首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the emerging role of hematopoietic stem cells as potential gene and cell therapy vehicles, there is an increasing need for safe and effective nonviral gene delivery systems. Here, we report that gene transfer and transfection efficiency in human hematopoietic and cord blood CD34+ cells can be enhanced by the use of low molecular weight polyethylenimine (PEI). PEIs of various molecular weights (800-750,000) were tested, and our results showed that the uptake of plasmid DNA by hematopoietic TF-1 cells depended on the molecular weights and the N/P ratios. Treatment with PEI 2K (m.w. 2000) at an N/P ratio of 80/1 was most effective, increasing the uptake of plasmid DNA in TF-1 cells by 23-fold relative to Lipofectamine 2000. PEI 2K-enhanced transfection was similarly observed in hematopoietic K562, murine Sca-1+, and human cord blood CD34+ cells. Notably, in human CD34+ cells, a model gene transferred with PEI 2K showed 21,043- and 513-fold higher mRNA expression levels relative to the same construct transfected without PEI or with PEI 25 K, respectively. Moreover, PEI 2K-treated TF-1 and human CD34+ cells retained good viability. Collectively, these results indicate that PEI 2K at the optimal N/P ratio might be used to safely enhance gene delivery and transfection of hematopoietic and human CD34+ stem cells.  相似文献   

2.
Novel ABA triblock copolymers consisting of low molecular weight linear polyethylenimine (PEI) as the A block and poly(ethylene glycol) (PEG) as the B block were prepared and evaluated as polymeric transfectant. The cationic polymerization of 2-methyl-2-oxazoline (MeOZO) using PEG-bis(tosylate) as a macroinitiator followed by acid hydrolysis afforded linear PEI-PEG-PEI triblock copolymers with controlled compositions. Two copolymers, PEI-PEG-PEI 2100-3400-2100 and 4000-3400-4000, were synthesized. Both copolymers were shown to interact with and condense plasmid DNA effectively to give polymer/DNA complexes (polyplexes) of small sizes (<100 nm) and moderate zeta-potentials (approximately +10 mV) at polymer/plasmid weight ratios > or =1.5/1. These polyplexes were able to efficiently transfect COS-7 cells and primary bovine endothelial cells (BAECs) in vitro. For example, PEI-PEG-PEI 4000-3400-4000 based polyplexes showed a transfection efficiency comparable to polyplexes of branched PEI 25000. The transfection activity of polyplexes of PEI-PEG-PEI 4000-3400-4000 in BAECs using luciferase as a reporter gene was 3-fold higher than that for linear PEI 25000/DNA formulations. Importantly, the presence of serum in the transfection medium had no inhibitive effect on the transfection activity of the PEI-PEG-PEI polyplexes. These PEI-PEG-PEI triblock copolymers displayed also an improved safety profile in comparison with high molecular weight PEIs, since the cytotoxicity of the polyplex formulations was very low under conditions where high transgene expression was found. Therefore, linear PEI-PEG-PEI triblock copolymers are an attractive novel class of nonviral gene delivery systems.  相似文献   

3.
Polyethylenimines (PEI) constitute efficient nonviral vectors for gene transfer. However, because free PEI shows some cytotoxicity and because intracellular dissociation of PEI/DNA complexes seems to be required for efficient transfection, it is important to monitor the concentrations of free and bound partners in the mixtures of DNA and PEI used for transfection. To reach this objective, we used fluorescence correlation spectroscopy with two-photon excitation to characterize the complexes formed with either rhodamine-labeled 25 kDa PEI or DNA plasmid molecules. At the molar ratios of PEI nitrogen atoms to DNA phosphate usually used for transfection, we found that approximately 86% of the PEI molecules were in a free form. The PEI/DNA complexes are composed on the average by 3.5 (+/-1) DNA plasmids and approximately 30 PEI molecules. From this composition and the pK(a) of PEI, it could be inferred that in contrast to DNA condensation by small multivalent cations, only a limited neutralization of the DNA phosphate groups is required for DNA condensation by PEI. Moreover, DNA appears only poorly compacted in the PEI/DNA complexes. As an application, fluorescence correlation spectroscopy was used to monitor the purification of PEI/DNA complexes by ultrafiltration as well as the heparin-induced dissociation of the complexes.  相似文献   

4.
Dexamethasone, a glucocorticoid steroid, can dilate the nuclear pore complexes and translocate into the nucleus when it is bound to its glucocorticoid receptor, suggesting that the transport of DNA into the nucleus may be facilitated by the reagent. In this research, dexamethasone was conjugated to low molecular weight polyethylenimine (2 kDa) for efficient translocation of the polymer/DNA complex into the nucleus. Polyethylenimine (PEI)-dexamethasone (PEI-Dexa) was synthesized by one-step reaction using the Traut's reagent. In gel retardation assay, the PEI-Dexa/DNA complex was completely retarded at or above 0.3/1 weight ratio (polymer/DNA). The average size distributions and zeta-potential values of the complexes were measured at various weight ratios. In vitro transfection assay showed that the PEI-Dexa/DNA complex had higher gene delivery efficiency compared to PEI 2kDa/DNA complex. The localization of PEI-Dexa/plasmid DNA complexes in the nucleus was confirmed by using total internal reflection fluorescence and Nomarski differential interference contrast microscope as well as confocal microscope. Therefore, with efficient nuclear translocation and low cytotoxicity, PEI-Dexa may be useful for nonviral gene therapy.  相似文献   

5.
Gene therapy by delivery of nonviral expression vectors is highly desirable, due to their safety, stability, and suitability for production as bulk pharmaceuticals. However, low transfection efficiency remains a limiting factor in application on nonviral gene delivery. Despite recent advances in the field, there are still major obstacles to overcome. In an attempt to construct more efficient nonviral gene delivery vectors, we have designed a series of novel lipopeptide transfection agents, consisting of an alkyl chain, one cysteine, 1 to 4 histidine and 1 to 3 lysine residues. The lipopeptides were designed to facilitate dimerization (by way of the cysteine residues), DNA binding at neutral pH (making use of charged lysine residues), and endosomal escape (by way of weakly basic histidine residues). DNA/lipopeptide complexes were evaluated for their biophysical properties and transfection efficiencies. The number and identity of amino acids incorporated in the lipopeptide construct affected their DNA/lipopeptide complex forming capacity. As the number of lysine residues in the lipopeptide increased, the DNA complexes formed became more stable, had higher zeta potential (particle surface charge), and produced smaller mean particle sizes (typically 110 nm at a charge ratio of 5.0 and 240 nm at a charge ratio of 1.0). The effect of inclusion of histidines in the lipopeptide moiety had the opposite effect on complex formation to lysine, but was necessary for high transfection efficiency. In vitro transfection studies in COS-7 cells revealed that the efficiency of gene delivery of the luciferase encoding plasmid, pCMV-Luc, mediated by all the lipopeptides, was much higher than poly(L-lysine) (PLL), which has no endosomal escape system, and in two cases was slightly higher than that of branched polyethylenimine (PEI). Lipopeptides with at least two lysine residues and at least one histidine residue produced spontaneous transfection complexes with plasmid DNA, indicating that endosomal escape was achieved by incorporation of histidine residues. These low molecular weight peptides can be readily synthesized and purified and offer new insights into the mechanism of action of transfection complexes.  相似文献   

6.
A new polyethylenimine (PEI)-derived biodegradable polymer was synthesized as a nonviral gene carrier. Branches of PEI were ketalized, and capabilities of nucleic acid condensation and delivery efficiency of the modified polymers were compared with ones of unketalized PEI. Ketalized PEI was able to efficiently compact both plasmid DNA and siRNA into nucleic acids/ketalized PEI polyplexes with a range of 80-200 nm in diameter. Nucleic acids were efficiently dissociated from the polyplexes made of ketalized PEI upon hydrolysis. In vitro study also demonstrated that ketalization enhanced transfection efficiency of the polyplexes while reducing cytotoxicity, even at high N/ P ratios. Interestingly, transfection efficiency was found to be inversely proportional to molecular weights of ketalized PEI, while RNA interference was observed in the opposite way. This study implies that selective delivery of plasmid DNA and siRNA to the nucleus and the cytoplasm can be achieved by tailoring the structures of polymeric gene carriers.  相似文献   

7.
The nonviral vector with iodine-nuclear localization sequence (namely, NLS-I) targeting breast cancer cells was fabricated. Ternary complexes were formed via charge interactions among NLS-I peptides, PEI 1800, and DNA, and we investigated their cellular internalization, nuclear accumulation as well as transfection efficiency. All the experiments were assessed by employing MCF-7 cells that express sodium/iodide symporter and HeLa cells that lack the expression of the symporter. In MCF-7 cells, cell internalization and nuclear accumulation of NLS-I was markedly increased compared to that in NLS. In addition, compared to that of the PEI1800/DNA complex, PEI1800/DNA/NLS-I complexes exhibited much enhanced luciferase reporter gene expression by up to 130-fold. By contrast, in HeLa cells, the evident improvements of cellular internalization, nuclear accumulation, and transfection efficiency by NLS-I were not observed. This study demonstrates an alternative method to construct a nonviral delivery system for targeted gene transfer into breast cancer cells.  相似文献   

8.
Tumor-targeting DNA complexes which can readily be generated by the mixing of stable components and freeze-thawed would be very advantageous for their subsequent application as medical products. Complexes were generated by the mixing of plasmid DNA, linear polyethylenimine (PEI22, 22 kDa) as the main DNA condensing agent, PEG-PEI (poly(ethylene glycol)-conjugated PEI) for surface shielding, and Tf-PEG-PEI (transferrin-PEG-PEI) to provide a ligand for receptor-mediated cell uptake. Within the shielding conjugates, PEG chains of varying size (5, 20, or 40 kDa) were conjugated with either linear PEI22 (22 kDa) or branched PEI25 (25 kDa). The three polymer components were mixed together at various ratios with DNA; particle size, surface charge, in vitro transfection activity, and systemic gene delivery to tumors was investigated. In general, increasing the proportion of shielding conjugate in the complex reduced surface charge, particle size, and in vitro transfection efficiency in transferrin receptor-rich K562 cells. The particle size or surface charge of the complexes containing the PEG-PEI conjugate did not significantly change after freeze-thawing, while complexes without the shielding conjugate aggregated. Complexes containing PEG-PEI conjugate efficiently transfected K562 cells after freeze-thawing. Furthermore the systemic application of freeze-thawed complexes exhibited in vivo tumor targeted expression. For complexes containing the luciferase reporter gene the highest expression was found in tumor tissue of mice. An optimum formulation for in vivo application, PEI22/Tf-PEG-PEI/PEI22-PEG5, containing plasmid DNA encoding for the tumor necrosis factor (TNF-alpha), inhibited tumor growth in three different murine tumor models. These new DNA complexes offer simplicity and convenience, with tumor targeting activity in vivo after freeze-thawing.  相似文献   

9.
We constructed multimers of the TAT-(47-57) peptide. This polycationic peptide is known to be a protein and particle transduction domain and at the same time to comprise a nuclear localization function. Here we show that oligomers of the TAT-(47-57) peptide compact plasmid DNA to nanometric particles and stabilize DNA toward nuclease degradation. At optimized vector compositions, these peptides mediated gene delivery to cells in culture 6-8-fold more efficiently than poly-L-arginine or the mutant TAT(2)-M1. When DNA was precompacted with TAT peptides and polyethyleneimine (PEI), Superfect, or LipofectAMINE was added, transfection efficiency was enhanced up to 390-fold compared with the standard vectors. As early as after 4 h of transfection, reporter gene expression mediated by TAT-containing complexes was higher than the 24-h transfection level achieved with a standard PEI transfection. When cells were cell cycle-arrested by serum starvation or aphidicolin, TAT-mediated transfection was 3-fold more efficient than a standard PEI transfection in proliferating cells. In primary nasal epithelial cells and upon intratracheal instillation in vivo, TAT-containing complexes were superior to standard PEI vectors. These data together with confocal imaging of TAT-DNA complexes in cells support the hypothesis that the TAT nuclear localization sequence function is involved in enhancing gene transfer.  相似文献   

10.
A thermoresponsive cationic copolymer, poly( N-isopropylacrylamide- co- N-(3-(dimethylamino)propyl)methacrylamide)- b-polyethyleneimine (P(NIPAAm- co-NDAPM)- b-PEI), was designed and synthesized as a potential nonviral gene vector. The lower critical solution temperature (LCST) of P(NIPAAm- co-NDAPM)- b-PEI in water measured by UV-vis spectroscopy was 38 degrees C. P(NIPAAm- co-NDAPM)- b-PEI as the gene vector was evaluated in terms of cytotoxicity, buffer capability determined by acid-base titration, DNA binding capability characterized by agarose gel electrophoresis and particle size analysis, and in vitro gene transfection. P(NIPAAm- co-NDAPM)- b-PEI copolymer exhibited lower cytotoxicity in comparison with 25 kDa PEI. Gel retardation assay study indicated that the copolymer was able to bind DNA completely at N/P ratios higher than 30. At 27 degrees C, the mean particle sizes of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes decreased from 1200 to 570 nm corresponding to the increase in N/P ratios from 10 to 60. When the temperature changed to 37 degrees C, the mean particle sizes of complexes decreased from 850 to 450 nm correspondingly within the same N/P ratio range due to the collapse of thermoresponsive PNIPAAm segments. It was found that the transfection efficiency of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes was higher than or comparable to that of 25 kDa PEI/DNA complexes at their optimal N/P ratios. Importantly, the transfection efficiency of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes could be adjusted by altering the transfection and cell culture temperature.  相似文献   

11.
Efficient DNA transfection is critical for biological research and new clinical therapies, but the mechanisms responsible for DNA uptake are unknown. Current nonviral transfection methods, empirically designed to maximize DNA complexation and/or membrane fusion, are amenable to enhancement by a variety of chemicals. These chemicals include particulates, lipids, and polymer complexes that optimize DNA complexation/condensation, membrane fusion, endosomal release, or nuclear targeting, which are the presumed barriers to gene delivery. Most chemical enhancements produce a moderate increase in gene delivery and a limited increase in gene expression. As a result, the efficiency of transfection and level of gene expression after nonviral DNA delivery remain low, suggesting the existence of additional unidentified barriers. Here, we tested the hypothesis that DNA transfection efficiency is limited by a simple physical barrier: low DNA concentration at the cell surface. We used dense silica nanoparticles to concentrate DNA-vector (i.e. DNA-transfection reagent) complexes at the surface of cell monolayers; manipulations that increased complex concentration at the cell surface enhanced transfection efficiency by up to 8.5-fold over the best commercially available transfection reagents. We predict that manipulations aimed at optimizing DNA complexation or membrane fusion have a fundamental physical limit; new methods designed to increase transfection efficiency must increase DNA concentration at the target cell surface without adding to the toxicity.  相似文献   

12.
BACKGROUND: Non-viral methods of gene delivery, especially using polyethylenimine (PEI), have been widely used in gene therapy or DNA vaccination. However, the PEI system has its own drawbacks, which limits its applications. METHODS: We have developed a novel non-viral delivery system based on PEI coated on the surface of bacterial magnetic nanoparticles (BMPs). The ability of BMPs-PEI complexes to bind DNA was determined by retardation of plasmid DNA in agarose gel electrophoresis. The transfection efficiency of BMPs-PEI/DNA complexes into eukaryotic cells was determined by flow cytometric analysis. The MTT assay was invited to investigate the cytotoxicity of BMPs-PEI/DNA complexes. The expression efficiency in vivo of BMPs-PEI bound to the plasmid pCMVbeta encoding beta-galactosidase was evaluated intramuscularly inoculated into mice. The immune responses of in vivo delivery of BMPs-PEI bound plasmid pcD-VP1 were determined by MTT assay for T cell proliferation and ELISA for detecting total IgG antibodies. RESULTS: BMPs-PEI complexes could bind DNA and provide protection from DNase degradation. The transfection efficiency of BMPs-PEI/DNA complexes was higher than that in PEI/DNA complexes. Interestingly, in contrast to PEI, the BMPs-PEI complex was less cytotoxic to cells in vitro. We further demonstrated that the BMPs-PEI system can deliver an exogenous gene to animals and allow it to be expressed in vivo. Such expression resulted in higher levels of humoral and cellular immune responses against the target antigen compared to controls. CONCLUSIONS: We have developed a novel BMPs-PEI gene delivery system with a high transfection efficiency and low toxicity, which presents an attractive strategy for gene therapy and DNA vaccination.  相似文献   

13.
Polyethylenimine (PEI) and cationic polypeptides complexed with plasmid DNA are the most efficient nonviral vectors for gene therapy. It is believed that endocytosis is the major pathway for cell entering by PEI/DNA or cationic peptides/DNA complexes. Effects of plasmid DNA complexed with PEI, poly-L-lysine (PLL), poly-D-lysine (PDL) and polyarginine (PA) on the phagosome-lysosome fusion (P-LF) were studied in murine peritoneal macrophages and J774 macrophages. Cationic polypeptide PLL can be hydrolysed by cellular peptidases, but its stereoisomer, PDL, cannot be split by these enzymes. PEI, PDL, and PA have been shown to inhibit P-LF. PLL showed a low effect on the P-LF. On the basis of these studies, we assume that lysosomotropic agents able to change functions of lysosomes in the cell may affect transfection efficiency and thus be used for gene therapy.  相似文献   

14.
Hyperbranched poly(ester amine)s (PEAs) were successfully synthesized by Michael addition reaction between tris[2-(acryloyloxy)ethyl]isocyanurate (TAEI) and low-molecular-weight polyethylenimine (LPEI, M(w) 0.8k, 1.2k, and 2.0k) and evaluated in vitro and in vivo as gene carriers. PEAs effectively condensed plasmid DNA with particle sizes below 200 nm and surface charges between 11.5 and 33.5 mV under tested doses [at the ratios 2-10:1 of polymer/pDNA(w/w)]. The PEAs showed significantly lower cytotoxicities when compared with PEI 25k in two different cell lines. The PEAs (C series) composed of PEI 2k showed higher transgene expression compared to PEAs of PEI 0.8k (A series) or 1.2k (B series). Highest gene transfection efficiency in CHO, C2C12 myoblast, and human skeletal muscle (HSK) cell lines was obtained with TAEI/PEI-2K (C12) at a ratio of 1:2. Both C12, C14(TAEI/PEI-2K at a ratio of 1:4) demonstrated 5-8-fold higher gene expression as compared with PEI 25k in mdx mice in vivo through intramuscular administration. No obvious muscle damage was observed with these new polymers. Higher transfection efficiency and lower toxicity indicate the potential of the biodegradable PEAs as safe and efficient transgene delivery vectors.  相似文献   

15.
BACKGROUND: Polyethylenimines (PEIs) with high molecular weights are effective nonviral gene delivery vectors. However, the in vivo use of these PEIs can be hampered by their cellular toxicity. In the present study we developed and tested a new PEI polymer synthesized by linking less toxic, low molecular weight (MW) PEIs with a commonly used, biocompatible drug carrier, beta-cyclodextrin (CyD). METHODS AND RESULTS: The terminal CyD hydroxyl groups were activated by 1,1'-carbonyldiimidazole. Each activated CyD then linked two branched PEI molecules with MW of 600 Da to form a CyD-containing polymer with MW of 61 kDa, in which CyD served as a part of the backbone. The PEI-CyD polymer developed was soluble in water and biodegradable. In cell viability assays with sensitive neurons, the polymer performed similarly to low-MW PEIs and displayed much lower cellular cytotoxicity compared to PEI 25 kDa. The gene delivery efficiency of the polymer was comparable to, and at higher polymer/DNA ratios even higher than, that offered by PEI 25 kDa in neural cells. Attractively, intrathecal injection of plasmid DNA complexed by the polymer into the rat spinal cord provided levels of gene expression close to that offered by PEI 25 kDa. CONCLUSIONS: The polymer reported in the current study displayed improved biocompatibility over non-degradable PEI 25 kDa and mediated gene transfection in cultured neurons and in the central nervous system effectively. The new polymer would be worth exploring further as an in vivo delivery system of therapeutic genetic materials for gene therapy of neurological disorders.  相似文献   

16.
We report herein the molecular engineering of an efficient two-photon absorbing (TPA) chromophore based on a donor-donor bis-stilbenyl entity to allow conjugation with biologically relevant molecules. The dye has been functionalized using an isothiocyanate moiety to conjugate it with the amine functions of poly(ethylenimine) (PEI), which is a cationic polymer commonly used for nonviral gene delivery. Upon conjugation, the basic architecture and photophysical properties of the active TPA chromophore remain unchanged. At the usual N/P ratio (ratio of the PEI positive charges to the DNA negative charges) of 10 used for transfection, the transfection efficiency and cytotoxicity of the labeled PEI/DNA complexes were found to be comparable to those of the unlabeled PEI/DNA complexes. Moreover, when used in combination with unlabeled PEI (at a ratio of 1 labeled PEI to 3 unlabeled PEI), the labeled PEI does not affect the size of the complexes with DNA. The labeled PEI was successfully used in two-photon fluorescence correlation spectroscopy measurements, showing that at N/P = 10 most PEI molecules are free and the diffusion coefficient of the complexes is consistent with the 360 nm size measured by quasielastic light scattering. Finally, two-photon images of the labeled PEI/DNA complexes confirmed that the complexes enter into the cytoplasm of HeLa cells by endocytosis and hardly escape from the endosomes. As a consequence, the functionalized TPA chromophore appears to be an adequate tool to label the numerous polyamines used in nonviral gene delivery and characterize their complexes with DNA in two-photon applications.  相似文献   

17.
Dendronized chitosan derivative as a biocompatible gene delivery carrier   总被引:1,自引:0,他引:1  
Deng J  Zhou Y  Xu B  Mai K  Deng Y  Zhang LM 《Biomacromolecules》2011,12(3):642-649
To improve the transfection efficiency of chitosan as a nonviral gene delivery vector, a dendronized chitosan derivative was prepared by a copper-catalyzed azide alkyne cyclization reaction of propargyl focal point poly(amidoamine) dendron with 6-azido-6-deoxy-chitosan. Its structure was characterized by (1)H NMR and FTIR analyses and its buffering capacity was evaluated by acid-base titration. In particular, its complexation with plasmid DNA was investigated by agarose gel electrophoresis, zeta potential, and particle size analyses as well as transmission electron microscopy observation. Compared to unmodified chitosan, such a chitosan derivative has better water solubility and buffering capacity. Compared to commonly used polyethyleneimine (PEI, 25 kDa), it could exhibit enhanced transfection efficiency in some cases and lower cell toxicity, as confirmed by in vitro transfection and cytotoxicity tests in human kidney 293T and human nasopharyngeal carcinoma CNE2 cell lines. In addition, the effect of serum on its transfection efficiency was also studied.  相似文献   

18.
Wang Y  Zheng M  Meng F  Zhang J  Peng R  Zhong Z 《Biomacromolecules》2011,12(4):1032-1040
Twenty-five kDa polyethylenimine (PEI) is one of the most efficient nonviral gene transfer agents currently applied as a golden standard for in vitro transfection. In this study, novel 25 kDa PEI derivatives with reductively cleavable cystamine periphery (PEI-Cys) were designed to reduce carrier-associated cytotoxicity and to enhance further the transfection activity. The Michael-type conjugate addition of 25 kDa PEI with N-tert-butoxycarbonyl-N'-acryloyl-cystamine (Ac-Cys-(t)Boc) and N-tert-butoxycarbonyl-N'-methacryloyl-cystamine (MAc-Cys-(t)Boc) followed by deprotection readily afforded PEI-Cys derivatives, denoted as PEI-(Cys)x(Ac) and PEI-(Cys)x(MAc), with degree of substitution (DS) ranging from 14 to 34 and 13 to 38, respectively. All PEI-Cys derivatives had higher buffer capacity than the parent 25 kDa PEI (21.2 to 23.1% versus 15.1%). Gel retardation and ethidium bromide exclusion assays showed that cystamine modification resulted in largely enhanced interactions with DNA. PEI-(Cys)x(Ac) could condense DNA into small-sized particles of 80-90 nm at and above an N/P ratio of 5/1, which were smaller than polyplexes of 25 kDa PEI (100-130 nm). In comparison, PEI-(Cys)x(MAc) condensed DNA into somewhat larger particles (100-180 nm at N/P ratios from 30/1 to 5/1). Gel retardation and dynamic light scattering (DLS) measurements showed that PEI-Cys polyplexes were quickly unpacked to release DNA in response to 10 mM dithiothreitol (DTT). These PEI-Cys derivatives revealed markedly decreased cytotoxicity as compared with 25 kDa PEI with IC(50) values of >100 mg/L and 50-75 mg/L for HeLa and 293T cells, respectively (corresponding IC(50) data of 25 kDa PEI are ca. 11 and 3 mg/L). The in vitro transfection experiments in HeLa and 293T cells using pGL3 as a reporter gene showed that gene transfection activity of PEI-Cys derivatives decreased with increasing DS and PEI-(Cys)x(MAc) exhibited higher transfection activity than PEI-(Cys)x(Ac) at similar DS. Notably, polyplexes of PEI-(Cys)14(Ac) and PEI-(Cys)13(MAc) showed significantly enhanced gene transfection efficiency (up to 4.1-fold) as compared with 25 kDa PEI formulation at an N/P ratio of 10/1 in both serum-free and 10% serum-containing conditions. The modification of PEI with reductively cleavable periphery appears to be a potential approach to develop safer and more efficient nonviral gene vectors.  相似文献   

19.
Polyethylenimine (PEI) is a polycation with potential application as a nonviral vector for gene delivery. Here we show that after conjugation with homobifunctional amine reactive reducible cross-linking reagents, low molecular weight polyethylenimine efficiently mediates in vitro gene delivery to Chinese hamster ovary (CHO) cells. Two cross-linking reagents, dithiobis(succinimidylpropionate) (DSP) and dimethyl.3,3'-dithiobispropionimidate*2HCl (DTBP), were utilized based on their reactivity and chemical properties. Both reagents react with primary amines to form reducible cross-links; however, unlike DSP, the DTBP cross-linker maintains net polymer charge through amidine bond formation. PEI with a reported weight-average molecular weight (M(w)) of 800 Da was reacted with either DSP or DTBP at PEI primary amine:cross-link reactive group ratios of 1:1 and 2:1. The transfection efficiencies of the resulting cross-linked products were evaluated in CHO cells using a luciferase reporter gene under a cytomegalovirus (CMV) promoter. Our results show that cross-linked polymers mediate variable levels of transfection depending on the cross-linking reagent, the extent of conjugation, and the N/P ratio. In general, we found conjugate size to be proportional to gene transfer efficiency. Using gel retardation analysis, we also evaluate the capacity of the cross-linked polymers to condense plasmid DNA before and after reduction with 45 mM dithiothreitol (DTT). DTT mediated reduction of intra-cross-link disulfide bonds and inhibited condensation of DNA by conjugates cross-linked with DSP at a ratio of 1:1, but had little effect on the remaining polymers. Analogous intracellular reduction of transfection complexes by reduced glutathione could facilitate uncoupling of PEI from DNA to enhance gene expression.  相似文献   

20.
A series of amphiphilic star and linear block copolymers were synthesized using ATRP. The core consisted of either polystyrene (PS) or poly(n-butyl acrylate) (PBuA), having different glass-transition (T(g)) values. These polymers were used as macroinitiators in the polymerization of the cationic 2-(dimethylamino)ethyl methacrylate (DMAEMA). The polymers were used to study the effects of polymer architecture and flexibility on the self-assembling properties, DNA complexation, and transfection. All polymers formed core-shell micelles in aqueous solutions and condensed plasmid DNA. Linear PDMAEMA-PBuA-PDMAEMA has transfection efficiency comparable to PEI25K in ARPE19 cell line. Glassy state of the micellar core and star-shaped architecture decreased the DNA transfection compared with the rubbery and linear polymer structures. The polymers showed low cellular toxicity at low nitrogen/phosphate (n/p) ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号