首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inhibition of cardiomyocyte apoptosis plays a key role in preconditioning-triggered cardioprotection. However, the molecular mechanism(s) by which preconditioning inhibits apoptosis is not fully understood. Apoptosis repressor with caspase recruitment domain (ARC) possesses the ability to block hypoxia-induced cardiomyocyte apoptosis. We tested whether ARC contributes to the inhibitory effect of preconditioning on cardiomyocyte apoptosis. Cardiomyocytes from 1-day-old male Sprague-Dawley rats were preconditioned by exposing to 10 min of hypoxia, followed by 30 min of reoxygenation. Then, the preconditioned and non-preconditioned cardiomyocytes were exposed to 90 min of hypoxia followed by 120 min of reoxygenation. The results showed that preconditioning inhibited cell death induced by hypoxia and reoxygenation. Hypoxia and reoxygenation could induce a decrease of ARC protein levels. Intriguingly, preconditioning could maintain ARC protein levels. Inhibition of endogenous ARC expression by ARC antisense oligonucleotides reduced the inhibitory effect of preconditioning on apoptosis. Furthermore, preconditioning-induced suppression of the release of mitochondrial cytochrome c to cytosol and caspase-3 activation could be abolished by the inhibition of endogenous ARC expression using ARC antisense oligonucleotides. Conclusion: These data indicate that ARC participates in preconditioning-triggered cardioprotection by interfering with cytochrome c release and caspase-3 activation.  相似文献   

3.
Objective  Postconditioning protects the heart against ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. However, the molecular mechanism by which postconditioning suppresses apoptosis remains to be fully understood. Apoptosis repressor with caspase recruitment domain (ARC) has been demonstrated to possess the ability to protect cardiomyocytes from apoptosis induced by ischemia/reperfusion. It is not yet clear as to whether ARC contributes to the inhibitory effect of postconditioning against cardiomyocyte apoptosis. Methods  The cultured cardiomyocytes from 1-day old male Sprague–Dawley rats were exposed to 3 h hypoxia followed by 3 h of reoxygenation. Cells were postconditioned by three cycles each of 5 min reoxygenation and 5 min hypoxia before 3 h of reoxygenation. Results  Hypoxia/reoxygenation led to a decrease of endogenous ARC protein levels. In contrast, postconditioning could block the reduction of endogenous ARC protein levels. Interestingly, inhibition of endogenous ARC expression by ARC antisense oligodeoxynucleotides reduced the inhibitory effect of postconditioning against apoptosis. Furthermore, our data showed that postconditioning suppressed the loss of mitochondrial membrane potential, Bax activation and the release of mitochondrial cytochrome c to cytosol. However, these inhibitory effects of postconditioning disappeared upon knockdown of endogenous ARC. Conclusion  Our data for the first time demonstrate that ARC plays an essential role in mediating the cardioprotective effect of postconditioning against apoptosis initiated by the mitochondrial pathway.  相似文献   

4.
Apoptosis repressor with a CARD domain (ARC), which has been shown to protect against oxidative stress-induced apoptosis, was initially found to be highly expressed in terminally differentiated tissues like heart and skeletal muscle. Recently, we and others have found that ARC is also expressed at high levels in multiple cancer tissues and cell lines. Here, we compared the regulation of ARC in response to oxidative stress between cancer cells and other types of cells. Similar to cardiomyocyte cell line H9c2 cells, cancer cells with reduced ARC expression were significantly more sensitive to oxidative stress. However, oxidative stress did not down-regulate ARC expression in cancer cells as it did in H9c2 cells. We further found that in H9c2 cells oxidative stress regulates ARC protein expression post-translationally through proteasome-mediated degradation. In cancer cell line HeLa, the majority of ARC exists in phosphorylated state in the absence of oxidative stress, whereas in H9c2 cells only marginal amount of ARC was phosphorylated under similar conditions. Our data suggest that the high level of ARC protein and the constitutive phosphorylation of ARC in cancer cells may play an important role in the protection of cancer cells against oxidative stress.  相似文献   

5.
6.
Gu R  Bai J  Ling L  Ding L  Zhang N  Ye J  Ferro A  Xu B 《PloS one》2012,7(2):e31279

Aims

Integrin-linked kinase (ILK) is a multifunctional kinase linking the extracellular matrix to intracellular signaling pathways, whose activation in the heart gives rise to a number of functional consequences. The aim of this study is to demonstrate the therapeutic and survival benefit of cardiac ILK overexpression in a rat model of dilated cardiomyopathy.

Methods and Results

The dilated cardiomyopathy model was generated in rats by intraperitoneal administration of six equal doses of doxorubicin over a 2 week period. Five weeks after the first injection, echocardiographic analysis demonstrated impaired cardiac function and, at that point, recombinant adenoviral vector harboring ILK cDNA or vehicle was injected into the myocardium, and the rats re-studied 4 weeks later. Compared with vehicle injection, ILK treatment ameliorated inflammatory cell infiltration and cardiomyocyte degeneration, as well as left ventricular dilation and dysfunction. ILK treatment was also associated with a reduction in apoptosis and an increase in proliferation of cardiomyocytes, as well as decreased oxidative stress and autophagic vacuole accumulation. Importantly, mortality was lower in rats following ILK treatment than in those following vehicle injection. In cultured neonatal rat cardiomyocytes, we also found that ILK overexpression protected against doxorubicin-induced apoptosis, giving rise to an increase in their proliferation.

Conclusions

These data demonstrate for the first time that ILK gene therapy improves cardiac function and survival in a model of dilated cardiomyopathy, and this may be mediated through suppression of inflammation, prevention of ventricular remodeling, inhibition of cardiomyocyte apoptosis and autophagy, and stimulation of cardiomyocyte proliferation.  相似文献   

7.
Doxorubicin (Dox) is a highly effective antitumor antibiotic, however myocardial toxicity severely limits its use clinically. The pathogenesis of doxorubicin‐induced cardiomyopathy is unclear. In Dox cardiomyopathy mice, there is a decline in cardiac function, a change in myocardial pathology and a reduction in miR378* expression. Expression changes in calumenin, an endoplasmic reticulum stress (ERS) chaperone protein and pathway factor, as well as apoptosis, were observed in cardiomyocytes after doxorubicin‐induced injury. However, miR378* increased calumenin expression, eased ERS, and reduced cardiomyocyte apoptosis, while, silencing miR378* reduced calumenin expression, aggravated ERS, and increased cardiomyocyte apoptosis. The above results indicate that miR378* alleviates ERS and inhibits the activation of the ERS‐mediated apoptosis signaling pathway in cardiomyocytes via regulating calumenin expression, thereby reducing cardiomyocyte apoptosis after doxorubicin‐induced injury. Increasing miR378* expression may be a new way to improve cardiac function and quality of life in patients with Dox cardiomyopathy.  相似文献   

8.
Vitamin C (Vit C) has been shown to be protective against doxorubicin (Dox)-induced cardiotoxicity. However, Vit C uptake into cardiomyocytes is poorly understood. Furthermore, whether the antioxidant enzyme reserve is enhanced by Vit C is also not known. The present study investigated an influence of Dox on Vit C transporters, expression of endogenous antioxidant reserve as well as enzymes, oxidative stress, and apoptosis in isolated cardiomyocytes. Cardiomyocytes isolated from adult Sprague-Dawley rats were exposed to control (culture medium 199 alone), Dox (10 μM), Vit C (25 μM), and Vit C + Dox for 24 h. Vit C transporter expression and localization, oxidative stress, antioxidant enzymes, and apoptosis were studied. Expression and localization of sodium-dependent vitamin C transporter-2 (SVCT-2) in the sarcolemma was reduced by Dox, but Vit C supplementation was able to blunt this change. There was a decrease in the expression of antioxidant enzymes glutathione peroxidase (GPx), catalase, and Cu/Zn superoxide dismutase (SOD) due to Dox, but only GPx expression was completely prevented and Cu/Zn SOD was partially rescued by Vit C. Dox-induced decrease in antioxidant reserve and increase in oxidative stress were partially mitigated by Vit C. Dox-induced apoptosis was ameliorated by Vit C. It is suggested that cardioprotection offered by Vit C in Dox-induced cardiomyopathy may involve an upregulation of SVCT-2 transporter followed by a reduction in oxidative stress as well as blunting of cardiomyocyte injury.  相似文献   

9.
10.
Apoptosis, or programmed cell death, is an essential physiological process for proper embryogenesis as well as for homeostasis during aging. In addition, apoptosis is one of the major mechanisms causing cell loss in pathophysiological conditions such as heart failure. Thus, inhibition of apoptosis is an important approach for preventive and therapeutic strategies. Here we show that the histone 3 lysine 4- and lysine 36-specific methyltransferase Smyd2 acts as an endogenous antagonistic player of p53-dependent cardiomyocyte apoptosis. Smyd2 protein levels were significantly decreased in cardiomyocytes upon cobalt chloride-induced apoptosis or myocardial infarction, while p53 expression was enhanced. siRNA-mediated knockdown of Smyd2 in cultured cardiomyocytes further enhanced cobalt chloride-induced cardiomyocyte apoptosis. In contrast, Smyd2 overexpression resulted in marked methylation of p53 and prevented its accumulation as well as apoptotic cell death in an Hsp90-independent manner. Moreover, overexpression, of Smyd2, but not Smyd2Y240F lacking a methyl transferase activity, significantly rescued CoCl2-induced apoptosis in H9c2 cardioblasts. Finally, Smyd2 cardiomyocyte-specific deletion in vivo promoted apoptotic cell death upon myocardial infarction, which correlated with enhanced expression of p53 and pro-apoptotic Bax. Collectively, our data indicate Smyd2 as a cardioprotective protein by methylating p53.  相似文献   

11.
Doxorubicin-induced cardiomyopathy in cancer patients is well established. The proposed mechanism of cardiac damage includes generation of reactive oxygen species, mitochondrial dysfunction and cardiomyocyte apoptosis. Exposure of adult rat cardiomyocytes to low levels of DOX for 48h induced apoptosis. Analysis of protein expression showed a differential regulation of several key proteins including the voltage dependent anion selective channel protein 2 and methylmalonate semialdehyde dehydrogenase. In comparison, proteomic evaluation of DOX-treated rat heart showed a slightly different set of protein changes that suggests nuclear accumulation of DOX. Using a new solubilization technique, changes in low abundant protein profiles were monitored. Altered protein expression, modification and function related to oxidative stress response may play an important role in DOX cardiotoxicity.  相似文献   

12.
Oxidative stress plays a pivotal role in chronic heart failure. SIRT1, an NAD+-dependent histone/protein deacetylase, promotes cell survival under oxidative stress when it is expressed in the nucleus. However, adult cardiomyocytes predominantly express SIRT1 in the cytoplasm, and its function has not been elucidated. The purpose of this study was to investigate the functional role of SIRT1 in the heart and the potential use of SIRT1 in therapy for heart failure. We investigated the subcellular localization of SIRT1 in cardiomyocytes and its impact on cell survival. SIRT1 accumulated in the nucleus of cardiomyocytes in the failing hearts of TO-2 hamsters, postmyocardial infarction rats, and a dilated cardiomyopathy patient but not in control healthy hearts. Nuclear but not cytoplasmic SIRT1-induced manganese superoxide dismutase (Mn-SOD), which was further enhanced by resveratrol, and increased the resistance of C2C12 myoblasts to oxidative stress. Resveratrol''s enhancement of Mn-SOD levels depended on the level of nuclear SIRT1, and it suppressed the cell death induced by antimycin A or angiotensin II. The cell-protective effects of nuclear SIRT1 or resveratrol were canceled by the Mn-SOD small interfering RNA or SIRT1 small interfering RNA. The oral administration of resveratrol to TO-2 hamsters increased Mn-SOD levels in cardiomyocytes, suppressed fibrosis, preserved cardiac function, and significantly improved survival. Thus, Mn-SOD induced by resveratrol via nuclear SIRT1 reduced oxidative stress and participated in cardiomyocyte protection. SIRT1 activators such as resveratrol could be novel therapeutic tools for the treatment of chronic heart failure.  相似文献   

13.
14.
Ca2+/calmodulin-dependent protein kinase (CaMK) is an important downstream target of Ca2+ in the hypertrophic signaling pathways. We previously showed that the activation of apoptosis signal-regulating kinase 1 (ASK1) or NF-kappaB is sufficient for cardiomyocyte hypertrophy. Infection of isolated neonatal cardiomyocytes with an adenoviral vector expressing CaMKIIdelta3 (AdCaMKIIdelta3) induced the activation of ASK1, while KN93, an inhibitor of CaMKII, inhibited phenylephrine-induced ASK1 activation. Overexpression of CaMKIIdelta3 induced characteristic features of in vitro cardiomyocyte hypertrophy. Infection of cardiomyocytes with an adenoviral vector expressing a dominant negative mutant of ASK1 (AdASK(KM)) inhibited the CaMKIIdelta3-induced hypertrophic responses. Overexpression of CaMKIIdelta3 increased the kappaB-dependent promoter/luciferase activity and induced IkappaBalpha degradation. Coinfection with AdCaMKIIdelta3 and AdASK(KM), and pre-incubation with KN93 attenuated CaMKIIdelta3- and phenylephrine-induced NF-kappaB activation, respectively. Expression of a degradation resistant mutant of IkappaBalpha inhibited CaMKIIdelta3-induced hypertrophic responses. These results indicate that CaMKIIdelta3 induces cardiomyocyte hypertrophy mediated through ASK1-NF-kappaB signal transduction pathway.  相似文献   

15.
BackgroundDoxorubicin (DOX) is an anti-tumor agent that is widely used in clinical setting for cancer treatment. The application of the DOX, however, is limited by its cardiac toxicity which can induce heart failure through an undefined mechanism. Mitofusin 2 (Mfn2) is a mitochondrial GTPase fusion protein that is located on the outer membrane of mitochondria (OMM). The Mfn2 plays an important role in mitochondrial fusion and fission. The aim of this study is to identify the role of the Mfn2 in DOX-induced cardiomyocyte apoptosis.MethodsCultured neonatal rat cardiomyocytes were used in this study. Mfn2 expression in cardiomyocytes was determined after the cardiomyocytes were challenged with DOX. Cardiomyocyte mitochondrial fission, mitochondrial reactive oxygen species (ROS) production was assessed with mitochondrial fragmentation and MitoSOX fluorescence probe, respectively. Cardiomyocyte apoptosis was determined with caspase3 activity and TUNEL staining.ResultsChallenging of the cardiomyocytes with DOX resulted in increasing in cardiomyocyte oxidative stress and apoptosis. In addition, levels of Mfn2 in cardiomyocytes were decreased after the cells were challenged with DOX which was associated with increased mitochondrial fission (fragmentation) and mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 attenuated the DOX-induced increase in mitochondrial fission and prevented cardiomyocyte mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 or pretreatment of cardiomyocytes with an anti-oxidant, Mito-tempo, also prevented the DOX-induced cardiomyocyte apoptosis.ConclusionOur results indicate that DOX results in a decreased cardiomyocyte Mfn2 expression which promotes mitochondrial fission and ROS production further leads to cardiomyocyte apoptosis.  相似文献   

16.
17.
Apoptosis plays a critical role for the development of a variety of cardiac diseases. Cardiomyocytes are enriched in mitochondria, while mitochondrial fission can regulate apoptosis. The molecular mechanism governing cardiomyocyte apoptosis remain to be fully elucidated. Our results showed that Smac/DIABLO is necessary for apoptosis in cardiomyocytes, and it is released from mitochondria into cytosol in response to apoptotic stimulation. Smac/DIABLO release is a consequence of mitochondrial fission mediated by dynamin-related protein-1 (Drp1). Upon release Smac/DIABLO binds to X-linked inhibitor of apoptosis protein (XIAP), resulting in the activation of caspase-9 and caspase-3. Their activation is a prerequisite for the initiation of apoptosis because the administration of z-LEHD-fmk and z-DQMD-fmk, two relatively specific inhibitors for caspase-9, and caspase-3, respectively, could significantly attenuate apoptosis. Smac/DIABLO release could not be blocked by these caspase inhibitors, indicating that it is an event upstream of caspase activation. ARC (apoptosis repressor with caspase recruitment domain), an abundantly expressed apoptotic repressor in cardiomyocytes, could inhibit mitochondrial fission and Smac/DIABLO release. Our data reveal that Smac/DIABLO is a target of ARC in counteracting apoptosis.  相似文献   

18.
Mammalian sterile 20-like kinase 1 (Mst1) is a critical component of the Hippo signaling pathway, which regulates a variety of biological processes ranging from cell contact inhibition, organ size control, apoptosis and tumor suppression in mammals. Mst1 plays essential roles in the heart disease since its activation causes cardiomyocyte apoptosis and dilated cardiomyopathy. However, the mechanism underlying Mst1 activation in the heart remains unknown. In a yeast two-hybrid screen of a human heart cDNA library with Mst1 as bait, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as an Mst1-interacting protein. The interaction of GAPDH with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK293 cells and mouse heart homogenates, in which GAPDH interacted with the kinase domain of Mst1, whereas the C-terminal catalytic domain of GAPDH mediated its interaction with Mst1. Moreover, interaction of Mst1 with GAPDH caused a robust phosphorylation of GAPDH and markedly increased the Mst1 activity in cells. Chelerythrine, a potent inducer of apoptosis, substantially increased the nuclear translocation and interaction of GAPDH and Mst1 in cardiomyocytes. Overexpression of GAPDH significantly augmented the Mst1 mediated apoptosis, whereas knockdown of GAPDH markedly attenuated the Mst1 activation and cardiomyocyte apoptosis in response to either chelerythrine or hypoxia/reoxygenation. These findings reveal a novel function of GAPDH in Mst1 activation and cardiomyocyte apoptosis and suggest that disruption of GAPDH interaction with Mst1 may prevent apoptosis related heart diseases such as heart failure and ischemic heart disease.  相似文献   

19.
The ischemic death of cardiomyocytes is associated in heart disease and heart failure. However, the molecular mechanism underlying ischemic cell death is not well defined. To examine the function of apoptosis repressor with a caspase recruitment domain (ARC) in the ischemic/hypoxic damage of cardiomyocytes, we generated cardio-specific ARC transgenic mice using a mouse alpha-myosin heavy chain promoter. Compared with the control, the hearts of ARC transgenic mice showed a 3-fold overexpression of ARC. Langendoff preparation showed that the hearts isolated from ARC transgenic mice exhibited improved recovery of contractile performance during reperfusion. The cardiomyocytes cultured from neonatal ARC transgenic mice were significantly resistant to hypoxic cell death. Furthermore, the ARC C-terminal calcium-binding domain was as potent to protect cardiomyocytes from hypoxic cell death as ARC. Genome-wide RNA expression profiling uncovered a list of genes whose expression was changed (>2-fold) in ARC transgenic mice. Among them, expressional regulation of developmentally regulated RNA-binding protein 1 (Drbp1) or the dimethylglycine dehydrogenase precursor (pMe(2)GlyDH) affected hypoxic death of cardiomyocytes. These results suggest that ARC may protect cardiomyocytes from hypoxic cell death by regulating its downstream, Drbp1 and pMe(2)GlyDH, shedding new insights into the protection of heart from hypoxic damages.  相似文献   

20.
Cardiomyocyte apoptosis is an important event in doxorubicin (DOX)-induced cardiac injury. The aim of the present study was to investigate the protection of berberine (Ber) against DOX- triggered cardiomyocyte apoptosis in neonatal rat cardiomyocytes and rats. In neonatal rat cardiomyocytes, Ber attenuated DOX-induced cellular injury and apoptosis in a dose-dependent manner. However, Ber has no significant effect on viability of MCF-7 breast cancer cells treated with DOX. Ber reduced caspase-3 and caspase-9, but not caspase-8 activity in DOX-treated cardiomyocytes. Furthermore, Ber decreased adenosine monophosphate-activated protein kinase α (AMPKα) and p53 phosphorylation at 2 h, cytosolic cytochrome c and mitochondrial Bax levels and increased Bcl-2 level at 6 h in DOX-stimulated cardiomyocytes. Pretreatment with compound C, an AMPK inhibitor, also suppressed p53 phosphorylation and apoptosis in DOX-treated cardiomyocytes. DOX stimulation for 30 min led to a loss of mitochondrial membrane potential and a rise in the AMP/ATP ratio. Ber markedly reduced DOX-induced mitochondrial membrane potential loss and an increase in the AMP/ATP ratio at 1 h and 2 h post DOX exposure. In in vivo experiments, Ber significantly improved survival, increased stroke volume and attenuated myocardial injury in DOX-challenged rats. TUNEL and Western blot assays showed that Ber not only decreased myocardial apoptosis, caspase-3 activation, AMPKα and p53 phosphorylation, but also increased Bcl-2 expression in myocardium of rats exposed to DOX for 84 h. These findings indicate that Ber attenuates DOX-induced cardiomyocyte apoptosis via protecting mitochondria, inhibiting an increase in the AMP/ATP ratio and AMPKα phosphorylation as well as elevating Bcl-2 expression, which offer a novel mechanism responsible for protection of Ber against DOX-induced cardiomyopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号