnRH agonist (Day 0) and PGF2alpha (Day 7); while Groups GPG (nonlactating, n=8) and GPG-L (lactating, n=9) cows were given GnRH (Day 0), PGF2alpha (Day 7) and GnRH again (Day 8, 30 h after PGF2alpha). A new follicular wave was observed 1.79+/-0.34 d after GnRH in 19/24 cows. After PGF2alpha, ovulation occurred in 19/24 cows (6/7 GP, 6/8 GPG, 7/9 GPG-L). Most cows (83.3%) exhibited a dominant follicle just before PGF2alpha, and 17/19 ovulatory follicles were from a new follicular wave. There was a more precise synchrony of ovulation (within 12 h) in cows that received a second dose of GnRH (GPG and GPG-L) than controls (GP, ovulation within 48 h; P<0.01). In Experiment 2, lactating Nelore cows with a visible corpus luteum (CL) by ultrasonography were allocated to 2 treatments: Group GPE (n=10) received GnRH agonist (Day 0), PGF2alpha (Day 7) and estradiol benzoate (EB; Day 8, 24 h after PGF2alpha); while Group EPE (n=11), received EB (Day 0), PGF2alpha (Day 9) and EB (Day 10, 24 h after PGF2alpha). Emergence of a new follicular wave was observed 1.6+/-0.31 d after GnRH (Group GPE). After EB injection (Day 8) ovulation was observed at 45.38+/-2.03 h in 7/10 cows within 12 h. In Group EPE the emergence of a new follicular wave was observed later (4.36+/-0.31 d) than in Group GEP (1.6+/-0.31 d; P<0.001). After the second EB injection (Day 10) ovulation was observed at 44.16+/-2.21 h within 12 (7/11 cows) or 18 h (8/11 cows). All 3 treatments were effective in synchronizing ovulation in beef cows. However, GPE and, particularly, EPE treatments offer a promising alternative to the GPG protocol in timed artificial insemination of beef cattle, due to the low cost of EB compared with GnRH agonists.  相似文献   

2.
We aimed to compare the effect of three estradiol benzoate (EB) doses on follicular wave emergence (FWE) and dominant follicle growth of suckled Nelore cows submitted to TAI (D0). On a random day of estrous cycle (D−10), multiparous (MULT; n=36) and primiparous (PRIM; n=20) suckled Nelore cows received an intravaginal progesterone (P4) device and were assigned in three groups. Cows in the EB-1 (n=20), EB-1.5 (n=15) or EB-2 (n=21) groups received, respectively, an im treatment with 1, 1.5 or 2 mg EB. A subgroup (n=10-13 cows/group) were subject to daily ovarian evaluations from D−10 to D0. On D−2, P4 devices were removed, and all cows received the same treatment: 1 mg estradiol cypionate, 0.53 mg sodium cloprostenol, and 300 IU eCG. Statistical analyses were performed considering only the main effects of treatment group and parity order. The proportion of cows with a synchronized FWE and the moment of the FWE did not differ (p>0.05) among the treatment groups (overall: 80% [28/35] and 4.1 ± 0.4 days); however, the FWE occurred earlier (p=0.007) in MULT (3.8 ± 0.2 days) than PRIM (5.1 ± 0.4) cows. The proportion of animals detected in estrus was greater (86% [31/36] vs. 70% [14/20]; p=0.02) and the dominant follicle was larger on D−2 (9.7 ± 0.3 mm vs. 7.8 ± 0.7 mm; p=0.006) and D0 (11.9 ± 0.4 mm vs. 10 ± 0.5 mm; p=0.008) in MULT than PRIM cows. In conclusion, the three EB doses presented similar efficiency to synchronize the FWE in suckled Nelore cows. Moreover, a delayed FWE and smaller dominant follicle is observed in PRIM cows, contributing to the reduced reproductive performance in this parity category when using similar TAI protocols of MULT cows.  相似文献   

3.
Follicle diameter deviation is defined as the beginning of the differential change in growth rates between the largest and next largest follicles subsequent to wave emergence and is considered a key component of follicle selection. Follicle selection has been extensively studied in European breeds of cattle (Bos taurus) but has not been critically studied in Zebu breeds (Bos indicus). The objectives of the present study were to determine and compare the morphological characteristics of deviation associated with the first post-ovulatory wave (Wave 1) of the estrous cycle in Nelore heifers (n=8) and nonlactating cows (n=11). Beginning on the day of ovulation (day 0), the three largest follicles (F1-F3, respectively) were individually tracked every 12 h for 6d using transrectal ultrasonography. In individual animals, deviation was determined graphically using visual inspection of the diameter profiles of F1, F2 and sometimes F3 (observed deviation) and mathematically using segmented regression analysis of the diameter differences between F1 and F2 or sometimes F3 (calculated deviation). Mean day of emergence of Wave 1 when F1 reached >3 mm (approximately 1 d after ovulation) and growth rate of F1 during deviation (approximately 1.4 mm/d) were not significantly different between heifers and cows. The results of determining the beginning of deviation within heifers and cows using the observed and calculated methods were not significantly different. Averaged over both methods, diameter deviation occurred 2.8 d after ovulation when F1 reached 5.7 mm in heifers, and 2.4 d after ovulation when F1 reached 6.1 mm in cows. In conclusion, the emergence of Wave 1 and growth rates and diameters of the future dominant follicles at the beginning of deviation were similar in Nelore heifers and nonlactating cows, regardless of the methods used to determine deviation. Relative to Holstein cattle, emergence of Wave 1 appeared to occur about 1 d later and diameter of the future dominant follicle at the beginning of deviation was about 2 mm smaller in Nelore.  相似文献   

4.
Maternal recognition of pregnancy in the cow requires successful signaling by the conceptus to block luteolysis. Conceptus growth and function depend on an optimal uterine environment, regulated by luteal progesterone. The objective of this study was to test strategies to optimize luteal function, as well as prevent a dominant follicle from initiating luteolysis. Nelore (Bos taurus indicus) beef cows (n=40) were submitted to a GnRH/PGF(2alpha)/GnRH protocol. Cows that ovulated from a dominant ovarian follicle (ovulation=Day 0) were allocated to receive: no additional treatment (G(C); n=7); 3000IU of hCG on Day 5 (G(hCG); n=5); 5mg of estradiol-17beta on Day 12 (G(E2); n=6); or 3000IU of hCG on Day 5 and 5mg of estradiol-17beta on Day 12 (G(hCG/E2); n=5). Ultrasonographic imaging of the ovaries, assessment of plasma progesterone concentration, and detection of estrus were done daily from Day 5 to the day of subsequent ovulation. Treatment with hCG induced an accessory CL, increased CL volume, and plasma progesterone concentration throughout the luteal phase (P<0.01). Estradiol-17beta induced atresia and recruitment of a new wave of follicular growth; it eliminated a potentially estrogen-active, growing ovarian follicle within the critical period for maternal recognition of pregnancy, but it also hastened luteolysis (Days 16 or 17 vs. Days 18 or 19 in non-treated cows). In conclusion, the approaches tested enhanced luteal function (hCG) and altered ovarian follicular dynamics (estradiol-17beta), but were unable to extend the life-span of the CL in Nelore cows.  相似文献   

5.
Progesterone (P(4)), 17beta- estradiol (E(2)) and androstenedione (A(4)) plasma concentrations were correlated with palpated corpora lutea (CL), recovered embryos and viable embryos in 13 Nelore cows induced to superovulate with FSH, starting on Day 10 of the estrous cycle. Administration of FSH increased the number of ovulations and recovered embryos. Plasma P(4), E(2) and A(4) levels on Day 0 and of P(4) on Days 10 and 11 of the cycle were not correlated with the superovulatory response. Determination of CL by palpation per rectum was used to estimate the number of recovered embryos. Plasma P(4) levels higher than 1 ng/ml on the induced estrus day (Day 14) had an adverse effect on the embryo viability rate. Plasma E(2) concentrations on Day 14 were positively correlated with the number of viable embryos collected, a correlation that has not been previously reported. The present data indicate that plasma P(4) and E(2) concentrations in FSH-PGF2alpha-treated Nelore cows are useful for the identification of 2 different populations of Nelore donors and are correlated with superovulatory response and, particularly, with the number of viable embryos.  相似文献   

6.
The most common beef cattle raised in Brazil is the Nelore breed (Bos indicus). Information obtained by ultrasonography on follicular growth in Bos taurus cattle has been accumulating rapidly. However, there are few publications to date on follicular development in Bos indicus breeds. The follicular dynamics in Nelore heifers and cows during natural or prostaglandin (PG)-induced estrous cycle were studied. From the detection of estrus onward, all animals were examined daily by ultrasonography for one (n = 35) or two (n = 10) consecutive estrous cycles. The follicular dynamic in Nelore cattle was characterized by the predominance of 2 follicular waves in the cows (83.3%, n = 18, P < 0.05) and 3 waves in the heifers (64.7%, n = 16, P < 0.05). Most of the cattle observed over 2 consecutive estrous cycles presented the same pattern of follicular waves in the first and second cycle, and only 30% showed variation in the number of waves from one cycle to the other. Most of the follicular parameters analyzed were not affected by PG treatment or age but were altered by follicular waves. Consequently, data on cows and heifers were combined according to the number of follicular waves. The ovulatory follicle was larger than the other dominant follicles (P < 0.05), and the ovulatory wave was shorter than the preceding waves (P < 0.05). The interovulatory interval was longer in animals showing 3 waves than those exhibiting 2 waves (P < 0.05). Maximum diameter of the dominant follicle (around 11 mm) and of the corpus luteum (CL, approximately 17 mm) were smaller than those reported for European breeds. In conclusion, the results demonstrate that although the dominant follicle and corpus luteum are smaller than in European breeds, the follicular dynamics in Nelore cattle were similar to those observed in European breeds and were characterized by 2 or 3 follicular waves for cows and heifers, respectively, during the natural or prostaglandin-induced estrous cycle.  相似文献   

7.
The aim was to determine the effect of estradiol benzoate (EDB) given after removal of a progesterone-releasing intravaginal device (PRID) at either emergence or dominance of a follicle wave, on the interval to estrus, variation in its onset and pregnancy rate in heifers. Heifers (n=186) were assigned randomly to four treatments in a 2 x 2 factorial design; emergence or dominance of a follicle wave at PRID removal, with or without 0.5 mg EDB 24 h after PRID removal. Ovarian ultrasonography was performed to confirm follicular status; data from heifers of undeterminable follicular status were excluded (n=36). Mean size of the largest follicle of the new wave at PRID removal was smaller (P < 0.01) in heifers given EDB at emergence (6.3 +/- 0.09 mm) compared with those given it at dominance (10.9 +/- 0.30 mm). The onset of estrus was earlier (P < 0.01) in heifers given EDB at dominance (median 42 h, range 13 h) compared with those not given EDB at dominance (median 43 h, range 42 h). The median interval to estrus was decreased (P < 0.01) in heifers given EDB at emergence (median 48 h, range 73 h) compared with those not given EDB at emergence (median 66 h, range 45 h). Variation in onset of estrus was reduced (P < 0.05) in heifers given EDB compared with those not given EDB. The pregnancy rate was not affected when EDB was given at dominance, however, it was decreased (P < 0.05) when given at emergence (23 of 40 vs 26 of 32, respectively). To determine the effect of EDB on follicular dynamics in heifers treated with EDB at emergence, heifers (n=37) were assigned to two treatments: at emergence with or without EDB and their ovaries were examined daily using ultrasonography. Follicular dynamics were not different (P > 0.05) in EDB-heifers compared with untreated controls. Mean serum estradiol was greater (P < 0.01) in EDB-treated heifers compared with controls. In conclusion, 0.5 mg EDB given 24 h after PRID removal to heifers decreased the interval to estrous onset at emergence or dominance, decreased variation in onset of estrus and decreased pregnancy rates when given at emergence of a follicle wave.  相似文献   

8.
The objective of this study was to determine the efficacy of a progesterone-releasing intravaginal silastic device (Controlled Internal Drug Release: CIDR) for inducing ovulation in beef cows with persistent ovarian cysts. Fifteen cows with cysts and abnormal cycles for over 40 days were randomly assigned to receive either a single CIDR (CIDR group, n=9), or a CIDR containing no progesterone (blank CIDR) (BLANK group, n=6) for about 14 days. Determination of plasma progesterone levels at the beginning of CIDR treatment indicated 4 of 6 BLANK cows with non-luteinized cysts and 5 of 9 CIDR cows with non-luteinized cysts. In 5 of 6 BLANK cows, one follicular wave appeared and newly emerged dominant follicles increased in size up to 20 mm in diameter and persisted during the experiment, while one cow experienced estrus with spontaneous ovulation. In contrast, during CIDR treatment, 2 or 3 waves, in which dominant follicles were from 7 to 15 mm in diameter, appeared approximately at 7-day intervals. Within 3 days after CIDR removal, estrous behavior was detected followed by ovulation of the dominant follicle in the last wave. All CIDR cows resumed normal cyclicity with 2 follicular waves for over 2 months. Insertion of a CIDR caused a rapid increase of about 2 ng/mL in plasma progesterone. The levels were greater than 1.3 ng/mL until removal of a CIDR, then dropped under 0.3 ng/mL. Concentrations of plasma estradiol in BLANK cows increased during growth of the cystic follicles, with high levels greater than 10 pg/mL for over 10 days. In 4 of 5 cows with non-luteinized cysts, with high plasma estradiol on the day of CIDR insertion, CIDR treatment resulted in rapid decline of estradiol levels. During placement of the CIDR, estradiol levels showed no increase in the growth phase of a newly appeared dominant follicle. After CIDR removal, however, estradiol significantly increased associated with the growth of ovulatory follicles in all 9 cows. A transient increase in plasma FSH levels preceded detection of each follicular or cyst wave in both BLANK and CIDR cows. Pulse frequency and mean concentration of LH in cows with non-luteinized cysts showed values corresponding to those in normal follicular phase. However, throughout CIDR treatment, these parameters reduced to levels found in the normal luteal phase. In cows with luteinized cysts, parameters of LH secretion were as low as in the normal luteal phase before and during CIDR treatment, then increased significantly after CIDR removal. Present results indicate that treatment with CIDR proved effective in restoring ovulation and reestablishing normal cyclicity in beef donor cows with cysts persistent for a long period. The CIDR reduced and maintained LH secretion at normal luteal levels, thereby, inducing atresia of estrogen-active cysts and preventing formation of cysts from the newly emerged follicles.  相似文献   

9.
The Nelore bull (Bos taurus indicus) seminal plasma proteome was analyzed by MALDI-TOF MS and two-dimensional gel electrophoresis. A total of 260 spots were visualized in the 2-DE gel (pI range 3-10) and 13 spots could be identified by peptide mass fingerprinting corresponding to 11 different polypeptides. The results allowed the creation of the first proteomic map of Bos taurus indicus seminal plasma. The roles of the identified proteins in the bull seminal plasma are discussed.  相似文献   

10.
Considering that there is limited information about the preovulatory LH surge in Zebu cattle (Bos indicus), the purpose of the present work was to assess the LH surge in Nelore cows during the estrous cycle and after ovarian superestimulation of ovarian follicular development with FSH. This information is particularly important to improve superovulatory protocols associated with fixed-time artificial insemination. Nelore cows (n=12) had their estrus synchronized with an intravaginal device containing progesterone (CIDR-B) associated with estradiol benzoate administration (EB, 2.5 mg, i.m., Day 0). Eight days later all animals were treated with PGF2alpha (Day 8) in the morning (8:00 h) and at night, when CIDR devices were removed (20:00 h). Starting 38h after the first PGF2alpha injection, blood sampling and ovarian ultrasonography took place every 4h, during 37 consecutive hours. Frequent handling may have resulted in a stress-induced suppression of LH secretion resulting in only 3 of 12 cows having ovulations at 46.7+/-4.9 and 72.3+/-3.8 h, respectively, after removal of CIDR-B. Thirty days later, the same animals received the described hormonal treatment associated with FSH (Folltropin), total dose=200 mg) administered twice a day, during 4 consecutive days, starting on Day 5. Thirty-six hours after the first injection of PGF2alpha, to minimize stress, only seven blood samples were collected at 4h interval each, and ultrasonography was performed every 12 h until ovulation. In 11 of 12 cows (92%) the LH surge and ovulation were observed 34.6+/-1.6 and 59.5+/-1.9 h, respectively, after removal of progesterone source. The maximum values for LH in those animals were 19.0+/-2.6 ng/ml (mean+/-S.E.M.). It is concluded that, in Nelore cows submitted to a ovarian superstimulation protocol, the LH surge occurs approximately 35 h after removal of intravaginal device containing progesterone, and approximately 12h before the LH surge observed after an induced estrus without ovarian superstimulation.  相似文献   

11.
The effects of estradiol benzoate (EB) and estradiol cypionate (EC) on induction of ovulation after a synchronized LH surge and on fertility of Bos indicus females submitted to timed AI (TAI) were evaluated. In Experiment 1, ovariectomized Nelore heifers were used to evaluate the effect of EB (n = 5) and EC (n = 5) on the circulating LH profile. The LH surge timing (19.6 and 50.5 h; P = 0.001), magnitude (20.5 and 9.4 ng/mL; P = 0.005), duration (8.6 and 16.5 h; P = 0.001), and area under the LH curve (158.6 and 339.4 ng/mL; P = 0.01) differed between the EB and EC treatments, respectively. In Experiment 2 (follicular responses; n = 60) and 3 (pregnancy per AI; P/AI; n = 953) suckled Bos indicus beef cows submitted to an estradiol/progesterone-based synchronization protocol were assigned to receive one of two treatments to induce synchronized ovulation: 1 mg of EB im 24 h after progesterone (P4) device removal or 1 mg of EC im at P4 device removal. There was no difference (P > 0.05) between EB and EC treatments on follicular responses (maximum diameter of the ovulatory follicle, 13.1 vs. 13.9 mm; interval from progesterone device removal to ovulation, 70.2 vs. 68.5 h; and ovulation rate, 77.8 vs. 82.8%, respectively). In addition, P/AI was similar (P < 0.22) between the cows treated with EB (57.5%; 277/482) and EC (61.8%; 291/471). In conclusion, despite pharmacologic differences, both esters of estradiol administered either at P4 device removal (EC) or 24 h later (EB) were effective in inducing an LH surge which resulted in synchronized ovulations and similar P/AI in suckled Bos indicus beef cows submitted to TAI.  相似文献   

12.
To investigate seasonal effects on the efficacy of estrus synchronization in mares, we administered a progesterone-releasing device (PRID) intravaginally to eight Haflinger mares for 11 days. In January 3 of 8 mares responded to the treatment with estrus and ovulation, in March 7 with estrus and 6 of 7 mares with ovulation, in June 6 of 7 and in October 7 of 8 mares with estrus and ovulation. Follicle distribution patterns at PRID insertion were different between January/October, March/June and June/October (P<0.05). Number of follicles decreased during PRID treatment in January, March and June (difference of number of follicles at Day 12 minus number of follicles at Day 1: -4.2+/-2.7, -0.9+/-0.9 and -4.9+/-1.5 follicles), while it increased in October (3.9+/-1.2 follicles; P<0.05). Mean progesterone concentrations were lowest in January (0.3+/-0.1 ng mL(-1)) when compared with March (3.5+/-1.8 ng mL(-1); P=0.063), June (4.4+/-1.4 ng mL(-1); P<0.05) and October (2.2+/-0.9 ng mL(-1); P<0.05). At Day 2 of PRID treatment, mean progesterone concentrations significantly increased in all mares. Except from January, mean LH concentrations decreased within one day after PRID insertion and remained at low levels during treatments in January and March. Total secretion of LH during PRID-treatment was significantly lower in January and March when compared with June and October. In the 5 of 7 mares that ovulated during PRID treatment a distinct increase of plasma LH concentrations after ovulation was detected. Administration of the progesterone releasing intravaginal device PRID combined with the PGF2alpha analogue cloprostenol was able to induce estrus and ovulation in mares at different times of the year. However, efficacy of the treatment was not satisfactory concerning effectiveness in relation to season and synchrony of intervals from removal of PRID to ovulation in mares.  相似文献   

13.
The objective of this study was to evaluate the effectiveness of superovulatory protocols by synchronizing the emergence of the follicular wave using estradiol benzoate (EB) or GnRH in CIDR-treated, Korean cows. Sixty-six cows were used in the study and these were divided into three groups. The standard group comprised cows that were between days 8 and 12 of their estrous cycle (n=22). The remaining 44 cows, at all other stages of the estrous cycle, received CIDR and were assigned to two treatment groups that received either 2mg EB (EB-CIDR group, n=22) or 100 microg GnRH (GnRH-CIDR group, n=22) 1 day after CIDR insertion. Gonadotropin treatment began between the 8th and 12th days of the estrous cycle in the standard group, 5 days after EB injection in the EB-CIDR group, and 3 days after GnRH injection in the GnRH-CIDR group. All cows were superovulated with porcine FSH (pFSH) twice daily, with the dose (total 28 mg) decreasing gradually over 4 days. On the 5th and 6th injections of pFSH, 25 and 15 mg doses of PGF(2alpha) were administered. CIDR was withdrawn at the 7th pFSH injection and the cows received 200 microg GnRH at 24h after CIDR withdrawal. Cows were artificially inseminated twice at 36 and 48 h post-CIDR withdrawal and embryos were recovered 7 days after the 1st insemination. The numbers of preovulatory follicles (22.9-28.2), ovulated preovulatory follicles (17.6-21.7) and CL (15.9-17.9) detected by ultrasonography did not differ among groups (P>0.05). Similarly, the numbers of total ova (6.7-10.0), transferable embryos (4.0-6.0), degenerate embryos (1.1-1.8) and unfertilized ova (1.3-4.3) did not differ among groups (P>0.05). Progesterone and estradiol concentrations during superovulation treatments and at embryo recovery were also the same in all groups (P>0.05). We conclude that in CIDR-treated Korean native cows, superovulatory treatments that follow administration of either EB or GnRH (at any stage of the estrous cycle) result in both a superovulatory response and embryo yield comparable to conventional superovulation protocols.  相似文献   

14.
The effects of 4 estrus synchronization treatments on intervals to and synchrony of estrus and ovulation, on timing of the preovulatory LH surge and associated changes in plasma progesterone, LH, FSH, and 17beta-estradiol (E(2)) were investigated in 48 Bos indicus cows. Treatment 1 consisted of 2 injections of PGF(2alpha) 14 d apart (n = 12); Treatment 2 of a subcutaneous 3-mg norgestomet implant and an intramuscular injection of 3 mg of norgestomet and 5 mg estradiol valerate, with the implant removed 10 d later (n = 12; norgestomet-estradiol); Treatment 3 of norgestomet-estradiol, with a subcutaneous injection of PMSG given at time of implant removal (Day 10; n = 12); and Treatment 4 of norgestomet implant (as for Treatments 2 and 3) inserted for 10 d, with an intramuscular injection of PGF(2alpha) given at the time of implant removal (n = 12). The experiment was conducted in 2 replicates (24 cows/replicate, 6 cows/group). Estrus, ovulation and timing of the preovulatory surge of LH varied less in cows treated with norgestomet-estradiol and PMSG than in cows in Treatments 1 and 4 (P < 0.008). Treatment with PMSG reduced variation in ovulation times and timing of the LH surge in cows treated with norgestomet-estradiol (P < 0.02). Concentrations of E(2) were higher in cows in Treatments 2 and 3 on the final day of treatment and at about 6 h post ovulation compared with cows in Treatments 1 and 4 (P < 0.05). Different methods for synchronizing estrus did not alter sequential endocrine and behavioral changes in relation to the timing of the LH peak, and the results were consistent with current recommendations for insemination times in Bos taurus cattle.  相似文献   

15.
An experiment was performed to compare the effects of 3 short-term treatments with progesterone and estradiol benzoate (EB) on follicular growth, synchrony of estrus and pregnancy rate after fixed-time insemination in lactating postpartum beef cows. In Treatment 1 (n = 46), each cow received a progesterone-containing intravaginal insert for 7 d with injection of EB (2 mg, i.m.) at the time of device insertion. In Treatment 2 (n = 46), the insert was used for only 5 d with injection of EB (2 mg, i.m.) at the time of insertion. Cows in Treatment 3 (n = 47) received an insert for 5 d with no EB at the time of insertion. Each cow in the 3 groups received PGF2 alpha (25 mg, i.m.) at the time of insert removal, followed by EB (1 mg, i.m.) 30 h later. The cows were then inseminated 28 to 30 h after treatment with EB (58 to 60 h after insert removal). Treatment with 2 mg EB terminated the growth of the largest ovarian follicle (> 5 mm in diameter) at device insertion in 16/16 and 14/15 cows in Treatments 1 and 2, respectively. Estrus was detected within an 8-h target period (48 to 56 h after insert removal) in 93, 87 and 81% of cows in Treatments 1, 2 and 3, respectively (P > 0.05). Pregnancy rates at 39 d post insemination were 60, 50 and 51% for Treatments 1, 2 and 3, respectively (P > 0.05). The pregnancy rates did not differ between cows that were anovulatory or those that had ovulated before the initiation of treatments (54%), or among cows that were 28 to 40, 41 to 60 or > 60 days post partum at insemination (43, 59 and 54%, respectively). Treatment with progesterone inserts for 5 or 7 d, PGF2 alpha at the time of insert removal and 1 mg EB 30 h later induced the high degree of synchrony of estrus and ovulation necessary for fixed-time insemination.  相似文献   

16.
One aim of this study was to compare the reproductive performance of cows and heifers when resynchronizing returns to estrus for a second insemination by treating with an intravaginal progesterone-releasing device (IVD) for 7 or 8d when estradiol benzoate (EB) was administered at the start of treatment and again 24h after device removal. An additional aim was to document the pattern of onset and characteristics of estrus with each resynchrony treatment. Lactating cows in three herds were synchronized for a first estrus and AI by treatment with an IVD for 8d, starting on Day 0, cloprostenol (0.5 mg im) at device removal and EB at device insertion (2.0 mg im) and 24h after removal (1.0 mg im). Cows were resynchronized for a second estrus starting on Day 23 by reinsertion of IVDs for 7 (IVD-7-EB; n=449) or 8d (IVD-8-EB; n=445) with EB (1.0 mg im) administered at device insertion and 24h after removal. Cows were resynchronized for a third estrus by administration of EB (1.0 mg im) on Day 46, but subsequent treatments (no further treatment, reinsertion of CIDR or administration of EB on Day 55) varied among herds as part of separate studies. Maiden heifers (7-Day, n=68; 8-Day, n=69) were similarly treated as cows in a separate herd, but doses of EB were always 1.0 mg im at device insertion and 0.75 mg im 24h after removal. Heifers were not resynchronized for a third estrus. Cattle were inseminated on detection of estrus at each synchronized estrus. Cumulative pregnancy rates 4 week (66.0%, 276/418 versus 59.1%, 247/418) and 7 week (72.7%, 304/418 versus 67.7%, 283/418) after the start of AI were greater (P<0.05) in the IVD-7-EB cows compared to the IVD-8-EB cows, respectively; this was associated with a 9% increase in conception rates at the second estrus (P=0.051) in the IVD-7-EB cows. Treatment did not significantly affect reproductive performance in heifers. Characteristics of estrus measured with radiotelemetry did not differ significantly between the two treatment groups, but more cows were detected in estrus 36 h after removal of IVDs in the IVD-8-EB cows compared to the IVD-7-EB cows (P<0.05). We concluded that reproductive performance in resynchronized dairy cows but not heifers was greater following resynchronization of estrous cycles after AI with an IVD for 7 compared to 8d when EB was injected at the start of treatment and 24h after device removal.  相似文献   

17.
Two hundred nonsuckling beef cows were treated with either 1) a progesterone-releasing intravaginal device (PRID) for 12 days; 2) PRID plus an IM injection of 200 mg progesterone (PRID-P); 3) PRID plus 5-mg IM injection of estradiol valerate (PRID-EV); or 4) PRID-EV-P. Cows were started on treatment on one of the first eight days of the estrous cycle. The number of cows which had P levels above 1 ng/ml one day after PRID removal was 12 to 50% lower in PRID-EV and PRID-EV-P groups than in PRID and PRID-P groups (P < 0.05). The proportion of cows showing estrus by 96 hours after PRID removal was 38, 36, 77, and 88% (P < 0.05) for the PRID, PRID-P, PRID-EV and PRID-EV-P groups, respectively. Thirty-one percent fewer cows treated with PRID on days 5 through 8 of the estrous cycle showed estrus by four days after PRID removal than those treated on days 1 through 4. In addition, 18 to 22% more cows had P levels above 1 ng/ml among cows treated with PRID or PRID-P on days 5 through 8 than among cows treated similarly on days 1 through 4. It was concluded that effective synchronization of estrus is achieved only when estrogen is used in conjunction with PRID in cows treated for twelve days during the first eight days of an estrous cycle.  相似文献   

18.
To investigate why the preferred means to produce bovine embryos in Brazil has changed from in vivo to in vitro, we compared these two approaches in the same Nelore cows (n = 30) and assessed total embryo production and pregnancy rates. Without a specific schedule, all cows were subjected to ultrasound-guided ovum pick up (OPU)/in vitro production (IVP) and MOET, with intervals ranging from 15 to 45 d between procedures, respectively. To produce in vivo embryos, cows were superovulated and embryos were recovered nonsurgically from 1 to 3 times (1.4 ± 0.6), whereas OPU/IVP was repeated from 1 to 5 times (3.2 ± 1.2) in each donor cow during a 12-mo interval. Embryos obtained from both methods were transferred to crossbred heifers. On average, 25.6 ± 15.3 immature oocytes were collected per OPU attempt. The average number of embryos produced by OPU/IVP (9.4 ± 5.3) was higher (P < 0.05) than the MOET method (6.7 ± 3.7). However, pregnancy rates were lower (P < 0.05) following transfer of IVP (33.5%) versus in vivo-derived embryos (41.5%) embryos. Embryonic losses between Days 30 and 60 and fetal sex ratio were similar (P > 0.05) between in vivo and in vitro-derived embryos. We concluded that in Nelore cows, with an interval of 15 d between OPU procedures, it was possible to produce more embryos and pregnancies compared to conventional MOET.  相似文献   

19.
《Theriogenology》1986,26(6):749-755
A study was undertaken to induce estrus among 15 non-cyclic Murrah buffalo heifers at a relatively early age of 2.5 to 3 yr by progesterone releasing intravaginal device (PRID) application. On Day 13, the PRID was removed and the animals were divided into two groups (A and B). Group B received 1000 IU of pregnant mare serum gonadotrophin (PMSG) intramuscularly (i.m.) immediately after removal of the PRID, whereas Group A was given no further treatment. Circulating gonadotrophin profiles (luteinizing hormone (LH) and follicle stimulating hormone (FSH) were quantified during and after the PRID treatment, as well as during the induced estrous cycle. LH and FSH levels before, during, and after PRID treatment were in the range of 0.5 to 3.0 ng/ml and 10 to 45 ng/ml, respectively, and could be considered basal levels. The peak FSH levels of Group B (PRID + PMSG) during estrus ranged from 69.44 to 337.06 ng/ml, much higher than the levels recorded in Group A (PRID). None of the animals in Group A showed peak LH levels during estrus, whereas two animals in Group B had peak LH levels of 15.84 and 16.93 ng/ml at 0 h and 12 h after detection of estrus. The higher LH and FSH levels obtained in Group B animals compared with Group A animals was possibly due to the superimposed effect of PMSG over PRID. All of the 14 animals exhibited estrus. None of the animals in Group A conceived whereas three out of seven animals in Group B conceived, indicating that PMSG following PRID resulted in ovulatory estrus.  相似文献   

20.
Plasma progesterone concentrations were determined weekly during gestation averaging 283 +/- 2 d in Ethiopian zebu (Bos indicus) cows. Mean progesterone levels increased from 0.2 +/- 0.1 ng/ml at oestrus (service) to 3.1 +/- 1.6 ng/ml on d 7 and 8.1 +/- 2.1 ng/ml on d 21. Progesterone levels remained elevated throughout pregnancy. Hormone concentration differed significantly between cows (P less than 0.001) and with the wk of pregnancy (P less than 0.05); it tended to be higher during the last trimester of pregnancy. Mean levels dropped sharply to below 1 ng/ml during the last wk of pregnancy with considerable variation (C.V. = 39 to 63%) among cows. These data indicate that pregnancy in Ethiopian zebu cows can be reliably diagnosed by determining circulatory plasma progesterone levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号