首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Park S  Lippard SJ 《Biochemistry》2011,50(13):2567-2574
HMGB1, one of the most abundant nuclear proteins, has a strong binding affinity for cisplatin-modified DNA. It has been proposed that HMGB1 enhances the anticancer efficacy of cisplatin by shielding platinated DNA lesions from repair. Two cysteine residues in HMGB1 domain A form a reversible disulfide bond under mildly oxidizing conditions. The reduced domain A protein binds to a 25-bp DNA probe containing a central 1,2-d(GpG) intrastrand cross-link, the major platinum-DNA adduct, with a 10-fold greater binding affinity than the oxidized domain A. The binding affinities of singly and doubly mutated HMGB1 domain A, respectively deficient in one or both cysteine residues that form the disulfide bond, are unaffected by changes in external redox conditions. The redox-dependent nature of the binding of HMGB1 domain A to cisplatin-modified DNA suggests that formation of the intradomain disulfide bond induces a conformational change that disfavors binding to cisplatin-modified DNA. Hydroxyl radical footprinting analyses of wild-type domain A bound to platinated DNA under different redox conditions revealed identical cleavage patterns, implying that the asymmetric binding mode of the protein across from the platinated lesion is conserved irrespective of the redox state. The results of this study reveal that the cellular redox environment can influence the interaction of HMGB1 with the platinated DNA and suggest that the redox state of the A domain is a potential factor in regulating the role of the protein in modulating the activity of cisplatin as an anticancer drug.  相似文献   

3.
Stros M 《Biochemistry》2001,40(15):4769-4779
High mobility group (HMG) 1 protein and its two homologous DNA-binding domains, A and B ("HMG-boxes"), can bend and supercoil DNA in the presence of topoisomerase I, as well as recognize differently bent and distorted DNA structures, including four-way DNA junctions, supercoiled DNA and DNA modified with anticancer drug cisplatin. Here we show that the lysine-rich part of the linker region between A and B domains of HMG-1, the (85)TKKKFKD(91) sequence that is attached to the N-terminus of the B domain within HMG-1, is a prerequisite for a preferential binding of the B domain to supercoiled DNA. The above sequence is also essential for a high-affinity binding of the B domain to DNA containing a site-specific major 1,2-d(GpG) intrastrand DNA adduct of cisplatin. Mutation of Arg(97), but not Lys(90) [Lys(90) forms a specific cross-link with platinum(II) in major groove of cisplatin-modified DNA; Kane, S. A., and Lippard, S. J. (1996) Biochemistry 35, 2180--2188], to alanine significantly (>40-fold) reduces affinity of the B domain to cisplatin-modified DNA, inhibits the ability of the B domain to bend (ligase-mediated circularization) or supercoil DNA, and results in a loss of the preferential binding of the B domain to supercoiled DNA without affecting the structural-specificity of the HMG-box for four-way DNA junctions. Some of the reported activities of the B domain are enhanced when the B domain is covalently linked to the A domain. We propose that binding of the A/B linker region within the major DNA groove helps the two HMG-1 domains to anchor to the minor DNA groove to facilitate their DNA binding and other activities.  相似文献   

4.
5.
6.
Jung Y  Lippard SJ 《Biochemistry》2003,42(9):2664-2671
HMGB1, a highly conserved non-histone DNA-binding protein, interacts with specific DNA structural motifs such as those encountered at cisplatin damage, four-way junctions, and supercoils. The interaction of full-length HMGB1, containing two tandem HMG box domains and a C-terminal acidic tail, with cisplatin-modified DNA was investigated by hydroxyl radical footprinting and electrophoretic gel mobility shift assays. The full-length HMGB1 protein binds to DNA containing a 1,2-intrastrand d(GpG) cross-link mainly through domain A, as revealed by footprinting, with a dissociation constant K(d) of 120 nM. Site-directed mutagenesis of intercalating residues in both HMG domains A and B in full-length HMGB1 further supports the conclusion that only one HMG box domain is bound to the site of cisplatin damage. Interaction of the C-terminal tail with the rest of the HMGB1 protein was examined by EDC cross-linking experiments. The acidic tail mainly interacts with domain B and linker regions rather than domain A in HMGB1. These results illuminate the respective roles of the tandem HMG boxes and the C-terminal acidic tail of HMGB1 in binding to DNA and to the major DNA adducts formed by the anticancer drug cisplatin.  相似文献   

7.
8.
9.
The DNA mismatch repair (MMR) system plays a critical role in sensitizing both prokaryotic and eukaryotic cells to the clinically potent anticancer drug cisplatin. It is thought to mediate cytotoxicity through recognition of cisplatin DNA lesions. This drug generates a range of lesions that may also give rise to compound lesions resulting from the misincorporation of a base during translesion synthesis. Using gel mobility shift competition assays and surface plasmon resonance, we have analyzed the interaction of Escherichia coli MutS protein with site-specifically modified DNA oligonucleotides containing each of the four cisplatin cross-links or a set of compound lesions. The major 1,2-d(GpG) cisplatin intrastrand cross-link was recognized with only a 1.5-fold specificity, whereas a 47-fold specificity was found with a natural G/T containing DNA substrate. The rate of association, kon, for binding to the 1,2-d(GpG) adduct was 3.1 x 104 m-1 s-1 and the specificity of binding was essentially dependent on koff. DNA duplexes containing a single 1,2-d(ApG), 1,3-d(GpCpG) adduct, and an interstrand cross-link of cisplatin were not preferentially recognized. Among 12 DNA substrates, each containing a different cisplatin compound lesion derived from replicative misincorporation of one base opposite either of the 1,2-intrastrand adducts, 10 were specifically recognized including those that are more likely formed in vivo based on cisplatin mutation spectra. Moreover, among these lesions, two compound lesions formed when an adenine was misincorporated opposite a 1,2-d(GpG) adduct were not substrates for the MutY-dependent mismatch repair pathway. The ability of MutS to sense differentially various platinated DNA substrates suggests that cisplatin compound lesions formed during misincorporation of a base opposite either adducted base of both 1,2-intrastrand cross-links are more plausible critical lesions for MMR-mediated cisplatin cytotoxicity.  相似文献   

10.
The human 3-methyladenine DNA glycosylase (AAG) is a repair enzyme that removes a number of damaged bases from DNA, including adducts formed by some chemotherapeutic agents. Cisplatin is one of the most widely used anticancer drugs. Its success in killing tumor cells results from its ability to form DNA adducts and the cellular processes triggered by the presence of those adducts in DNA. Variations in tumor response to cisplatin may result from altered expression of cellular proteins that recognize cisplatin adducts. The present study focuses on the interaction between the cisplatin intrastrand cross-links and human AAG. Using site-specifically modified oligonucleotides containing each of the cisplatin intrastrand cross-links, we found that AAG readily recognized cisplatin adducts. The apparent dissociation constants for the 1, 2-d(GpG), the 1,2-d(ApG), and the 1,3-d(GpTpG) oligonucleotides were 115 nM, 71 nM, and 144 nM, respectively. For comparison, the apparent dissociation constant for an oligonucleotide containing a single 1,N(6)-ethenoadenine (epsilonA), which is repaired efficiently by AAG, was 26 nM. Despite the affinity of AAG for cisplatin adducts, AAG was not able to release any of these adducts from DNA. Furthermore, it was demonstrated that the presence of cisplatin adducts in the reactions inhibited the excision of epsilonA by AAG. These data suggest a previously unexplored dimension to the toxicological response of cells to cisplatin. We suggest that cisplatin adducts could titrate AAG away from its natural substrates, resulting in higher mutagenesis and/or cell death because of the persistence of AAG substrates in DNA.  相似文献   

11.
12.
He Q  Ohndorf UM  Lippard SJ 《Biochemistry》2000,39(47):14426-14435
Cisplatin exerts its anticancer activity by forming covalent adducts with DNA. High-mobility group (HMG)-domain proteins recognize the major 1,2-intrastrand cisplatin-DNA cross-links and can mediate cisplatin cytotoxicity. The crystal structure of HMG1 domain A bound to cisplatin-modified DNA, further analyzed here, reveals intercalation of a key Phe37 residue. Other published structures of HMG domains bound to DNA, including NHP6A and HMG-D, similarly indicate amino acid side chains intercalating into linear DNA to form a bend. To delineate the importance of such side chain intercalations and further to explore the binding modes of different HMG domains toward prebent DNA structures, site-directed mutagenesis was used to generate HMG1 domain A and domain B mutants. The affinities of these mutant proteins for cisplatin-modified DNA were determined in gel electrophoresis mobility shift assays. The results indicate that intercalating residues at positions 16 or 37 can both contribute to the binding affinity. The data further reveal that the length of the loop between helices I and II is not critical for binding affinity. Footprinting analyses indicate that the position of the intercalating residue dictates the binding mode of the domain toward platinated DNA. Both congruent and offset positioning of the HMG domain with respect to the locus of the cisplatin-induced bend in the DNA were encountered. Packing interactions in the crystal structure suggest how full-length HMG1 might bind to DNA by contacting more than one duplex simultaneously. Taken together, these results demonstrate that cisplatin modification of DNA provides an energetically favorable, prebent target for HMG domains, which bind to these targets through one or more side chain and favorable hydrophobic surface interactions.  相似文献   

13.
The antitumor drug cisplatin causes intrastrand cross-linking of adjacent guanine residues that severely distorts the DNA backbone. These DNA adducts impede the progress of the replisome and may result in replication fork arrest. In Escherichia coli, the response to cisplatin involves the action of the prototypic recombinase RecA. Here we show that RecA can utilize, albeit at reduced levels, oligonucleotides that bear site-specific cisplatin-induced 1,2 d(GpG) intrastrand cross-links in strand invasion reactions. Binding of RecA to cisplatin-damaged oligonucleotides was not affected, indicating that the impediment was in the pairing step. The cognate E. coli single-strand DNA-binding protein specifically stimulated strand invasion particularly with cisplatin-damaged DNA. These results indicate that RecA is capable of processing the major cisplatin-induced lesion via a recombination mechanism.  相似文献   

14.
Cohen SM  Mikata Y  He Q  Lippard SJ 《Biochemistry》2000,39(38):11771-11776
HMG-domain proteins bind strongly to bent DNA structures, including cruciform and cisplatin-modified duplexes. Such protein-platinated DNA complexes, formed where the DNA is modified by the active cis but not the inactive trans isomer of diamminedichloroplatinum(II), are implicated in the cytotoxic mechanism of the drug. A series of oligonucleotide duplexes with deoxyguanosine nucleosides flanking a cis-[Pt(NH(3))(2)?d(GpG)-N7(1),-N7(2)?] cross-link have been synthesized. These probes were used to determine the flanking sequence dependence of the affinity of the individual HMG domains of HMG1 toward cisplatin-modified DNA. Nine related sequences, where N(1) and N(2) are not dG and GG is the 1,2-intrastrand cisplatin adduct in N(1)GGN(2), were previously investigated [Dunham, S. U., and Lippard, S. J. (1997) Biochemistry 36, 11428-11436]. Three of the seven remaining possible sequences for which N(1) and/or N(2) was dG were prepared here by using normal deoxyguanosine, but the rest, where N(1) is dG and N(2) is dA, dC, T, or dG, could not be isolated in pure form. These sequences were accessed by using the synthetic bases 7-deazaadenine and 7-deazaguanine, which lack the nucleophilic N7 atom in the purine ring. Deaza nucleotides accurately mimic the properties of the natural bases, allowing the interaction of the HMG-domain proteins with cisplatin-modified DNA to be examined. These experiments reveal that the flexibility of A.T versus G.C flanking base pairs, rather than base-specific contacts, determines HMG1domA protein selectivity. This conclusion was supported by use of mutant HMG1domA and HMG1domB proteins, which exhibit identical flanking sequence selectivity. The methods and results obtained here not only improve our understanding of how proteins might mediate cisplatin genotoxicity but also should apply more generally in the investigation of how other proteins interact with damaged DNA.  相似文献   

15.
Recently an HMG-box protein denoted SSRP1, for structure-specific recognition protein 1, has been discovered which binds to specific DNA structural elements such as the bent, unwound conformations that occur upon the formation of intrastrand crosslinks by the anticancer drug cisplatin. The SSRP family includes the mouse protein T160, which recognizes recombination signal sequences. In order to delineate functional domains more clearly, a homolog of SSRP1 was cloned from Drosophila melanogaster. This homolog maps to polytene region 60A (1-4) and shares 54% identity with human SSRP1. Comparison of the predicted amino acid sequences among SSRP family members reveals 48% identity, with structural conservation in the carboxy terminus of the HMG box as well as domains of highly charged residues. Interestingly, however, the most highly conserved regions of the protein are in the less well understood amino terminus, strongly suggesting that this portion of the protein is critical for its function.  相似文献   

16.
17.
18.
19.
Replication protein A (RPA) is a heterotrimeric protein composed of 70-, 34-, and 14-kDa subunits that has been shown to be required for DNA replication, repair, and homologous recombination. We have previously shown preferential binding of recombinant human RPA (rhRPA) to duplex cisplatin-damaged DNA compared with the control undamaged DNA (Patrick, S. M., and Turchi, J. J. (1998) Biochemistry 37, 8808-8815). Here we assess the binding of rhRPA to DNA containing site-specific cisplatin-DNA adducts. rhRPA is shown to bind 1.5-2-fold better to a duplex 30-base pair substrate containing a single 1,3d(GpXpG) compared with a 1,2d(GpG) cisplatin-DNA intrastrand adduct, consistent with the difference in thermal stability of DNA containing each adduct. Consistent with these data, a 21-base pair DNA substrate containing a centrally located single interstrand cisplatin cross-link resulted in less binding than to the undamaged control DNA. A series of experiments measuring rhRPA binding and concurrent DNA denaturation revealed that rhRPA binds duplex cisplatin-damaged DNA via the generation of single-stranded DNA. Single-strand DNA binding experiments show that rhRPA binds 3-4-fold better to an undamaged 24-base DNA compared with the same substrate containing a single 1,2d(GpG) cisplatin-DNA adduct. These data are consistent with a low affinity interaction of rhRPA with duplex-damaged DNA followed by the generation of single-stranded DNA and then high affinity binding to the undamaged DNA strand.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号