首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract A greater understanding of the relative impact of insecticide use on non‐target species is critical for the incorporation of natural enemies into integrated pest management strategies. Here we use a small‐plot field trial to examine the relative impact of an insecticide on herbivores and predators found in soybean (Glycine max L.), and to highlight the issues associated with calculating impact factors from these studies. The pyrethroid insecticide (Deltamethrin) caused a significant reduction in invertebrate abundance in the treated plots, and populations did not recover to pre‐treatment levels even 20 days after spraying. To assess the relative impact of the spray on arthropods we first examined the mean difference in abundance in each plot before and after spraying. All herbivores decreased in abundance in the sprayed plots but increased in the control plots after spraying. Most predators (excluding hemipterans) showed a decrease in the control plots but a proportionally greater decrease in the sprayed plots. Next we examined the corrected percentage population reduction calculated using Abbott's formula. All predators (including Araneae) experienced a greater reduction (mean 87% ± 3.54 SE) than herbivores (mean 56% ± 4.37 SE) and Araneae alone (mean 71% ± 8.12 SE). The range in values across the plots varied and made categorising overall impact subjective for some taxa. Despite the constraints associated with small‐plot trials, by using a combination of impact factors and examining community‐level response across time, we did get some indication of the likely impact of this insecticide if used in a commercial situation.  相似文献   

2.
Ecological engineering using vegetable or flower strips is promoted as a potential pest management strategy in irrigated rice. Farmers in the Philippines often plant rice levees (bunds) with vegetables, particularly string beans (Vigna unguiculata [L.] Walpers) to supplement income, but without considering the potential for pest management. This study examines the effects of planted bunds on rice herbivores and their natural enemies. We compared arthropods in (a) rice fields that had string beans planted on bunds, (b) fields without string beans and without any insecticide applications and (c) fields without string beans but with insecticide treatments (standard practice). Rice yield was similar across all treatments; however, the vegetation strips produced an extra 3.6 kg of fresh string bean pods per metre of bund. There were no apparent increases in major natural enemy groups in fields with string beans compared to fields with conventional bunds. Fields with insecticide treatments had higher damage from leaffolders (Lepidoptera: Pyralidae). The sprayed fields also had lower parasitism of planthopper eggs and fewer predatory dragonflies and damselflies (Odonata). Furthermore, the mortality of planthopper (Delphacidae: Hemiptera) and stemborer (Pyralidae) eggs by parasitoids and predators was density dependent only in the unsprayed fields (with and without string beans). Our results demonstrate that planting string beans on rice bunds improves the productivity of rice farms, but our ecological engineering system did not appreciably affect natural enemy or herbivore abundance; however, chemical insecticides adversely affected pest regulatory ecosystem functions leading to higher pest damage.  相似文献   

3.
To clarify factors causing mortality of Leptocorisa chinensis Dallas (Hemiptera: Alydidae) eggs in rice fields, sentinel egg masses were exposed for seven days in two rice, Oryza sativa L. (Poaceae), fields. An insecticide was sprayed to remove natural enemies in one-half of each field before exposing egg masses to predation. An egg mass containing 14 eggs was glued to a plastic label, and 21 egg masses each were placed in the sprayed and unsprayed control plots. During exposure, the number of hatched and missing eggs was observed daily. Egg predators were sampled in the fields before and after insecticide application. After the egg masses were retrieved from the fields, mortality factors of the unhatched eggs were assessed in the laboratory. The mean number of hatched and missing eggs was not significantly different between the sprayed and control plots in field A. In field B, however, the numbers were significantly different. The percentage of missing eggs in damaged egg masses ranged from 80 to 100%. In the laboratory, we observed that feeding marks caused by the grasshopper Conocephalus chinensis (Redtenbacher) were similar to those on the eggs exposed in the rice fields. The density of C. chinensis was low in control plots of field A. In contrast, the density was high in those of field B. These observations suggest that the density of egg predators, e.g., C. chinensis, is a mortality factor of L. chinensis eggs in rice fields.  相似文献   

4.
Aerially applied adherent corn flour granules containing 1% malathion were more often as, or more, effective than 15% chlorpyrifos (Lorsban 15G) granules in controlling caterpillars and sap beetles in high amylose corn in 1997 than 1996. Use of malathion granules corresponding closely in size to chlorpyrifos granules in the second year of the study apparently increased relative efficacy. Significantly less corn borer damage occurred on plants (1996) or ears (1997) within 2 wk of application for both types of insecticide granules compared with untreated plots. In 1997, there were sixfold fewer milk stage ears with more than 20 kernels damaged per ear in the malathion-treated plots compared with chlorpyrifos-treated plots, and severity of caterpillar damage was also less in malathion versus chlorpyrifos-treated plots at harvest. Control of beetles (corn rootworm adults and sap beetles) for both treatments was less effective compared with caterpillars. Significant corn rootworm adult control was noted for both chlorpyrifos and malathion in 1996 and significant sap beetle control was noted for the malathion granules in 1997. Significantly fewer live lady beetles, and more dead lady beetles were present in chlorpyrifos-treated plots compared with malathion-treated or untreated plots in 1996. The incidence and severity of Fusarium mold on ears at harvest was often indirectly reduced by both malathion treatments and chlorpyrifos treatments, with the malathion treatment significantly better than the chlorpyrifos treatment in one case.  相似文献   

5.
Transgenic varieties of field corn that express the CrylAb B. thuringiensis (Bt) toxin in ear tissue present the potential of reducing ear feeding by the corn earworm, Helicoverpa zea (Lepidoptera: Noctuidae), and for reducing the size of populations of the insect infesting other host crops. Life history parameters of H. zea feeding on ears of conventional and Bt field corn varieties were measured in field plots in eastern North Carolina in 1997 and 1998. Transformation events investigated were Mon-810 and Bt-11. Bt corn was found to cause a steady mortality of larvae during development, but permitted approximately 15-40% survival to the prepupal stage compared with non-Bt corn. Mortality of prepupae and pupae from Bt corn was also higher than from non-Bt corn, reducing overall adult production by 65-95%. The larvae that did survive grew more slowly on Bt than on non-Bt corn, and produced pupae that weighed 33% less. Pupation and adult eclosion were delayed by 6-10 d by feeding on Bt corn ears. Corn varieties expressing Bt in ear tissue have the potential to reduce H. zea ear feeding by up to 80%, and the potential to reduce populations emerging from ear-stage corn fields to infest cotton, soybean and other crops by around 75%. To have a measurable effect on area-wide populations, Bt corn varieties would need to be planted in large proportions of corn fields. Extensive planting of varieties such as those tested here, having only moderate effects on H. zea, would raise concerns about rapid evolution of resistance.  相似文献   

6.
Field studies were conducted in 1992 and 1993 in Hermiston, Oregon, to evaluate the efficacy of transgenic Bt potato (Newleaf®, which expresses the insecticidal protein Cry3Aa) and conventional insecticide spray programs against the important potato pest, Leptinotarsa decemlineata (Say), Colorado potato beetle (CPB), and their relative impact on non-target arthropods in potato ecosystems. Results from the two years of field trials demonstrated that Newleaf potato plants were highly effective in suppressing populations of CPB, and provided better CPB control than weekly sprays of a microbial Bt-based formulation containing Cry3Aa, bi-weekly applications of permethrin, or early- and mid-season applications of systemic insecticides (phorate and disulfoton). When compared with conventional potato plants not treated with any insecticides, the effective control of CPB by Newleaf potato plants or weekly sprays of a Bt-based formulation did not significantly impact the abundance of beneficial predators or secondary potato pests. In contrast to Newleaf potato plants or microbial Bt formulations, however, bi-weekly applications of permethrin significantly reduced the abundance of several major generalist predators such as spiders (Araneae), big-eyed bugs (Geocorus sp.), damsel bugs (Nabid sp.), and minute pirate bugs (Orius sp.), and resulted in significant increases in the abundance of green peach aphid (GPA), Myzus persicae (Sulzer) – vector of viral diseases, on the treated potato plots. While systemic insecticides appeared to have reduced the abundance of some plant sap-feeding insects such as GPA, lygus bugs, and leafhoppers, early and mid-season applications of these insecticides had no significant impact on populations of the major beneficial predators. Thus, transgenic Bt potato, Bt-based microbial formulations and systemic insecticides appeared to be compatible with the development of integrated pest management (IPM) against other potato pests such as GPA because these CPB control measures have little impact on major natural enemies. In contrast, the broad-spectrum pyrethroid insecticide (permethrin) is less compatible with IPM programs against GPA and the potato leafroll viral disease.  相似文献   

7.
Field studies quantified predation on Colorado potato beetle [Leptinotarsa decemlineata(Say)] eggs and determined the relationship between predation and egg mass abundance in research and commercial potato plantings in eastern North Carolina. Predator exclusion experiments were conducted weekly in research plantings. In addition, egg mass density and predation on egg masses were monitored throughout the season in research plots and commercial potato fields. Predation was an important source of mortality for Colorado potato beetle eggs. Survivorship of eggs exposed to predators was consistently, significantly lower than survivorship of eggs protected from predation. Averaged over 2 years, the mean survivorship of eggs protected from predation was 69%, compared with 26% survivorship of eggs exposed to predation. Regression analysis failed to detect any relationship between egg mortality due to predation and egg abundance. These results imply that efforts to reduce Colorado potato beetle populations selectively will not be offset by an according decline in abundance of natural enemies and therefore should be fully compatible with naturally occurring biological control.  相似文献   

8.
Performance of experimental Bacillus thuringiensis (Bt) MON events alone and pyramided with MON810 were evaluated over 3 yr in Georgia and Alabama. Ability of events to prevent whorl defoliation by the fall armyworm, Spodoptera frugiperda (J. E. Smith), and natural ear feeding damage by the corn earworm, Helicoverpa zea (Boddie) was assessed. In each year, near-isogenic hybrids with novel single transformation events and crosses pyramided with the MON810 event were compared with the standard single MON810 event and nontransformed susceptible control. Events were tested for resistance to whorl damage by manual infestations of fall armyworm and ear damage by natural infestations of corn earworm. All Bt events tested reduced fall armyworm whorl damage ratings per plant compared with the susceptible hybrid. All Bt treatments also had considerably less ear infestation and damage by corn earworm compared with the nontransgenic isoline. The MON841, MION849, and MON851 events reduced ear damage by H. zea but were not as effective as other novel events and were not advanced for further testing after the 1999 season. Pyramiding events compared with single events did not improve control of fall armyworm whorl damage, but they generally did prevent more ear damage by corn earworm. The MON84006 event singly and pyramided with MON810 had superior control of whorl-stage damage by S. frugiperda and ear damage by H. zea compared with MON810. Deployment of new events and genes could provide additional tools for managing the potential for insect resistance to Bt toxins. Furthermore, improved control of whorl and ear infestations by H. zea and S. frugiperda would increase the flexibility of planting corn, Zea mays L., and permit double cropping of corn in areas where these pests perennially reach damaging levels.  相似文献   

9.
We compared the levels of pathogen infection in parental beetles, parasitism of the offspring, abundance of predators and breeding performance success of univoltine populations of Ips typographus in plots characterized by short‐term (2–3 years) outbreaks vs. those with long‐term (>10 years) outbreaks on two localities at ca. 1100 m altitude in the ?umava Mts. The numbers of I. typographus were high in all plots, whether the plots were characterized by long‐term outbreaks or short‐term outbreaks. The numbers of maternal galleries in the sample areas ranged from 300 to 400 per m2. The density of parental beetle galleries, abundance of surviving specimens of I. typographus, and length of maternal galleries did not differ between plots. The short‐term outbreaks had only fewer ectoparasitoids of I. typographus and a lower percentage of parasitism and infection level of Mattesia schwenkei than the long‐term outbreaks even though the maternal gallery densities and beetle production were the same. The most mortality appeared to be caused by intraspecific larval competition, and the identical reproductive success in plots with short‐term and long‐term outbreaks indicates that the negative feedback resulting from parasitoids and entomopathogens does not substantially reduce beetle numbers. Although entomopathogenic fungi as Beauveria bassiana occur naturally in the galleries of spruce bark beetles, there was no evidence of its presence in the studied population. The low levels of predation and/or parasitism in both kinds of plots indicate that natural enemies did not play a significant role in reducing outbreak numbers of I. typographus.  相似文献   

10.
Helicoverpa zea (Boddie) is an important pest of cotton, Gossypium hirsutum L., for which many economic injury and population models have been developed to predict the impact of injury by this species on cotton yield. A number of these models were developed using results from simulated damage experiments, despite the fact that no studies have demonstrated that simulated damage is comparable to real H. zea damage. Our main objective in this study was to compare the effect on yield of H. zea larvae feeding on cotton fruiting structures at different irrigation levels, larval densities, and cotton physiological ages with damage produced artificially by removing fruiting structures by hand using simulated estimates of H. zea injury. To accomplish this, we used two irrigation levels, each divided into real and simulated damage plots. In real damage plots, H. zea larvae were placed on plants and allowed to feed; whereas in simulated damage plots, fruiting structures were removed by hand using a simulation model of H. zea damage to determine numbers and amounts of fruiting structures to remove. Each of these plots was further divided into one undamaged control plot and nine treatment plots. Each treatment plot was randomly assigned one of three damage times (early, middle, or late season) and one of three H. zea densities. In 1998, we found that only artificial H. zea damage (performed by hand removal of fruiting structures) at the highest density and during the late season decreased yield; whereas real damage caused by H. zea larvae placed on plants, and artificial damage occurring at earlier time periods and lower H. zea densities did not affect yield. In 1999, both real and artificial damage decreased yield at the higher H. zea densities compared with the lowest density, but, as in 1998, this was only true when damage occurred late in the season. The most important finding of this study was that high H. zea densities had no effect on cotton yield unless they occurred late in the season. In particular, this was true for artificial H. zea damage. The second most important finding of this study was that, with the exception of late in the season, our model for simulating H. zea damage to cotton through removal of fruiting structures resulted in similar yields as real H. zea larvae damage to cotton.  相似文献   

11.
The soybean aphid, Aphis glycines Matsumura, was introduced to north central North America from Asia in 2000, and it has become a major pest of soybean, Glycine max (L.) Merr. Understanding how natural enemies impact aphid populations in the field is an important component in developing a comprehensive management plan. We examined the impact of naturally occurring predators in the field by using exclusion cages during July-August 2004 and 2005. Field cages of different mesh diameters were used to exclude different sizes of natural enemies from aphid-infested plots. Plots were surveyed twice weekly for A. glycines and natural enemies. Densities were recorded. Cage effects on mean temperature and soybean growth were found to be insignificant. Significant differences in aphid density were found between treatments in both years of the study (2004 and 2005); however, aphid densities between years were highly variable. Orius insidiosus (Say) was the most commonly occurring predator in the field. Other natural enemies were present in both years but not in high numbers. Parasitoids were present in both years, but their numbers did not suppress aphid densities. Treatment differences within years were related to the abundance of natural enemies. The large differences in aphid abundance between years were associated with the higher number of O. insidiosus found in the field in 2005 (416 total O. insidiosus) than in 2004 (149 total O. insidiosus). This study suggests that naturally occurring predators, primarily O. insidiosus, can have a large impact on A. glycines populations when predator populations are established before initial A. glycines colonization.  相似文献   

12.
Abstract:  Apparent competition, mediated by a shared predator, plays a key role in conservation biological control. Appropriate agroecosystems management may favour this type of indirect interaction. In that context, our aim was to test the effect of rose bush [ Rosa rugosa (Thunb.)] strips on the building up of aphid populations and of their natural enemies in adjacent cereal habitats. Several aphid species are currently found on Rosa sp. including Metopolophium dirhodum (Walker) for which it is a primary host. Aphid predators and parasitoids may build their populations on the aphid population present on Rosa sp. and later on migrate to wheat field during the cereal aphid infestation. Moreover, the flowers of the rose bushes may provide a source of nectar and pollen to these natural enemies. Our experiment was conducted in three rose margin wheat plots with a strip of rose bushes of R. rugosa and three control plots. Plots were compared during 2 years (2003 and 2004). Aphid, parasitoid and predator densities were recorded from May to the harvest of wheat on rose bushes and in wheat. In 2003, the aphid densities were moderate but in 2004, the population of aphid was very high. Even if predator and parasitoids arrived earlier in rose margin field than in control ones, the presence of rose bushes did not influence the aphid population within the field. Metopolophium dirhodum did not seem to migrate from the rose bushes to wheat. The level of parasitism was weak in rose bushes and the natural enemy population was not different in rose margin wheat and in control plots. The causes of the lack of efficiency of this type of management are discussed as well as the high aphid population in wheat in 2004.  相似文献   

13.
Herbivorous insects are influenced by both 'bottom-up' forces mediated through host plants and 'top-down' forces from natural enemies. Few studies have tried to evaluate the relative importance of the two forces in determining the abundance of insects. The leaf beetle Phratora vulgatissima Linnaeus sometimes occurs at high densities and severely damages the willow Salix cinerea in forest habitats. For willows growing in open agricultural landscapes (farmland S. cinerea), the leaf beetle generally occurs at low densities and plants receive little damage. The purpose of the present study was to evaluate the relative importance of host plant quality and natural enemies behind the observed difference in P. vulgatissima abundance. Female egg-laying and larval performance (growth and survival) were studied on caged willow branches in the field to investigate if plant quality differs between S. cinerea trees growing in forest and farmland habitats. The survival of eggs exposed to natural enemies was examined to see if predation could explain the low abundance of leaf beetles on farmland willows. The results indicated no difference in plant quality; female egg laying and larval performance did not differ between the forest and the farmland. However, heteropteran predators (true bugs) were more abundant, and the survival of eggs was lower, on plants in the farmland habitat than in the forest habitat. The data suggest that the low abundance of P. vulgatissima on farmland willows could not be explained by a poor quality of plants, but more likely by high predation from heteropterans.  相似文献   

14.
Plant characteristics, such as leaf structure or hairiness, are important for the movement and attachment of insects. It has been suggested that increased trichome density on new Salix cinerea L. (Salicaceae) leaves, produced after grazing by the willow leaf beetle Phratora vulgatissima L. (Coleoptera: Chrysomelidae), function as an inducible defence against the beetle and especially its larvae. Here we studied whether and how two of the main natural enemies of P. vulgatissima, viz., Anthocoris nemorum L. (Heteroptera: Anthocoridae) and Ortothylus marginalis L. (Heteroptera: Miridae), were influenced by trichome density on S. cinerea leaves. The effect of trichome density on these two predators was studied on plants with different trichome densities, comparing natural enemy efficiency, measured as number of P. vulgatissima eggs consumed or larvae missing and/or killed. To obtain different trichome densities, cuttings of several different clones of S. cinerea were used. In the experiment using eggs as prey, an increase in trichome density was, in addition, induced through leaf beetle defoliation on half of the plants of each willow clone. Furthermore, a field study was performed to investigate whether trichome density was correlated with natural enemy abundance. The results indicate that neither the efficiency of these two natural enemies in the greenhouse, nor their abundance in the field was influenced by trichome density. A well‐known behavioural difference between the two predator species could probably account for the higher disappearance of larvae after exposure to the more active predator. These findings are relevant for the development of pest management programs, not least because the enemies are polyphagous predators. It is concluded that an induced increase in leaf hairiness in willows in response to leaf beetle grazing could be a plant resistance trait worthy of further study in this system, because no negative effects on the main natural enemies were observed.  相似文献   

15.
A field study was conducted over 2 yr to determine the effects of transgenic sweet corn containing a gene from the bacterium Bacillus thuringiensis (Bt) on the diversity and abundance of nontarget arthropods. The Bt hybrid (expressing Cry1Ab endotoxin for lepidopteran control) was compared with near-isogenic non-Bt and Bt hybrids treated with a foliar insecticide and with a near-isogenic non-Bt hybrid without insecticides. Plant inspections, sticky cards, and pitfall traps were used to sample a total of 573,672 arthropods, representing 128 taxonomic groups in 95 families and 18 orders. Overall biodiversity and community-level responses were not significantly affected by the transgenic hybrid. The Bt hybrid also had no significant adverse effects on population densities of specific nontarget herbivores, decomposers, and natural enemies enumerated at the family level during the crop cycle. As expected, the insecticide lambda-cyhalothrin had broad negative impacts on the abundance of many nontarget arthropods. One insecticide application in the Bt plots reduced the overall abundance of the natural enemy community by 21-48%. Five applications in the non-Bt plots reduced natural enemy communities by 33-70%. Nontarget communities affected in the insecticide-treated Bt plots exhibited some recovery, but communities exposed to five applications showed no trends toward recovery during the crop cycle. This study clearly showed that the nontarget effects of Bt transgenic sweet corn on natural enemies and other arthropods were minimal and far less than the community-level disruptions caused by lambda-cyhalothrin.  相似文献   

16.
Prosapia bicincta (Say) (Hemiptera: Cercopidae), the twolined spittlebug, is an economic pest of turfgrass in the southeastern United States. No data concerning natural enemies of P. bicincta in turfgrass have been reported previously. We compared predation of spittlebug eggs, nymphs, and adults in the laboratory by potential generalist predators commonly found in turfgrass: bigeyed bugs Geocoris uliginosus Say and Geocoris punctipes Say; red imported fire ant, Solenopsis invicta Buren; wolf spiders (Lycosa sp. Walckenaer); carabid beetles Harpalaus pensylvanicus DeGeer and Calosoma sayi Dejean; and tiger beetles Megacephala carolina carolina L. Eggs were readily consumed by generalist predators. S. invicta consumed 100% of the eggs offered. H. pensylvanicus and C. sayi were also significant predators of P. bicincta eggs. Nymphs live in spittlemasses that protect them from attack by predators, but exposed nymphs were susceptible to attack when mechanically removed from their spittlemasses. S. invicta and M. carolina carolina caused significant mortality of exposed nymphs. P. bicincta adults are aposematic and have the ability to reflex bleed; however, reflex bleeding did not prevent attack by predators. S. invicta and M. carolina carolina killed 100% of the adult spittlebugs offered in laboratory bioassays. Lycosa sp. are less voracious predators of adults. Sound background knowledge about P. bicincta and its potential natural enemy complex is important for the development and implementation of a detailed, site-specific, biologically based pest management program in turfgrass.  相似文献   

17.
Morphological defense traits of plants such as trichomes potentially compromise biological control in agroecosystems because they may hinder predation by natural enemies. To investigate whether plant trichomes hinder red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), as biological control agents in soybean, field and greenhouse experiments were conducted in which we manipulated fire ant density in plots of three soybean isolines varying in trichome density. Resulting treatment effects on the abundance of herbivores, other natural enemies, plant herbivory, and yield were assessed. Trichomes did not inhibit fire ants from foraging on plants in the field or in the greenhouse, and fire ant predation of herbivores in the field was actually greater on pubescent plants relative to glabrous plants. Consequently, fire ants more strongly reduced plant damage by herbivores on pubescent plants. This effect, however, did not translate into greater yield from pubescent plants at high fire ant densities. Intraguild predation by fire ants, in contrast, was weak, inconsistent, and did not vary with trichome density. Rather than hindering fire ant predation, therefore, soybean trichomes instead increased fire ant predation of herbivores resulting in enhanced tritrophic effects of fire ants on pubescent plants. This effect was likely the result of a functional response by fire ants to the greater abundance of caterpillar prey on pubescent plants. Given the ubiquity of lepidopteran herbivores and the functional response to prey shown by many generalist arthropod predators, a positive indirect effect of trichomes on predation by natural enemies might be more far more common than is currently appreciated.  相似文献   

18.
To determine the importance of beetle predators on the natural control of cabbage root fly, experiments were carried out in 1958 and 1959 using various types of barriers to obtain different levels of beetle populations on cauliflower plots. A barrier of DDT-treated straw, placed in the soil around some plots, decreased the numbers of beetles within them and allowed a greater number of eggs and larvae of cabbage root fly to survive than on the untreated plots, resulting in a greater crop damage. Another type of barrier allowed the beetles to enter plots but made it difficult for them to leave. On these, fewer cabbage root-fly eggs and larvae survived and the crop damage was much less than on the plots surrounded by straw barriers. Where plants were treated with insecticide the root-fly population was reduced to a minimum and crop yields were considerably increased. The insecticide, however, caused a reduction in the numbers of predatory beetles.  相似文献   

19.
Generalist predators are relevant natural enemies of the Colorado potato beetle (CPB) in Europe. In fields of insect resistant genetically modified plants (GMPs), predators could be exposed to toxins either directly (e.g., via pollen), or indirectly through feeding on herbivorous prey. Hence, they represent an important functional group to consider when studying environmental impacts of GMPs. CPB females show a ‘bet-hedging’ strategy in spatial and temporal distribution of eggs, through which the species tries to minimize the risks of progeny loss due to adverse conditions. Experimental fields of GM eggplants expressing Cry3Bb toxin and potatoes expressing Cry1Ab toxin were set up. CPB egg masses were counted on naturally infested plants at four time points during the field season of each crop. To assess predation, newly deposited egg masses were marked at the same dates. Daily visual observations were conducted recording the numbers of intact or preyed eggs and neonate larvae. In both cases, oviposition was similar between GM and control plots, as the number of egg masses per plant and the number of eggs per mass did not differ significantly between treatments. A statistical analysis of the spatial distribution of egg masses revealed a similar aggregation in the potato field, whereas in the eggplant field, the variance of the number of egg masses per plant was smaller than expected in GMP plots. The predation rate was similar between treatments. These results suggest that the ecological function of natural predation on CPB eggs in GM plots was not impaired.  相似文献   

20.
We examined 17 pairs of near-isogenic hybrids of Bacillus thuringiensis (Bt) (176, Mon810, and Bt11) and non-Bt corn, Zea mays L., to examine the effects of Bt on larval densities of Helicoverpa zea (Boddie) and Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) during 2 yr. During ear formation, instar densities of H. zea and S. frugiperda were recorded for each hybrid. We found that H. zea first, second, and fifth instar densities were each affected by Mon810 and Bt11 Bt corn but not by 176 corn. Surprisingly, first and second instars were found in higher numbers on ears of Mon810 and Bt11 corn than on non-Bt corn. Densities of third and fourth instars were equal on Bt and non-Bt hybrids, whereas densities of fifth instars were lower on Bt plants. S. frugiperda larval densities were only affected during 1 yr when second, and fourth to sixth instars were lower on ears of Mon810 and Bt11 hybrids compared with their non-Bt counterparts. Two likely explanations for early instar H. zea densities being higher on Bt corn than non-Bt corn are that (1) Bt toxins delay development, creating a greater abundance of early instars that eventually die, and (2) reduced survival of H. zea to later instars on Bt corn decreased the normal asymmetric cannibalism or H. zea-S. frugiperda intraguild predation of late instars on early instars. Either explanation could explain why differences between Bt and non-Bt plants were greater for H. zea than S. frugiperda, because H. zea is more strongly affected by Bt toxins and more cannibalistic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号