首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Isolated lobules of freshly delivered human term placenta were (a) subjected to an indirect immunoelectron ultracryo method in which the immunoreactivity of endogenous Immunoglobulin-G (IgG) to rabbit anti-human IgG antibody was localized with protein-A-colloidal gold and (b) extracorporeally perfused and human IgG molecules complexed to horseradish peroxidase (HRP) added to the maternal perfusate and the uptake of IgG-HRP over different perfusion durations visualized ultrastructurally by using diaminobenzidine cytochemistry. Immunoreactivity to anti-human IgG antibody was localized all along the apical plasmalemma, in apical coated and uncoated vesicles, in apical and juxtanuclear multivesicular bodies, and in basal vesicles of the syncytiotrophoblast layer of the placenta. The stroma separating the syncytiotrophoblast from the foetal endothelium as well as vesicles within the endothelium were immunoreactive. No immunoreactivity was localized in paracellular clefts of endothelia. A similar distribution of exogenous IgG-HRP was observed for the perfused placentae. When bovine IgG-HRP or HRP alone were used as control tracers no uptake was seen for the former whilst the latter was observed only in early endosomal vesicles of the syncytiotrophoblast. The pattern of localization visualized in both studies is consistent with receptor-mediated uptake of IgG by the syncytiotrophoblast and a vesicular transport of IgG across the foetal endothelium.  相似文献   

2.
Summary Endogenous immunoglobulin-G was localised in ultrathin frozen sections of human term placenta by use of an indirect immuno electron-histochemical methodology. Immunoreactivity of endogenous IgG to rabbit anti-human immunoglobulin-G antibody was visualised by use of protein-A — colloidal gold complex. Gold marked the syncytiotrophoblast in both coated and uncoated regions of the apical plasmalemma, in vesicles and multivesicular bodies, and in vesicles near the basal plasmalemma. Immunoreactivity was also seen in the interstitial space between the trophoblast and the fetal endothelial layer as well as in various types of vesicles within the endothelial cells. No immunoreactivity was seen in the intercellular clefts of the endothelium. The pattern of localisation observed is consistent with receptor-mediated uptake of immunoglobulin-G into the syncytiotrophoblast of the human placenta followed by release into the interstitial space and then vesciular transport through the endothelium.  相似文献   

3.
Summary Rabbit yolk sac splanchnopleur exposed in utero to IgG-HRP and IgG-ferritin conjugates, rabbit and bovine anti-HRP antibodies, free HRP, ferritin and human IgG, was examined ultrastructurally in an attempt to determine whether or not coated micropinocytotic vesicles are involved in selectively transporting immunoglobulins across yolk sac endodermal cells. Human, rabbit and bovine IgG-HRP conjugates, rabbit anti-HRP antibodies, free HRP and human IgG, all become localised in coated micropinocytotic vesicles. Differences were observed in that only human IgG and rabbit anti-HRP antibodies could be located in the intercellular space and bovine IgG-HRP conjugate could not be detected in coated micropinocytotic vesicles in confluence with the lateral and basal plasmalemma. Bovine anti-HRP antibodies, IgG-ferritin conjugates, and free ferritin, could not be observed in coated micropinocytotic vesicles. All proteins were detected in macropinocytotic vesicles, and dense bodies resembling phagolysosomes. Results are discussed in the light of a proposal that selection occurs at the cell surface during formation of coated micropinocytotic vesicles and is not linked to intracellular proteolysis.Supported by an award from the Medical Research Council, to whom grateful acknowledgement is made  相似文献   

4.
Label-fracture immunochemistry and pre-embedding indirect immunocytochemistry were applied to investigate insulin uptake by endothelial cells. Freeze fracture replicas showed that a small percentage of native insulin receptors are associated with non-coated pits (4%) and coated pits (2%). After warming, receptor bound insulin became increasingly associated with such endocytotic vesicles. After 2 min the percentage of detectable insulin associated with non-coated and coated pits increased to 16% and 8%, respectively. Pre-embedding immunocytochemical localization of insulin gave results consistent with those obtained from the label-fracture studies. Both non-coated and coated vesicles appeared labelled after 5 min of warming. Non-coated vesicles contained 25% of the cell associated insulin while 9% was associated with coated pits and vesicles. After 10 min of warming, 9% of label was located in non-coated vesicles and 7% in coated vesicles. A large proportion (29%) of the label was found in tubular-vesicular endosomes at this time. After 15 min of warming, 30% of the remaining cell-associated gold label was found in multivesicular bodies. These experiments demonstrate that insulin uptake by endothelium is mediated by both coated and non-coated vesicles and that, once internalized, insulin is routed through endosomal pathways that primarily result in transcytosis.  相似文献   

5.
The interaction of homologous and heterologous albumin-gold complex (Alb-Au) with capillary endothelium was investigated in the mouse lung, heart, and diaphragm. Perfusion of the tracer in situ for from 3 to 35 min was followed by washing with phosphate-buffered saline, fixation by perfusion, and processing for electron microscopy. From the earliest time examined, one and sometimes two rows of densely packed particles bound to some restricted plasma membrane microdomains that appeared as uncoated pits, and to plasmalemmal vesicles open on the luminal front. Morphometric analysis, using various albumin-gold concentrations, showed that the binding is saturable at a very low concentration of the ligand and short exposure. After 5 min, tracer-carrying vesicles appeared on the abluminal front, discharging their content into the subendothelial space. As a function of tracer concentration 1-10% of plasmalemmal vesicles contained Alb-Au particles in fluid phase; from 5 min on, multivesicular bodies were labeled by the tracer. Plasma membrane, coated pits, and coated vesicles were not significantly marked at any time interval. Heparin or high ionic strength did not displace the bound Alb-Au from vesicle membrane. No binding was obtained when Alb-Au was competed in situ with albumin or was injected in vivo. Gold complexes with fibrinogen, fibronectin, glucose oxidase, or polyethyleneglycol did not give a labeling comparable to that of albumin. These results suggest that on the capillary endothelia examined, the Alb-Au is adsorbed on specific binding sites restricted to uncoated pits and plasmalemmal vesicles. The tracer is transported in transcytotic vesicles across endothelium by receptor-mediated transcytosis, and to a lesser extent is taken up by pinocytotic vesicles. The existence of albumin receptors on these continuous capillary endothelia may provide a specific mechanism for the transport of albumin and other molecules carried by this protein.  相似文献   

6.
Receptor-mediated hepatic uptake of low density lipoproteins (LDL) conjugated to colloidal gold was studied by perfusion of livers from rats treated for 5 d with 17 alpha-ethinylestradiol. Estrogen treatment resulted in a marked decrease in serum lipid and lipoprotein concentrations. After 15 min of perfusion the conjugate was bound to the hepatic microvilli of both control and estrogen-treated rats; the estrogen-treated rats showed an 8- to 11-fold greater number of membrane-bound conjugates. The conjugates were bound to the membrane receptor by the LDL particle because the gold granules were regularly displaced from the membrane by 20 +/- 3.2 nm, the diameter of LDL. Internalization of the conjugate, evident by gold particles in multivesicular bodies, occurred at coated pits at the base of the microvillus where coated vesicles containing a single gold-LDL conjugate were released. After 1 h of perfusion, the livers from the estrogen-treated rats showed all phases of endocytosis and incorporation into multivesicular bodies of the conjugate. After 2 h of perfusion, there was congregation of gold-labeled lysosomes near the bile canaliculi. Gold-LDL conjugates were also observed to bind and be internalized by Kupffer cells and sinusoidal endothelium. These findings indicate that estrogen treatment induces hepatic receptors for LDL. The catabolic pathway of binding and endocytosis of the conjugate is similar to that seen in fibroblasts, although slower. Because gold-LDL conjugates were also present in the Kupffer and endothelial cells, the uptake of LDL by the liver involves the participation of more than a single cell type.  相似文献   

7.
Summary Heparin-gold probes were used to localize regions of heparin binding on the luminal surface of the diaphragmed-fenestrated endothelium of the rat choriocapillaris. Structures of endothelial cells were unlabeled when rats were kept on ice and perfused with solutions at 4° C. When the heparin-gold quantity was doubled, only a few heparin-gold particles marked some diaphragms spanning fenestrae, vesicles and channels, parajunctional regions of the plasmalemma, and coated pits. With solutions at 4° C, but the animals kept at room temperature, all of these structures in the endothelial cells were labeled. This binding was not altered by the perfusion of low levels of unlabeled heparin, but was eliminated following high levels of unlabeled heparin, and by digestion with trypsin and pronase. At 37° C, heparin was localized to the above structures and, in addition, was internalized into coated vesicles, endosomes, and multivesicular bodies, but not other types of lysosomes. Some particles were found in tubules adjacent to the Golgi stacks. Heparin-gold was also transported to the abluminal front of the endothelium by vesicles. A desulfated, non-anticoagulant, fraction of heparin bound to gold was localized to the endothelium in the same manner. These results demonstrate receptors for heparin on the surface of a fenestrated endothelium. Furthermore, they show the pathway of endocytosis and transport of heparin. The possible roles of heparin in the function of the endothelium is discussed.  相似文献   

8.
Summary Rabbit peroxidase-antiperoxidase complex (PAP) has been shown to bind to IgG receptors on the human placental syncytiotrophoblast microvillar membrane. Its binding characteristics suggest that it is suitable as a probe for studies on the uptake of IgG by the human placenta.A novel assay system was developed to measure the dissociation constants (K d) of the binding of PAP and of unlabelled human IgG to purified placental microvillar membranes. TheK d for PAP was found to be 54 nM, while that for unlabelled IgG was found to be 17.5 nM.The uptake of PAP by placental tissue slices was observed using peroxidase histochemistry and electron microscopy. In initial experiments, reaction product was confined to the peripheral regions of the syncytiotrophoblast. Assaying a placental homogenate for catalase activity showed that it contained 250 units of activity per g wet weight of tissue (compared with 680 units/g for rat liver). Treatment of fixed tissue with the catalase inhibitor 3-amino-1, 2, 4-triazole allowed the localization of peroxidase reaction product in deeper regions of the syncytiotrophoblast. Based on observations of the localization of reaction product, we propose that PAP is taken up in coated pits, transferred into large apical multivesicular bodies, segregated into small vesicles which then transport it to the Golgi. From here the PAP is directed to the basal membrane by a mechanism as yet unknown.  相似文献   

9.
Summary Using a direct conjugate of urokinase and ferritin, the binding has been followed at the plasma membrane and the internalization of urokinase into BALB/C-3T3 fibroblasts, cultured in plasminogen-free conditions. At 0° C, the conjugate was observed bound on both coated and uncoated cell surface regions as singlets, and small and large clusters. No binding was observed in the presence of excess native urokinase. The binding was impaired by preincubation of the conjugate with a competitive inhibitor of the catalytic site, suggesting an interaction between the receptor and the catalytic site of the enzyme.Within 1 min at 37° C, urokinase clustered on coated regions of the plasma membrane. At 5 min after warming, ferritin was found on deeply indented coated pits and in both coated and uncoated vesicles close to the cell surface. By 10 min at 37° C, ferritin particles were present in uncoated endosomes and in multivesicular bodies in the Golgi area. Within 10 min, the receptors on the surface strongly decreased. New receptors were observed on the membrane after 20 min at 37° C. At this time, ferritin was observed both in endosomes or multivesicular bodies and in vesicles close to the plasma membrane.  相似文献   

10.
We investigated the uptake of surfactant by isolated alveolar type II cells by using native pulmonary surfactant complexed with colloidal gold. Internalization to lamellar bodies (LB) occurred via vesicles (mainly coated) and the endosomal system. The highest labeling density was found in the endosomal system: vacuoles and the electron-lucent multivesicular bodies (MVB), which were labeled within 10 min. The labeling of electron-dense MVB (D-MVB) and LB was time dependent, reaching a plateau after 120 min, at which time approximately 30% and 70% of the LB and D-MVB were labeled, respectively. Internalization of surfactant-gold was inhibited by the addition of native surfactant or treatment of the gold complex with antibody against surfactant apoproteins. The internalization pathway of lectin from Macula pomifera (MPA) complexed with gold was compared to that of surfactant. Both pathways were found to be similar, except that mainly smooth vesicles rather than coated ones were involved in the process of MPA-G internalization. The partial labeling of the LB, the possible routing to lysosomes, and the endosomes as junction between the biosynthetic and endocytic pathways are discussed.  相似文献   

11.
Summary Low density lipoproteins (LDL) were conjugated to colloidal gold to visualize the route for internalization of LDL in the cultured cells of human term placenta. Cells were obtained from placental villi (caesarian section) by a standard trypsin-DNase dispersion method followed in some cases by a Percoll gradient centrifugation step. Employing electron microscopy it was observed that after 3 days of culture, cells obtained by trypsin-DNAse dispersion were a mixture of macrophages, mononucleated cells and large multinucleated cells. When the cells were incubated for 3 days after the Percoll purification, essentially multinucleated cells identical to the syncytiotrophoblast were present. The number of LDL receptor was increased by preincubation in medium with lipoprotein depleted serum. In binding experiments cells incubated at 4° C for 2 h with medium containing gold LDL conjugates showed gold LDL attached to the plasma membrane without characteristic localization. After incubation with gold LDL at 37° C for various times, the three cellular types showed ligand internalization. Gold LDL endocytosis involved first coated pits but also uncoated plasmalemmal invaginations. Then gold LDL was further observed in coated and non coated vesicles, smooth walled endosomes, multivesicular bodies and tubular vesicles. Lastly free gold particles were observed in lysosome like dense bodies. These results prove the internalization of gold LDL conjugates by human cultured placental cells, particularly by syncytiotrophoblast like multinucleated cells. This accumulation of LDL (the major cholesterol carrying protein in humans) is recognised to be responsable for the exogenous cholesterol supply indispensable to the progesterone biosynthesis and cellular growth of the placenta.  相似文献   

12.
Low density lipoproteins (LDL) were conjugated to colloidal gold to visualize the route for internalization of LDL in the cultured cells of human term placenta. Cells were obtained from placental villi (caesarian section) by a standard trypsin-DNase dispersion method followed in some cases by a Percoll gradient centrifugation step. Employing electron microscopy it was observed that after 3 days of culture, cells obtained by trypsin-DNase dispersion were a mixture of macrophages, mononucleated cells and large multinucleated cells. When the cells were incubated for 3 days after the Percoll purification, essentially multinucleated cells identical to the syncytiotrophoblast were present. The number of LDL receptor was increased by preincubation in medium with lipoprotein depleted serum. In binding experiments cells incubated at 4 degrees C for 2 h with medium containing gold LDL conjugates showed gold LDL attached to the plasma membrane without characteristic localization. After incubation with gold LDL at 37 degrees C for various times, the three cellular types showed ligand internalization. Gold LDL endocytosis involved first coated pits but also uncoated plasmalemmal invaginations. Then gold LDL was further observed in coated and non coated vesicles, smooth walled endosomes, multivesicular bodies and tubular vesicles. Lastly free gold particles were observed in lysosome like dense bodies. These results prove the internalization of gold LDL conjugates by human cultured placental cells, particularly by syncytiotrophoblast like multinucleated cells. This accumulation of LDL (the major cholesterol carrying protein in humans) is recognised to be responsible for the exogenous cholesterol supply indispensable to the progesterone biosynthesis and cellular growth of the placenta.  相似文献   

13.
The role of coated vesicles during the absorption of horseradish peroxidase was investigated in the epithelium of the rat vas deferens by electron microscopy and cytochemistry. Peroxidase was introduced into the vas lumen in vivo. Tissue was excised at selected intervals, fixed in formaldehyde-glutaraldehyde, sectioned without freezing, incubated in Karnovsky's medium, postfixed in OsO4, and processed for electron microscopy. Some controls and peroxidase-perfused specimens were incubated with TPP,1 GP, and CMP. Attention was focused on the Golgi complex, apical multivesicular bodies, and two populations of coated vesicles; large (> 1000 A) ones concentrated in the apical cytoplasm and small (<750 A) ones found primarily in the Golgi region. 10 min after peroxidase injection, the tracer is found adhering to the surface plasmalemma, concentrated in bristle-coated invaginations, and within large coated vesicles. After 20–45 min, it is present in large smooth vesicles, apical multivesicular bodies, and dense bodies. Peroxidase is not seen in small coated vesicles at any interval. Counts of small coated vesicles reveal that during peroxidase absorption they first increase in number in the Golgi region and later, in the apical cytoplasm. In both control and peroxidase-perfused specimens incubated with TPP, reaction product is seen in several Golgi cisternae and in small coated vesicles in the Golgi region. With GP, reaction product is seen in one to two Golgi cisternae, multivesicular bodies, dense bodies, and small coated vesicles present in the Golgi region or near multivesicular bodies. The results demonstrate that (a) this epithelium functions in the absorption of protein from the duct lumen, (b) large coated vesicles serve as heterophagosomes to transport absorbed protein to lysosomes, and (c) some small coated vesicles serve as primary lysosomes to transport hydrolytic enzymes from the Golgi complex to multivesicular bodies.  相似文献   

14.
Coated vesicles isolated from rat liver perfused with diisopropylfluorophosphate (DFP) to inactivate endogenous cholinesterase contained newly synthesized secretory cholinesterase after a 30 min recovery. The cholinesterase is found in coated vesicles of presumed endocytic origin following DFP treatment and perfusion for 3 min with galactosylated cholinesterase, a ligand for the asialoglycoprotein receptor. Highly enriched populations of endocytic and exocytic coated vesicles can be separated by use of a novel cholinesterase mediated density shift technique. The two coated vesicle classes have very similar polypeptide compositions but differ significantly in the ratio of cholesterol to phospholipid.  相似文献   

15.
The binding and transport of glycoalbumin (gA) by the endothelium of murine myocardial microvessels were studied by perfusing in situ 125I-gA or gA-gold complexes (gA-Au) and examining the specimens by radioassays and EM, respectively. After a 3-min perfusion, the uptake of radioiodinated gA is 2.2-fold higher than that of native albumin; it is partially (approximately 55%) competed by either albumin or D-glucose, and almost completely abolished by the concomitant administration of both competitors or by gA. D-mannose and D-galactose are not effective competitors. Unlike albumin-gold complexes that bind restrictively to plasmalemmal vesicles, gA-Au labels the plasma-lemma proper, plasmalemmal vesicles open on the lumen, and most coated pits. Competing albumin prevents gA-Au binding to the membrane of plasmalemmal vesicles, while glucose significantly reduces the ligand binding to plasmalemma proper. Competition with albumin and glucose gives additive effects. Transcytosis of gA-Au, already detected at 3 min, becomes substantial by 30 min. No tracer exit via intercellular junctions was detected. gA-Au progressively accumulates in multivesicular bodies. The results of the binding and competition experiments indicate that the gA behaves as a bifunctional ligand which is recognized by two distinct binding sites: one, located on the plasma membrane, binds as a lectin the glucose residues of gA; whereas the other, confined to plasmalemmal vesicles, recognizes presumably specific domains of the albumin molecule.  相似文献   

16.
Summary Glomus cells from carotid bodies of adult rats dissociated by means of collagenase or collagenase + trypsin were used to study by electron microscopy the endocytotic uptake of cationized ferritin (CF) tracer into subcellular compartments. The glomus cells were incubated with the tracer (1) in a basic salt medium (BM), or (2) in the BM into which calcium ionophore A23187 had been added, or (3) in a potassium-rich medium.Incubation of the cells in BM containing CF for 30 min resulted in attachment of the tracer to the cell membrane and uptake of a few solitary tracer particles into small vesicles and multivesicular bodies. No uptake into the cisternae of the Golgi apparatus was observed. Further incubation in BM containing CF for another 30 min resulted in increased uptake of the tracer into small vesicles and multivesicular bodies. A similar pattern of uptake was observed when the dissociated glomus cells were first preincubated in BM with CF for 30 min and then incubated for 1 min or 30 min in the BM solution containing both the ionophore and CF. Upon such incubation, CF particles were seen to penetrate into coated pits and sites of exocytosis at the cell surface. When the 30-min preincubation in BM was followed by incubation in a CF-containing potassium-rich medium for 15–30 min, uptake into vesicles, small lysosomes and occasionally also into profiles of the smooth endoplasmic reticulum was seen. Endocytotic mechanisms of the glomus cells are outlined.  相似文献   

17.
Soybean (Glycine max (L.) Merr.) protoplasts have been surface-labelled with cationized ferritin, and the fate of the label has been followed ultrastructurally. Endocytosis of the label occurs via the coated-membrane system. The pathway followed by the label, once it has been taken into the interior of the protoplast, appears to be similar to that found during receptor-mediated endocytosis in animal cells. Cationized ferritin is first seen in coated vesicles but rapidly appears in smooth vesicles. Labelled, partially coated vesicles are occasionally observed, indicating that the smooth vesicles may have arisen by the uncoating of coated vesicles. Structures which eventually become labelled with cationized ferritin include multivesicular bodies, dictyosomes, large smooth vesicles, and a system of partially coated reticula.Abbreviation CF cationized ferritin  相似文献   

18.
The fate of tetanus toxin bound to neuronal cells at 0 degree C was followed using an anti-toxin 125I-protein A assay. About 50% of surface-bound toxin disappeared within 5 min of warming cells to 37 degrees C. Experiments with 125I-toxin showed that much of this loss was due to dissociation of bound toxin into the medium. Some toxin was however rapidly internalised, and could be detected only by permeabilizing cells with Triton X-100 prior to assay. To investigate the mechanism of internalisation, tetanus toxin was adsorbed to colloidal gold. Toxin-gold was shown to be stable, and to recognise the same receptor(s) as free toxin. Quantitation of the distribution of toxin-gold particles bound to the cell body at 4 degrees C showed that it was concentrated in coated pits. After 5 min at 37 degrees C, toxin-gold appeared in coated vesicles, endosomes, and tubules. After 15 min, it was found largely in endosomes, and at 30 min in multivesicular bodies. The involvement of coated pits in internalisation of tetanus toxin, but not cholera toxin, was confirmed using the free toxins, anti-toxins, and protein A-gold. Toxin-gold also entered nerve terminals and axons via coated pits, accumulating in synaptic vesicles and intraaxonal uncoated vesicles, respectively.  相似文献   

19.
Receptor-mediated transport of heme by hemopexin in vivo and in vitro results in catabolism of heme but not the protein, suggesting that intact apohemopexin recycles from cells. However, until now, the intracellular transport of hemopexin by receptor-mediated endocytosis remained to be established. Biochemical studies on cultured human HepG2 and mouse Hepa hepatoma cells demonstrate that hemopexin is transported to an intracellular location and, after endocytosis, is subsequently returned intact to the medium. During incubation at 37 degrees C, hemopexin accumulated intracellularly for ca. 15 min before reaching a plateau while surface binding was saturated by 5 min. No internalization of ligand took place during incubation at 4 degrees C. These and other data suggest that hemopexin receptors recycle, and furthermore, incubation with monensin significantly inhibits the amount of cell associated of heme-[125I]hemopexin during short-term incubation at 37 degrees C, consistent with a block in receptor recycling. Ammonium chloride and methylamine were less inhibitory. Electron microscopic autoradiography of heme-[125I]hemopexin showed the presence of hemopexin in vesicles of the classical pathway of endocytosis in human HepG2 hepatoma cells, confirming the internalization of hemopexin. Colloidal gold-conjugated hemopexin and electron microscopy showed that hemopexin bound to receptors at 4 degrees C is distributed initially over the entire cell surface, including microvilli and coated pits. After incubation at 37 degrees C, hemopexin-gold is located intracellularly in coated vesicles and then in small endosomes and multivesicular bodies. Colocalization of hemopexin and transferrin intracellularly was shown in two ways. Radioiodinated hemopexin was observed in the same subcellular compartment as horseradish peroxidase conjugates of transferrin using the diaminobenzidine-induced density shift assay. In addition, colloidal gold derivatives of heme-hemopexin and diferric transferrin were found together in coated pits, coated vesicles, endosomes and multivesicular bodies. Therefore, hemopexin and transferrin act by a similar receptor-mediated mechanism in which the transport protein recycles after endocytosis from the cell to undergo further rounds of intracellular transport.  相似文献   

20.
Summary The transport of protein across the cells of the epididymal epithelium was studied using horseradish peroxidase. Transient vascular perfusion of the epididymis of the rat and golden hamster was achieved by pulsatile retrograde infusion into the testicular artery. Peroxidase was found in the interstitium and in the epithelium, located in vesicles, vacuoles and multivesicular bodies of principal, clear and apical cells. Similar findings were obtained in mice after systemic injection of the tracer. In the rat, discharge to the lumen was confirmed by the appearance of enzyme activity in luminal fluid from the caput epididymidis after local injection. The extent of transport amounted to no more than what has been considered leakage in physiological experiments, and the time-course of appearance complemented that found by electron microscopy. The level of transcytosis after pulsatile administration of peroxidase in vivo, as judged from the occurrence of tracer in the epithelium, was much less than that obtained during constant immersion in vitro. The protein was present in multivesicular bodies of principal cells and in vesicles of clear cells at short times after presentation in vitro, when it could not have arrived by endocytosis from the lumen. This suggests that routing of basal endocytic vesicles to the lysosomal apparatus occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号