首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated whether a peptide fragment from the C-terminus of beta-amyloid protein precursor is associated with Alzheimer paired helical filaments (PHFs). Antiserum BR188, to the last 20 amino acids of the precursor, did not cross-react with tau protein, known to be in PHFs. It did react with all five pronase-treated PHF preparations assayed by ELISA and immunogold-labelled the same PHF fibrils that a PHF-specific tau antibody labelled. Neither antibody labelled beta/A4 fibrils. These results suggest that a fragment from the C-terminus of beta-amyloid precursor protein copurifies with pronase-treated PHFs and may play a role in their molecular pathogenesis.  相似文献   

2.
Sequential cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretases results in the production of beta-amyloid peptide, which is a key determinant in Alzheimer's disease. Since several putative locations for gamma-secretase cleavage have been identified along the secretory pathway, trafficking of APP may be of importance for beta-amyloid peptide production. Here we have studied the role of retrograde transport in APP processing. We found that APP interacts with the beta subunit of the coatomer protein I (COPI) complex, which is involved in retrograde transport. In line with a role of retrograde trafficking in APP transport, inhibition of COPI-dependent transport altered APP trafficking, decreased APP cell surface expression, and coincided with a profound reduction in gamma-secretase cleavage. These results suggest that COPI-dependent retrograde transport is important for APP processing and influences production of beta-amyloid peptide.  相似文献   

3.
Understanding the intracellular transport of the beta-amyloid precursor protein (APP) is a major key to elucidate the regulation of APP processing and thus beta-amyloid peptide generation in Alzheimer disease pathogenesis. APP and its two paralogues, APLP1 and APLP2 (APLPs), are processed in a very similar manner by the same protease activities. A putative candidate involved in APP transport is protein interacting with APP tail 1 (PAT1), which was reported to interact with the APP intracellular domain. We show that PAT1a, which is 99.0% identical to PAT1, binds to APP, APLP1, and APLP2 in vivo and describe their co-localization in trans-Golgi network vesicles or endosomes in primary neurons. We further demonstrate a direct interaction of PAT1a with the basolateral sorting signal of APP/APLPs. Moreover, we provide evidence for a direct role of PAT1a in APP/APLP transport as overexpression or RNA interference-mediated knockdown of PAT1a modulates APP/APLPs levels at the cell surface. Finally, we show that PAT1a promotes APP/APLPs processing, resulting in increased secretion of beta-amyloid peptide. Taken together, our data establish PAT1a as a functional link between APP/APLPs transport and their processing.  相似文献   

4.
We investigated the effect of human beta-amyloid precursor protein (APP) on rat primary cerebral cortical neurons cultured in a serum-free medium. Two secretory APP species (APP667 and APP592) with and without the protease inhibitor domain were produced by COS-1 cells transfected with APP cDNAs, which encode the N-terminal portions of APP770 and APP695. Both highly purified APP species, when added to the medium, enhanced neuronal survival and neurite extension in a dose-dependent manner with a maximum effect at approximately 100 nM. These results suggest that secreted forms of APP have trophic activity for cerebral cortical neurons.  相似文献   

5.
The subcellular location of the secretases processing the beta-amyloid precursor protein (APP) is not established yet. We analyzed the generation of the beta-amyloid peptide (Abeta) in human embryonic kidney 293 cell lines stably expressing wild-type and noninternalizing mutants of human APP. APP lacking the entire cytoplasmic domain or with both tyrosine residues of the motif GYENPTY mutated to alanine showed at least fivefold reduced endocytosis. In these cell lines, the production of Abeta1-40 was substantially reduced, but accompanied by the appearance of two prominent alternative Abeta peptides differing at the amino-termini. Based on antibody reactivity and mobility in high-resolution gels in comparison with defined Abeta fragments, these peptides were identified as Abeta3-40 and Abeta5-40. Notably, these alternative Abeta peptides were not generated when the APP mutants were retained in the early secretory pathway by treatment with brefeldin A. These results indicate that the alternative processing is the result of APP accumulation at the plasma membrane and provide evidence of distinct beta-secretase activities. Cleavage amino-terminal to position 1 of Abeta occurs predominantly in endosomes, whereas the processing at positions 3 or 5 takes place at the plasma membrane.  相似文献   

6.
7.
The beta-amyloid peptide is derived from a larger membrane bound protein and accumulates as amyloid in Alzheimer's diseased brains. beta-amyloid precursor protein (beta APP) proteolytically processed during constitutive secretion cannot be a source of deposited amyloid because this processing results in cleavage within the amyloidogenic peptide. To see if other secretory pathways could be responsible for generating potentially amyloidogenic molecules we tested the possibility that beta APP is targeted to the regulated secretory pathway. Stable AtT20 cell lines expressing exogenous human beta APP were genetically engineered. These cells were labeled with [35S]-methionine, and chased in the presence or absence of secretagogue. The beta APP both inside the cells and released from the cells was analyzed by immunoprecipitation and gel analysis. Quantitation of autoradiograms showed that virtually all of the synthesized beta APP was secreted by the constitutive pathway, and that no detectable (less than 1%) beta APP was targeted to the regulated secretory pathway.  相似文献   

8.
He X  Chang WP  Koelsch G  Tang J 《FEBS letters》2002,524(1-3):183-187
Memapsin 2, or beta-secretase, is a membrane-anchored aspartic protease that initiates the cleavage of beta-amyloid precursor protein (APP) leading to the production of beta-amyloid peptide in the brain and the onset of Alzheimer's disease. Memapsin 2 and APP are both endocytosed into endosomes for cleavage. Here we show that the cytosolic domain of memapsin 2, but not that of memapsin 1, binds the VHS domains of GGA1 and GGA2. Gel-immobilized VHS domains of GGA1 and GGA2 also bound to full-length memapsin 2 from cell mammalian lysates. Mutagenesis studies established that Asp(496), Leu(499) and Leu(500) were essential for the binding. The spacing of these three residues in memapsin 2 is identical to those in the cytosolic domains of mannose-6-phosphate receptors, sortilin and low density lipoprotein receptor-related protein 3. These observations suggest that the endocytosis and intracellular transport of memapsin 2, mediated by its cytosolic domain, may involve the binding of GGA1 and GGA2.  相似文献   

9.
R Siman  J P Card  R B Nelson  L G Davis 《Neuron》1989,3(3):275-285
Although the beta-amyloid peptide is an established core component of neuritic plaques that accumulate in Alzheimer's disease, the mechanisms responsible for its deposition are not well understood. We now report that lesions of rat hippocampal neurons cause a time-dependent, long-lasting elevation of immunoreactivity for the beta-amyloid precursor protein (APP) in neighboring astrocytes, a cell type not normally containing the protein. The increase represents astroglial expression of the protein rather than a scavenging of APP released by damaged neurons. Immunoelectron microscopy confirmed that APP-containing cells are reactive astroglia, both surrounding capillaries and within the neuropil. These results demonstrate that neuronal damage stimulates APP expression in adult brain and suggest that reactive astrocytes may be a source of the beta-amyloid that forms neuropathological plaques in Alzheimer's disease.  相似文献   

10.
11.
The low-density lipoprotein receptor-related protein (LRP) has recently been implicated in numerous intracellular signaling functions, as well as in Alzheimer's disease pathogenesis. Studies have shown that the beta-amyloid precursor protein (APP) interacts with LRP and that this association may impact the production of amyloid beta-protein (Abeta). In this report, we provide evidence that LRP regulates trafficking of intracellular proteins independently of its lipoprotein receptor functions. We show that in the absence of LRP, Abeta production, APP secretion, APP internalization, turnover of full-length APP and stability of APP C-terminal fragments are affected. Importantly, these changes are not APP isoform dependent. Using deletion constructs, the critical region in LRP that modulates APP processing was mapped to a seven peptide domain around the second NPXY domain (residues 4504-4510). Therefore, we propose a model by which LRP functionally modulates APP processing, including those steps critical for Abeta production, through interactions of the cytosolic domains.  相似文献   

12.
The aberrant metabolism of beta-amyloid precursor protein (APP) and the progressive deposition of its derived fragment beta-amyloid peptide are early and constant pathological hallmarks of Alzheimer's disease. Because APP is able to function as a cell surface receptor, we investigated here whether a disruption of the normal function of APP may contribute to the pathogenic mechanisms in Alzheimer's disease. To this aim, we generated a specific chicken polyclonal antibody directed against the extracellular domain of APP, which is common with the beta-amyloid precursor-like protein type 2. Exposure of cultured cortical neurons to this antibody (APP-Ab) induced cell death preceded by neurite degeneration, oxidative stress, and nuclear condensation. Interestingly, caspase-3-like protease was not activated in this neurotoxic action suggesting a different mode of cell death than classical apoptosis. Further analysis of the molecular mechanisms revealed a calpain- and calcineurin-dependent proteolysis of the neuroprotective calcium/calmodulin-dependent protein kinase IV and its nuclear target protein cAMP responsive element binding protein. These effects were abolished by the G protein inhibitor pertussis toxin, strongly suggesting that APP binding operates via a GTPase-dependent pathway to cause neuronal death.  相似文献   

13.
14.
15.
The synapse loss and neuronal cell death characteristic of Alzheimer's disease (AD) are believed to result in large part from the neurotoxic effects of beta-amyloid peptide (Abeta), a 40-42 amino acid peptide(s) derived proteolytically from beta-amyloid precursor protein (APP). However, APP is also cleaved intracellularly to generate a second cytotoxic peptide, C31, and this cleavage event occurs in vivo as well as in vitro and preferentially in the brains of AD patients (Lu et al. 2000). Here we show that APPC31 is toxic to neurons in primary culture, and that like APP, the APP family members APLP1 and possibly APLP2 are cleaved by caspases at their C-termini. The carboxy-terminal peptide derived from caspase cleavage of APLP1 shows a degree of neurotoxicity comparable to APPC31. Our results suggest that even though APLP1 and APLP2 cannot generate Abeta, they may potentially contribute to the pathology of AD by generating peptide fragments whose toxicity is comparable to that of APPC31.  相似文献   

16.
Presenilins (PS1/PS2) play a critical role in proteolysis of beta-amyloid precursor protein (beta APP) to generate beta-amyloid, a peptide important in the pathogenesis of Alzheimer's disease. Nevertheless, several regulatory functions of PS1 have also been reported. Here we demonstrate, in neuroblastoma cells, that PS1 regulates the biogenesis of beta APP-containing vesicles from the trans-Golgi network and the endoplasmic reticulum. PS1 deficiency or the expression of loss-of-function variants leads to robust vesicle formation, concomitant with increased maturation and/or cell surface accumulation of beta APP. In contrast, release of vesicles containing beta APP is impaired in familial Alzheimer's disease (FAD)-linked PS1 mutant cells, resulting in reduced beta APP delivery to the cell surface. Moreover, diminution of surface beta APP is profound at axonal terminals in neurons expressing a PS1 FAD variant. These results suggest that PS1 regulation of beta APP trafficking may represent an alternative mechanism by which FAD-linked PS1 variants modulate beta APP processing.  相似文献   

17.
BACE1 interacts with nicastrin   总被引:4,自引:0,他引:4  
Beta-amyloid peptide (Abeta) is generated through the proteolytic cleavage of beta-amyloid precursor protein (APP) by beta- and gamma-secretases. The beta-secretase, BACE1, initiates Abeta formation followed by gamma-cleavage within the APP transmembrane domain. Although BACE1 localizes in the transGolgi network (TGN), its physiological substrates and modulators are not known. In addition, the relationship to other secretase(s) also remains unidentified. Here, we demonstrate that BACE1 binds to nicastrin, a component of gamma-secretase complexes, in vitro, and that nicastrin activates beta-secretase activity in COS-7 cells.  相似文献   

18.
We have analysed the axonal sorting signals of amyloid precursor protein (APP). Wild-type and mutant versions of human APP were expressed in hippocampal neurons using the Semliki forest virus system. We show that wild-type APP and mutations implicated in Alzheimer's disease and another brain beta-amyloidosis are sorted to the axon. By analysis of deletion mutants we found that the membrane-inserted APP ectodomain but not the cytoplasmic tail is required for axonal sorting. Systematic deletions of the APP ectodomain identified two regions required for axonal delivery: one encoded by exons 11-15 in the carbohydrate domain, the other encoded by exons 16-17 in the juxtamembraneous beta-amyloid domain. Treatment of the cells with the N-glycosylation inhibitor tunicamycin induced missorting of wild-type APP, supporting the importance of glycosylation in axonal sorting of APP. The data revealed a hierarchy of sorting signals on APP: the beta-amyloid-dependent membrane proximal signal was the major contributor to axonal sorting, while N-glycosylation had a weaker effect. Furthermore, recessive somatodendritic signals, most likely in the cytoplasmic tail, directed the protein to the dendrites when the ectodomain was deleted. Analysis of detergent solubility of APP and another axonally delivered protein, hemagglutinin, demonstrated that only hemagglutinin formed CHAPS-insoluble complexes, suggesting distinct mechanisms of axonal sorting for these two proteins. This study is the first delineation of sorting requirements of an axonally targeted protein in polarized neurons and indicates that the beta-amyloid domain plays a major role in axonal delivery of APP.  相似文献   

19.
Amyloid precursor protein (APP) generates the beta-amyloid peptide, postulated to participate in the neurotoxicity of Alzheimer's disease. We report that APP and APLP bind to heme oxygenase (HO), an enzyme whose product, bilirubin, is antioxidant and neuroprotective. The binding of APP inhibits HO activity, and APP with mutations linked to the familial Alzheimer's disease (FAD) provides substantially greater inhibition of HO activity than wild-type APP. Cortical cultures from transgenic mice expressing Swedish mutant APP have greatly reduced bilirubin levels, establishing that mutant APP inhibits HO activity in vivo. Oxidative neurotoxicity is markedly greater in cerebral cortical cultures from APP Swedish mutant transgenic mice than wild-type cultures. These findings indicate that augmented neurotoxicity caused by APP-HO interactions may contribute to neuronal cell death in Alzheimer's disease.  相似文献   

20.
beta-Amyloid peptides (Abeta) are the major component of plaques in brains of Alzheimer's patients, and are they derived from the proteolytic processing of the beta-amyloid precursor protein (APP). The movement of APP between organelles is highly regulated, and it is tightly connected to its processing by secretases. We proposed previously that transport of APP within the cell is mediated in part through its sorting into Mint/X11-containing carriers. To test our hypothesis, we purified APP-containing vesicles from human neuroblastoma SH-SY5Y cells, and we showed that Mint2/3 are specifically enriched and that Mint3 and APP are present in the same vesicles. Increasing cellular APP levels increased the amounts of both APP and Mint3 in purified vesicles. Additional evidence supporting an obligate role for Mint3 in traffic of APP from the trans-Golgi network to the plasma membrane include the observations that depletion of Mint3 by small interference RNA (siRNA) or mutation of the Mint binding domain of APP changes the export route of APP from the basolateral to the endosomal/lysosomal sorting route. Finally, we show that increased expression of Mint3 decreased and siRNA-mediated knockdowns increased the secretion of the neurotoxic beta-amyloid peptide, Abeta(1-40). Together, our data implicate Mint3 activity as a critical determinant of post-Golgi APP traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号