首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Flooding patterns and variations in the composition and successional trends of riparian vegetation in the upper and lower Red Deer River in southern Alberta, Canada, were studied in order to establish which flood regimes were most important in the regeneration and maintenance of riparian vegetation communities, with a particular focus on riparian poplars. The dominant riparian tree in the upper river is Populus balsamifera with some Picea glauca and in the lower river Populus deltoides (the plains cottonwood). Dendrochronological studies of the poplars along the river show that major periods of regeneration correspond with major flood events during the record period. Extensive cottonwood regeneration occurred in the period 1900–20, corresponding with a series of floods, some as high as the 1 in 100-year event. In addition, just prior to and during this period there was a significant reduction in use of the floodplain by bison, clearance of forests and a higher incidence of fires in upper reaches of the river and a series of high rainfall years. A series of floods greater than the 1 in 10-year flood occurred in the 1950s and stimulated the most extensive regeneration of poplars experienced since the 1920s. Parts of the lower Red Deer floodplain are now at elevations well above the 1 in 100-year flood event. It is suggested that fringe replenishment of riparian poplars is currently the dominant form of regeneration and that the large stands of mature poplars found on the floodplain, initiated during the end of the last century and first decades of this century, are unlikely to be replaced unless large floods (>1 in 50-year events) occur again. Construction of the Dickson Dam above the city of Red Deer in 1983 has led to attenuation of floods and a reduced likelihood that extensive flooding and poplar regeneration will occur again. A number of recommendations are made regarding flow management to both retain the fringe regeneration of poplars currently occurring and to stimulate more widespread regeneration of poplars on the floodplain.  相似文献   

2.
Dryland rivers associated with arid and semi-arid land areas offer an opportunity to explore food web concepts and models of energy sources in systems that experience unpredictable flooding and long dry spells. This study investigated the sources of energy supporting three species of fish feeding at different trophic levels within floodplain lagoons of the Macintyre River in the headwaters of the Murray-Darling river system, Australia. Stable isotope analyses revealed that fish consumers derived, on average, 46.9% of their biomass from zooplankton, 38.1% from Coarse Particulate Organic Matter (CPOM) and 24.0% from algae. Ambassis agassizii derived on average 57.6% of its biomass carbon from zooplankton and 20.4–27.8% from algae or CPOM. Leiopotherapon unicolor derived most of its carbon from zooplankton and CPOM (38.3–39.5%), with relatively high contributions from algae compared to the other species (33.3%). An average of 48.4% of the biomass of Nematalosa erebi was derived from zooplankton, with CPOM contributing another 38.1%. Zooplankton was the most important source of organic carbon supporting all three fish species in floodplain lagoons. Phytoplankton, and possibly, particulate organic matter in the seston, are the most likely energy sources for the planktonic suspension feeders (zooplankton) and, consequently, the fish that feed on them. These results indicate a stronger dependence of consumers on autochthonous sources and on locally produced organic matter from the riparian zone (i.e., the Riverine Productivity Model), than on other resources.  相似文献   

3.
Riparian zones associated with alluvial rivers are spatially dynamic, forming distinct vegetative mosaics that exhibit sharp contrasts in structure and processes related to the underlying biophysical template. The productivity of riparian plants, especially trees, influences streamside community characteristics as well as the forms and fluxes of organic matter to adjacent streams – thereby strongly impacting patterns of channel morphology, water flow, sedimentation, and habitat in rivers. As part of a comprehensive investigation of riparian dynamics in coastal rain forest rivers of the Pacific Northwest (USA), we examined riparian tree abundance (density, basal area, and biomass) and rates of production (basal area growth [BAI] and bole wood biomass increase [P]) of seven common species – red alder (Alnus rubra), Sitka spruce (Picea sitchensis), bigleaf maple (Acer macrophyllum), western hemlock (Tsuga heterophylla), black cottonwood (Populus trichocarpa), vine maple (Acer circinatum) and willow (Salix spp.) – in the lowland floodplain of the Queets River (Olympic National Park), Washington. Measurements were made annually for three years (1999 – 2001) in 16 permanent plots on three biophysical templates that formed a toposequence – active floodplain, young terrace and mature terrace. Stem density was highest in the active floodplain (∼27,000 stems/ ha), decreasing in the young terrace (∼2,700 stems /ha) and the mature terrace (∼500 stems/ha). Basal area and total stem biomass were lowest in the active floodplain (∼16 m2/ha and ∼18 Mg dry weight/ha, respectively) and higher on the young terrace (∼32 m2/ha and ∼134 Mg dry weight/ha) and on the mature terrace (∼69 m2/ha and ∼540 Mg dry weight /ha). Total plot-scale BAI was not significantly different among the physical templates with mean values ranging from approximately 1.4 (low terrace) to approximately 2.8 m2/ha/y (active floodplain). In contrast, P was significantly higher on the mature terrace (10.3 Mg/ha) than the active floodplain (3.2 Mg/ha) but there was no significant difference between young terrace (6.5 Mg/ha) and mature terrace. For the entire Queets River floodplain (57 km2 over 77 km of river length), the mature terrace contributed 81% of the total annual production (28,764 Mg) whereas the active floodplain and young terrace accounted only for 5 and 14%, respectively. Overall, we show that riparian trees grow quickly in this coastal Pacific Northwest system and that the older riparian forests on mature terraces are the main contributors to stem production at the plot and floodplain scales for at least 350 years after stand initiation. This suggests that, in combination with the rapid lateral migrations of many alluvial rivers, the older riparian forests on those terraces are important and sustained sources of organic matter (especially large woody debris, LWD) that, over decades to centuries, shape the character of coastal rivers in the Pacific Northwest.  相似文献   

4.
Historically in Puget Lowland rivers, wood jams were integral to maintaining an anastomosing channel pattern and a dynamic channel–floodplain connection; they also created deep pools. In the late 1800s, wood was removed from most rivers, rivers were isolated from their floodplains, and riparian forests were cut down, limiting wood recruitment. An exception to this history is an 11-km-long reach of the Nisqually River, which has natural banks and channel pattern and a mature floodplain forest. We use field and archival data from the Nisqually River to explore questions relevant to restoring large rivers in the Pacific Northwest and other forested temperate regions. In particular, we focus on the relation between recovery of in-channel wood accumulations and valley bottom forest conditions and explore implications for river restoration strategies. We find that restoring large rivers depends on establishing riparian forests that can provide wood large enough to function as key pieces in jams. Although the frequency of large trees in the Nisqually valley bottom in 2000 is comparable with that of 1873 land surveys, many formerly more abundant Thuja plicata (western red cedar) were cut down in the late 1800s, and now hardwoods, including Populus trichocarpa (black cottonwood) and Acer macrophyllum (bigleaf maple), are also abundant. Pseudotsuga menziesii (Douglas fir) and fast-growing P. trichocarpa commonly form key pieces that stabilize jams, suggesting that reforested floodplains can develop naturally recruited wood jams within 50 to 100 years, faster than generally assumed. Based on the dynamic between riparian forests, wood recruitment, and wood jams in the Nisqually River, we propose a planning framework for restoring self-sustaining dynamic river morphology and habitat to forested floodplain rivers.  相似文献   

5.
Planting native riparian trees can help recover wildlife and fish habitat on a local scale, when full recovery of natural processes that sustain riparian ecosystems is infeasible. To help improve planting success, we determined which environmental factors and management practices most influenced survival of planted Populus fremontii (Fremont cottonwood) in a field experiment on the San Rafael River, Utah, U.S.A. We planted 474 approximately 2‐m‐tall trees and tracked survival for 1.25 years. We used logistic regression to evaluate whether tree height, elevation above the river channel, distance to existing cottonwood or Salix exigua (coyote willow), soil conductivity, soil texture, planting depth, planting method (mechanical auger vs. hand‐digging), and provision of natural and commercial supplements affected survival probability. Survival probability decreased with elevation above the river channel bottom and was greater in auger‐dug than hand‐dug holes. Survival probability was lower in soils with the highest salinity levels and was lower in sandy soils than soils with silt and clay. Survival may be improved by planting well above the channel to avoid flooding impacts but within 2 m above the channel in auger‐dug holes to ensure access to soil moisture. Testing soil salinity and texture in areas with suitable elevation could also help improve survival. Approximately 35% of trees survived to the end of the study period, indicating that planting can help recover riparian habitat locally, especially if survival is improved in future planting efforts. However, full recovery of desired riparian habitat throughout the floodplain will require natural flows.  相似文献   

6.
Aim Hydrological disconnection of floodplains from rivers is among the top factors threatening river‐floodplain ecosystems. To keep enough floodplain area is of great importance to biodiversity conservation. In the Yangtze River floodplain, most lakes were disconnected from the mainstream by dams in 1950–1970s. By analysing fish diversity data, we aim at determining the effects of river‐lake disconnection on fish diversity, at estimating the minimum protected area of river‐connected lakes and at proposing a holistic strategy for fish conservation in the mid‐lower reaches of the river. Location The Yangtze River floodplain, China. Methods We collected recorded data of fish diversity of 30 Yangtze floodplain lakes. Species–area relationships were analysed and compared between river‐connected and river‐disconnected lakes. Cumulative species–area models were constructed to estimate the minimum protected area of river‐connected lakes. Results River‐lake disconnection reduced fish diversity of Yangtze lakes by 38.1%, so that the river‐connected lakes play an important role in maintaining the floodplain biodiversity. The minimum protected area of river‐connected lakes was estimated to be 14,400 km2. Therefore, we should not only protect the existent connected lakes of 5500 km2, but also reconnect disconnected lakes of at least 8900 km2 in the Yangtze basin. Main conclusions Species–area relationships are of importance in reserve design. We suggest that cumulative species–area model might be more suitable for ecosystems with high connectivity among regions such as floodplains. As the Yangtze River floodplain is an integrative ecosystem, we suggest establishing a holistic nature reserve in the mid‐lower basin for effective conservation of biodiversity.  相似文献   

7.
Aim of this study was to evaluate the influence of flood pulse regime attributes (pulse frequency, pulse average intensity and amplitude, and flooded days) on the floristic differentiation of the Argentinian Middle Parana river floodplain vegetation in a 39-year period. Besides on floristic composition richness, diversity, evenness, percentage of woody species and topographic position were assessed for 7 communities. Pulse regime attributes were evaluated for each community taking into account different topographic positions and hydrological levels of the Parana River. Our result showed that fluvial vegetation is not floristically differentiated according to its topographic position and there is a weak relation between pulse regime attributes and diversity of woody and herbaceous species. Because of the same topographic position has been colonized by different vegetation communities, floristically different communities share similar pulse frequency, pulse average intensity and amplitude, and flooded days. Pulse regime effects on fluvial vegetation are dependent on more than the topographic position; other aspects of the dynamics of fluvial systems such as the geomorphologic architecture, sediment load and channel dynamics should be included in order to explain the floristic differentiation of the Parana River floodplain vegetation.  相似文献   

8.
Naturally occurring stable isotope and trace elemental markers in otoliths have emerged as powerful tools for determining natal origins and environmental history of fishes in a variety of marine and freshwater environments. However, few studies have examined the applicability of this technique in large river-floodplain ecosystems. This study evaluated otolith microchemistry and stable isotopic composition as tools for determining environmental history of fishes in the Middle Mississippi River, its tributaries, and floodplain lakes in Illinois and Missouri, USA. Fishes were collected from 14 sites and water samples obtained from 16 sites during summer and fall 2006 and spring 2007. Otolith and water samples were analyzed for stable oxygen isotopic composition (δ18O) and concentrations of a suite of trace elements; otoliths were also analyzed for carbon isotopic composition (δ13C). Tributaries, floodplain lakes, and the Mississippi and Lower Missouri Rivers possessed distinct isotopic and elemental signatures that were reflected in fish otoliths. Fish from tributaries on the Missouri and Illinois sides of the middle Mississippi River could also be distinguished from one another by their elemental and isotopic fingerprints. Linear discriminant function analysis of otolith chemical signatures indicated that fish could be classified back to their environment of capture (Mississippi River, floodplain lake, tributary on the Illinois or Missouri side of the Mississippi River, or lower Missouri River) with 71–100% accuracy. This study demonstrates the potential applicability of otolith microchemistry and stable isotope analyses to determine natal origins and describe environmental history of fishes in the Middle Mississippi River, its tributaries, and floodplain lakes. The ability to reconstruct environmental history of individual fish using naturally occurring isotopic markers in otoliths may also facilitate efforts to quantify nutrient and energy subsidies to the Mississippi River provided by fishes that emigrate from floodplain lakes or tributaries.  相似文献   

9.
Francis  Cathy  Sheldon  Fran 《Hydrobiologia》2002,481(1-3):113-124
The Darling River, in New South Wales, Australia, is a large semi-arid system with a highly variable flow regime, characterised by unpredictable events of flooding and drought. In large lowland rivers like the Darling, lateral (river-floodplain) interactions can greatly influence both physical and biological components of the system. The floodplain and riparian zone of the Darling River is dominated by River Red Gum (RRG), Eucalyptus camaldulensis. The large amount of organic matter they produce accumulates on the floodplain and on benches within the channel, and is subject to alternate periods of flooding and drying as a result of highly variable flows. This paper examines the effect of alternate periods of flooding and drying on the processing of E. camaldulensis organic matter. Results of the 6-month in situ field study, together with results from laboratory experiments comparing dissolved organic carbon (DOC) release from various RRG litter types, suggest that RRG leaves provide the most bio-available source of carbon to the system, while bark may be more important as a habitat for invertebrates and other fauna. Laboratory experiments exploring the effect of drying and re-flooding on litter breakdown and release of DOC suggested that the majority of DOC was released from RRG leaves in the first 24 h of inundation. Also, upon drying and re-flooding of the leaves, a smaller but significant release of DOC occurred. However, an alternative wet/dry cycle did not affect weight loss of the leaf litter. Results of the field and lab experiments suggest that RRG leaves represent an important source of carbon to the Darling River, with inputs being influenced by the highly variable flow regime.  相似文献   

10.
We studied spatial and temporal patterns in fish species composition and diversity at the upper Juruá River located in the west Brazilian Amazon. We collected with gillnet 822 fishes belonging to 90 species in the main Juruá River, its tributaries and the floodplain lakes during wet and dry seasons. Fish abundance and species richness were greater in the dry season. During that season, fishes may be concentrated due to the low water level, being caught more easily by gillnets. There has been a trend towards a greater fish biomass caught in lakes. This might be associated with a greater environmental stability as lakes may be less subject to large variations in water level. The fish communities differed between the two seasons and between lakes and the lotic environments (main river and tributaries). Fish species from the family Curimatidae were most abundant in the lakes, while Pimelodus spp. and Hypostomus spp. predominated in the main Juruá River. Seasonal variations in fish communities may be related to differences in the migratory behavior among fish species. Such spatial and temporal patterns influencing fish community structure at the Upper Juruá Extractive Reserve must be accounted for in management and conservation strategies.  相似文献   

11.
The flood regime is the most important force determining seasonality in neotropical rivers. In the Upper Paran River floodplain, it is the primary factor influencing biological processes. The aim of this paper is to summarize information on the influence of dam-controlled floods on some fish assemblage attributes, reproduction and recruitment in the Upper Paran River floodplain, providing preliminary guidelines for dam operation upstream. Fish were collected in different habitats of the Upper Paran River floodplain (river, channels and lagoons) in the period from 1986 to 2001. The high water period in the Paran River usually occurs from November/December to April/May. Annual variation in the hydrograph affects species with distinct life history strategies differently, and influences the composition and structure of fish assemblages. Large floods were associated with higher species richness. Frequencies of individuals with ripe and partially spent gonads, which indicate spawning, were higher during the period of increasing water level. Dependence on floods seems to be lowest in sedentary species that develop parental care, and highest in large migratory species that spawn in the upper stretches of the basin and use flooded areas as nurseries. Migratory fishes were favored by annual floods that lasted more than 75 days, with longer floods yielding larger populations. The occurrence of high water levels at the beginning of summer is fundamental to the spawning success of migratory species. However, the flood may be less important for recruitment of juveniles if it is of short duration. Dam operation upstream (releasing more water during the raining season) has potential to promote greater floods with appropriate duration improving recruitment, particularly for migratory species.  相似文献   

12.
Flooding is often considered a stimulus for production of fish in floodplain rivers. In the southern Murray–Darling Basin (MDB), Australia, however, few native fish species have been shown to use the floodplain for spawning, and recruitment has been positively and negatively associated with flooding. In 2010/11, extensive flooding in the lower River Murray provided an opportunity to investigate the recruitment response of Golden Perch (Macquaria ambigua ambigua) following 10 years of drought and floodplain isolation. Annual variation in Golden Perch abundance and recruitment were investigated in anabranch and main channel habitats at Chowilla in the floodplain geomorphic region of the lower River Murray over a 7‐year period incorporating the flood and 6 years of in‐channel flow. Spatial variation in recruitment in the lower River Murray was also investigated by comparing the age structure of Golden Perch in the swamplands/lakes, gorge and floodplain geomorphic regions. Golden Perch abundance in the Chowilla region increased significantly postflooding compared with drought years. Age structures indicated that increased abundance was due predominantly to fish spawned during the flood (2010/11) and the previous year (2009/10), which was characterised by in‐channel flows. Age structure was similar in the nearby Katarapko Anabranch system indicating a uniform postflood recruitment response in the floodplain geomorphic region. Juvenile Golden Perch from the 2010/11 and 2009/10 cohorts were less apparent in the gorge and swamplands/lakes regions. Golden Perch have flexible life histories and will spawn and recruit in association with in‐channel rises in flow and overbank flows, but significant increases in abundance in the lower River Murray may result from overbank flooding. Contemporary approaches to flow restoration in the MDB emphasise overbank flows and floodplain processes. We suggest, however, that environmental flow management that incorporates floodplain and in‐channel processes, at appropriate spatio‐temporal scales, will result in more robust populations of Golden Perch.  相似文献   

13.
I analyzed temporal variation in hybridization between the southwestern toad (Bufo microscaphus) and Woodhouse's toad (Bufo woodhousii) along the Virgin River in southwestern Utah and northwestern Arizona. Bufo woodhousii is largely restricted to the floodplain of the Virgin River from southern Nevada to the vicinity of St. George, Utah. By contrast, B. microscaphus is confined primarily to the tributaries of the Virgin River, only occupying the Virgin River proper exclusive of B. woodhousii along its upper reaches east of La Verkin Creek. As in all other zones of sympatry for these bufonids, behavior and morphology provide clear evidence of hybridization at a number of sites along the Virgin River. Analysis of morphology and behavior indicates that the distribution of these taxa and their hybrids is largely unchanged relative to that documented forty years ago by Blair (1955). Comparisons of morphological hybrid index scores reveal slight shifts in relative numbers of parental taxa at only one site. Hybridization between these anurans has been relatively stable geographically, and may be related to the nature of the riparian habitat available for breeding.  相似文献   

14.
  1. Ponds can provide important refuges for aquatic biota on developed floodplains and are increasingly being constructed in an effort to enhance native biodiversity and ecosystem services in degraded landscapes. This study examined 34 constructed ponds to investigate the influence of design features on community composition, native biodiversity, and the biomass or abundance of common fish and waterbirds on the lower Waikato River floodplain, northern New Zealand.
  2. Inundation frequency appeared to be a key factor affecting biomass of the native shortfin eel Anguilla australis and three invasive fish species (common carp [Cyprinus carpio], brown bullhead [Ameiurus nebulosus], and goldfish [Carassius auratus]), suggesting that colonisation occurred during flooding by adjacent waterbodies. Linear models indicated that shortfin eel abundance and total eel biomass were positively associated with the biomass of potential fish prey, the area occupied by islands and cover by trees in the riparian zone.
  3. Native waterbird species richness was strongly related to water area, edge length (including islands) and area:perimeter ratio, with little increase in richness for ponds >1 ha in area, perimeters longer than 800 m, and ratios over 20. The protected grey teal (Anas gracilis), and the recreationally hunted species phenotypically assigned as mallard (Anas platyrhynchos + hybrids) and grey duck (Anas superciliosa + hybrids) appeared most strongly influenced, respectively, by perimeter length, water depth, and biomass of potential macroinvertebrate food supplies, suggesting variable effects of pond design attributes among waterfowl species.
  4. Overall, these results indicate that constructed ponds can be designed to promote native waterbird diversity, enhance eel fishery and waterfowl gamebird services, and also limit the proliferation of some non-native invasive fish species in degraded floodplain landscapes. A hierarchy of constructed pond design attributes was identified, involving landscape position and connectivity, pond morphology and complexity, and riparian maturity and buffering, which were associated with direct (habitat) and indirect (food supply, physicochemistry) effects on biodiversity and provisioning services.
  相似文献   

15.
  1. Accurately accounting for flows of energy through food webs is challenging because of the spatial and temporal variability associated with energy production and consumption. Wet–dry tropical rivers have a highly seasonal discharge regime where wet season flows allow access to energy sources (inundated wetlands) that are not available during the dry season when aquatic consumers are confined to disconnected waterholes.
  2. We combined measures of fish community biomass with previously published feeding guild specific stable isotope analyses to explore how opposing wet- and dry-season habitat templates influence spatial and temporal trends in the sources of energy supporting fish biomass throughout a river network in the wet–dry tropics of northern Australia.
  3. Accounting for the relative contribution of each feeding guild to fish community biomass was a critical component of our analyses, as a single feeding guild (invertivore/piscivore) influenced spatial and temporal patterns in the sources of energy supporting overall fish biomass. During the early dry season, the reliance of fish communities on autochthonous sources of energy (periphyton) decreased from the upper to lower reaches of the river network, which correlates with increasing floodplain area and wet season inundation times. These patterns disappeared by the late dry season as fish in both upper and lower reaches became increasingly reliant on autochthonous sources produced within waterholes over the course of the dry season, indicating that the large wet-season gains in fish biomass are maintained through the dry season by energy produced within waterhole refuges.
  4. Collectively these results indicate that a combination of autochthonous and allochthonous sources of energy work in unison to support fish community biomass throughout the Mitchell River catchment and that access to these sources of energy is dictated by seasonal patterns in discharge interacting with spatial variability in river geomorphology (channel geometry and floodplain area).
  5. Many rivers are experiencing decreased flows due to water resource development and more frequent and severe droughts. Thus, we suggest our study provides insight into how changes in discharge regime could influence food web energetics throughout river networks.
  相似文献   

16.
Summary A palynological investigation was conducted on sediments from three small floodplain swamps on upper Wollombi Brook in the Hunter Valley NSW in order to reconstruct pre-European riparian vegetation composition and community structure. Pre-European riparian plant communities on upper Wollombi Brook were characterized by wet sclerophyll forest associations with rainforest elements (most likely close to the channel). Major changes in both the nature and extent of riparian vegetation have been associated with European settlement. The pre-European pollen spectra assists the identification of a suite of native taxa potentially suitable for use in riparian revegetation operations, particularly in highly cleared streambank sites where protection of water quality and aquatic habitat is an important goal but where insufficient local remnants are available to indicate pre-existing plant species. The research emphasizes the use of palaeoenvironmental evidence as a tool for contemporary environmental management.  相似文献   

17.
1. Large river floodplains are considered key nursery habitats for many species of riverine fish. The lower Volga River floodplains (Russian Federation) are still relatively undisturbed, serving as a suitable model for studying the influence of flooding and temperature on fish recruitment in floodplain rivers. 2. We examined the interannual variability in recruitment success of young‐of‐the‐year (YOY) fish in the lower Volga floodplain in relation to flood pulse characteristics and rising water temperatures in the spring. We sampled four areas with different flooding regimes, in three consecutive years (2006–2008). 3. Extensive areas with a long duration of flooding accommodated high densities of young fish. This suggests that extended inundation improves the recruitment success of river fish. In areas with extensive flooding, the biomass of YOY of most fish species was about three times higher in 2006 and 2007 than in 2008. We hypothesise that low spring temperatures in 2008 may have caused this reduced recruitment and that a flood synchronised with rising temperature enhances recruitment success. 4. Extensive flooding was particularly favourable for species characterised by large body size, delayed maturation, high fecundity and low parental investment, such as pike Esox lucius, roach Rutilus rutilus and ide Leuciscus idus. Gibel carp Carassius gibelio, a species tolerant of high temperature and hypoxia, did particularly well in small waterbodies in the driest parts of the floodplain. 5. Structural characteristics of floodplain waterbodies explained much of YOY fish density. These species–environment associations varied from year to year, but some species such as common bream Abramis brama, roach and gibel carp showed consistent relationships with structural habitat characteristics in all years, despite large interannual fluctuations in flood pulse and spring temperature.  相似文献   

18.
Mechanisms of Riparian Cottonwood Decline Along Regulated Rivers   总被引:1,自引:1,他引:0  
Decline of riparian forests has been attributed to hydrologic modifications to river flows. However, little is known about the physiological and structural adjustments of riparian forests subject to modified flow regimes, and the potential for forest restoration using historic flow regimes is poorly understood. In this paired river study, we compared hydrology, water relations, and forest structure in cottonwood-dominated floodplains of the regulated Green River to those of the unregulated Yampa River. We measured floodplain groundwater levels, soil water availability, cottonwood xylem pressure (Ψxp), and leaf-level stomatal conductance (gs) to assess current impacts of river regulation on the water status of adult cottonwoods. We also simulated a flood on the former floodplain of the regulated river to evaluate its impact on cottonwood water relations. Canopy and root structure were quantified with estimates of cottonwood leaf area and percent live canopy and root density and biomass, respectively. Regulation of the Green River has lowered the annual peak flow yet raised minimum flows in most years, resulting in a 60% smaller stage change, and lowered soil water availability by as much as 70% compared to predam conditions. Despite differences in water availability, daily and seasonal trends in Ψxp and gs were similar for cottonwoods on the regulated and unregulated rivers. In addition, soil water added with the experimental flood had little effect on cottonwood water relations, contrary to our expectations of alleviated water stress. Green River cottonwoods had 10%–30% lower stand leaf area, 40% lower root density, and 25% lower root biomass compared with those for Yampa River cottonwoods. Our results suggest that water relations at the leaf and stem level are currently similar for Yampa and Green River trees due to structural adjustments of cottonwood forests along the Green River, triggered by river regulation.  相似文献   

19.
1. The Gambia River is the last major West African river that has not been impounded. However, a hydroelectric dam is being constructed and substantial changes to the hydrology and ecology of the system are expected. 2. Little information is available on the impact of water impoundments in semi‐arid regions on downstream floodplain fish communities, due to the scarcity of pre‐intervention data. Because profound impacts on physical habitat, salinity and nutrient transport can occur downstream of such impoundments, a knowledge of the species‐habitat associations of biota such as fishes is necessary for understanding likely changes and how to limit them. 3. Fish were sampled using cast and hand nets along two transects on the floodplain, and with fyke nets in two ‘bolongs’ (creeks) from May to November 2005 and 2006 in the lower reaches of the Gambia River, close to the salt water front where ecological changes due to the construction of the dam are likely to be pronounced. 4. Greatest fish species richness was associated with low conductivity, low pH and deep water. Bolongs held greater species richness compared with other floodplain habitats, probably because they acted as conduits for fish moving on and off the floodplain. Species richness and catch biomass increased rapidly following the first rains and then declined. 5. Using a multivariate analysis, three main species groups were identified on the floodplain; one associated with deeper water, one with less brackish water and one with shallow, open water. Tilapia guineensis was the commonest species on the floodplains. 6. The floodplains provide nursery habitats as many fish captured were immature, particularly for species where adults are mainly encountered in the main channel. Several small‐sized floodplain specialists were also represented by a high proportion of mature individuals. 7. Impoundment is expected to reduce seasonal flooding of the floodplain in the lower Gambia River, downstream of the impoundment, resulting in reduced occurrence of aquatic habitats, especially bolongs, together with lower dissolved oxygen and increased salinity, leading to alteration of the floodplain fish communities, benefiting salt‐tolerant species, reducing overall species richness and probably reducing floodplain fish production.  相似文献   

20.
1. The loss of input of leaf litter through clearing of riparian vegetation may result in significant changes to aquatic ecosystems. River red gums (Eucalyptus camaldulensis) surrounding floodplain wetlands in the Murray–Darling Basin, Australia, contribute large quantities of leaf litter, but the quality of this resource may change depending on the timing of inundation. 2. We used experimental mesocosms to test the hypotheses that zooplankton would have a greater abundance with an input of leaf litter and that fewer zooplankton would emerge from egg banks in cleared than forested wetlands. The experiment was carried out in summer/autumn and in spring to test a third hypothesis that zooplankton would respond to changes in the timing of wetland inundation as a result of river regulation. 3. In summer/autumn, leaf litter reduced zooplankton abundance by 89% at the beginning of the experiment through its influence on water quality. Only a few taxa (Polyarthra spp., Colurella spp. and the cladoceran Family Moinidae) responded positively to leaf litter when water quality improved later in the experiment, indicating a switch in the role of leaf litter from a non‐trophic to a trophic pathway. 4. In spring, microcrustaceans emerged in smaller numbers from sediment sourced from cleared compared to forested wetlands, reflecting different communities in these two wetland types and/or disturbances to the sediment that interfere with emergence. 5. Although leaf litter appears not to be an important resource for zooplankton in floodplain wetlands, riparian clearing may have lasting effects on future emerging zooplankton communities. Additionally, river regulation may have considerable impacts on the influence of leaf litter on zooplankton, which has implications for the management of floodplain river systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号