首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cellular DNA contains two distinguishable families of retroviral related sequences. One family shares extensive nucleotide sequence homology with infectious mammalian type C retroviral genomes (T. I. Bonner, C. O'Connell, and M. Cohen, Proc. Natl. Acad. Sci. USA 79:4709-4713, 1982; M. A. Martin, T. Bryan, S. Rasheed, and A. S. Khan, Proc. Natl. Acad. Sci. USA 78:4892-4896, 1981). The other family contains major regions of homology with the pol genes of infectious type A and B and avian type C and D retroviral genomes (R. Callahan, W. Drohan, S. Tronick, and J. Schlom, Proc. Natl. Acad. Sci. USA 79:5503-5507, 1982; I. M. Chiu, R. Callahan, S. R. Tronick, J. Schlom, and S. A. Aaronson, Science 223:364-370, 1984). Analysis of the human recombinant clone HLM-2 has shown that the pol gene in the latter family is located within an endogenous proviral genome (R. Callahan, I. M. Chiu, J. F. H. Wong, S. R. Tronick, B. A. Roe, S. A. Aaronson, and J. Schlom, Science 228:1208-1211, 1985). We show that the proviral genome in HLM-2 and the related recombinant clone HLM-25 are located, respectively, on human chromosomes 1 and 5. Other related proviral genomes are located on chromosomes 7, 8, 11, 14, and 17.  相似文献   

2.
The nonexponential closed-time distributions observed for ionic channels have been explained recently by quasi-one-dimensional models of structural diffusion (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988. Proc. Natl. Acad. Sci. USA. 85: 1503-1507; Condat, C. A., and J. J?ckle. 1989. Biophys. J. 55: 915-925; Levitt, D. G. 1989. Biophys. J. 55: 489-498). We generalize this treatment by allowing for more complex trajectories using percolation theory. We assume that the gating transition depends on marginally connected conformational states leading to the observed spread in time scales.  相似文献   

3.
Aspartylglycosaminuria is a lysosomal storage disease caused by deficient activity of glycoasparaginase (EC 3.5.1.26), and it occurs with a high frequency among Finns. We have recently shown that the molecular defect in all Finnish aspartylglycosaminuria patients examined to date consists of two single base changes in the heavy chain of glycoasparaginase (Mononen, I., Heisterkamp, N., Kaartinen, V., Williams, J. C., Yates, J. R., III, Griffin, P. R., Hood, L. E., and Groffen, J. (1991) Proc. Natl. Acad. Sci U.S.A. 88, 2941-2945). This is the first report on the identification of the molecular defect causing aspartylglycosaminuria in a patient of non-Finnish origin. Total RNA from fibroblasts of a black American aspartylglycosaminuria patient was isolated, first-strand cDNA was synthesized, and the cDNA encoding glycoasparaginase was amplified by the polymerase chain reaction. The patient's mRNA nucleotide sequence was different from the normal sequence by a deletion of 134 nucleotides at positions 807-940. Nucleotide sequence analysis of the normal glycoasparaginase gene demonstrated that the deletion corresponded precisely to a 134-base pair exon. Moreover, analysis of the splice sites demonstrated a single base change, G to T, that altered the donor splice site of the exon deleted in the patient's mRNA. This change led to an exon-skipping event resulting in a frame shift and generation of a stop codon.  相似文献   

4.
Intramolecular cross-linking of myosin subfragment 1 with bimane   总被引:2,自引:0,他引:2  
K Ue 《Biochemistry》1987,26(7):1889-1894
We previously showed that the fluorescent inter-thiol cross-linker dibromobimane (DBB) [Kosower, N. S., Kosower, E. M., Newton, G. L., & Ranney, H. M. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 3382-3386] cross-links two [50 and 20 kilodaltons (kDa)] of the three major fragments of myosin subfragment 1 (S-1); on intact S-1, DBB quenches tryptophans and inhibits all ATPases [Mornet, D., Ue, K., & Morales, M. F. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1658-1662]. Here we characterize the modification chemically: DBB cross-links Cys-522 (50 kDa) with Cys-707 (20 kDa), thereby sealing a large preexisting heavy-chain loop containing important functionalities. Cross-linking rate is insensitive to nucleotides, but apparently sterically, either monobromobimane or DBB reduces Ca2+-ATPase to low, nonzero levels.  相似文献   

5.
The characteristics of 100 ps of molecular dynamics (MD) on the DNA dodecamer d(CGCGAATTCGCG) at 300 K are described and investigated. The simulation is based on an in vacuo model of the oligomer and the AMBER 3.0 force field configured in the manner of Singh, U. C., S. J. Weiner, and P. A. Kollman, (1985, Proc. Natl. Acad. Sci. USA. 82:755-759). The analysis of the results was carried out using the "curves, dials, and windows" procedure (Ravishanker, G., S. Swaminathan, D. L. Beveridge, R. Lavery, and H. Sklenar. 1989. J. Biomol. Struct. Dyn. 6:669-699). The results indicate this dynamical model to be a provisionally stable double helix which lies at approximately 3.2 A rms deviation from the canonical B-form. There is, however, a persistent nonplanarity in the base pair orientations which resemble that observed in canonical A-DNA. The major groove width is seen to narrow during the course of the simulation and the minor groove expands, contravariant to the alterations in groove width seen in the crystal structure of the native dodecamer (Drew, H. R., R. M. Wing, T. Takano, C. Broka, S. Tanaka, I. Itakura, and R. E. Dickerson, 1981. Proc. Natl. Acad. Sci. USA. 78:2179-2183). The propeller twist in the bases, the sequence dependence of the base pair roll and aspects of bending in the helix axis are in some degree of agreement with the crystal structure. The patterns in DNA bending are observed to follow Zhurkin theory (Zhurkin, V. B. 1985. J. Biomol. Struct. Dyn. 2:785-804.). The relationship between the dynamical model and structure in solution is discussed.  相似文献   

6.
We showed previously that transformation by cytoplasmic and membrane-associated oncogenes including ras results in uncoupling between surface stimulation by platelet-derived growth factor, bombesin, and serum and activation of intracellular phospholipase C (PLC); this uncoupling does not involve alterations at the receptor or effector enzyme levels (T. Alonso, R. O. Morgan, J. C. Marvizon, H. Zarbl, and E. Santos, Proc. Natl. Acad. Sci. USA 85:4271-4275, 1988). In this study, we stimulated normal and oncogene-transformed NIH 3T3 cells with fluoroaluminate (AIF4-), thus directly activating PLC-associated G protein(s) and bypassing the receptor step. A1F4(-)-elicited PLC responses were significantly impaired in transformed cells when compared with those in their normal counterparts, suggesting that the uncoupling of PLC is the result, at least in part, of functional impairment at the G-protein level. Transformation by ras oncogenes has also been reported to result in enhanced PLC response to bradykinin resulting from increased receptor numbers (G. Parries, R. Hoebel, and E. Racker, Proc. Natl. Acad. Sci. USA 84:2648-2652, 1987; J. Downward, J. de Gunzburg, R. Riehl, and R. Weinberg, Proc. Natl. Acad. Sci. USA 85:5774-5778, 1988). We demonstrate here that transformation by other membrane-associated and cytoplasmic oncogenes also results in increased responsiveness to bradykinin ("supercoupling") and enhanced receptor numbers. However, there is no direct correlation between the number of receptors and the enhancement in responsiveness, suggesting that other factors besides receptor number are also involved in the enhanced responses. We propose that a common effect of transformation by cytoplasmic and membrane-associated oncogenes is functional alteration of coupling G proteins and that a similar modification of different kinds of G proteins may account for the pleiotropic alterations of signal transduction (uncoupling and supercoupling) observed.  相似文献   

7.
Previous reports demonstrated that the vesicular stomatitis viral glycoprotein (G protein), initially present in membranes of a Chinese hamster ovary mutant cell line (clone 15B) that is incapable of terminal glycosylation, can be transferred in vitro to exogenous Golgi membranes and there glycosylated (E. Fries and J. E. Rothman, 1980, Proc. Natl. Acad. Sci. U. S. A. 77:3870-3874; and J. E. Rothman and E. Fries, 1981, J. Cell Biol. 89:162-168). Here we present evidence that Golgi-like membranes serve as donors of G protein in this process. Pulse-chase experiments revealed that the donor activity of membranes is greatest at approximately 10 min of chase, a time when G protein has been shown to have arrived in Golgi stacks (J. E. Bergmann, K. T. Tokuyasu, and S. J. Singer, 1981, Proc. Natl. Acad. Sci. U. S. A. 78:1746-1750). Additional evidence that the G protein that is transferred to exogenous Golgi membranes in vitro had already entered the Golgi membranes in vivo was provided by observations that its oligosaccharides had already been trimmed, and that its distribution in a sucrose density gradient was coincident with that of enzymatic markers of Golgi membranes. The capacity of this Golgi-like membrane to serve as donor is transient, declining within 5 min after "trimming" in vivo as the G protein enters a "nontransferable" pool. The rapidity of the process suggests that both the "transferable" and "nontransferable" pools of G protein reside in Golgi-like membranes.  相似文献   

8.
Comment on: Jullien J, et al. Proc Natl Acad Sci USA 2010; 107:5483-8.  相似文献   

9.
Comment on: Witz G, et al. Proc Natl Acad Sci USA 2011; 108:3608-11.  相似文献   

10.
Comment on: Cipriano R, et al. Proc Natl Acad Sci USA 2011; 108:8668-73.  相似文献   

11.
Comment on: Ardehali R, et al. Proc Natl Acad Sci USA. 2011; 108:3282-7.  相似文献   

12.
Signal sequence of alkaline phosphatase of Escherichia coli.   总被引:16,自引:9,他引:7       下载免费PDF全文
The amino acid sequence of the signal sequence of phoA was determined by DNA sequencing by using the dideoxy chain termination technique (Sanger et al., Proc. Natl. Acad. Sci. U.S.A. 74:5463-5467, 1977). The template used was single-stranded DNA obtained from M13 on f1 phage derivatives carrying phoA, constructed by in vitro recombination. The results confirm the sequence of the first five amino acids determined by Sarthy et al. (J. Bacteriol. 139:932-939, 1979) and extend the sequence in the same reading frame into the amino terminal region of the mature alkaline phosphatase (Bradshaw et al., Proc. Natl. Acad. Sci. U.S.A., 78:3473-3477, 1981). As was predicted (Inouye and Beckwith, Proc. Natl. Acad. Sci. U.S.A. 74:1440-1444, 1977), the signal sequence was highly hydrophobic. The alteration of DNA sequence was identified for a promoter mutation that results in the expression of phoA independent of the positive control gene phoB and in insensitivity to high phosphate.  相似文献   

13.
NIH 3T3 cells were transfected with plasmids containing Moloney murine leukemia virus long terminal repeats and either chicken c-src or v-src genes. In contrast with the effects observed after transfection with plasmids containing c-src and avian retrovirus or simian virus 40 promoter-enhancers (H. Hanafusa, H. Iba, T. Takeya, and F. R. Cross, p. 1-8, in G. F. Vande Woude, A. J. Levine, W. C. Topp, and J. D. Watson, ed., Cancer Cells, vol. 2, 1984; H. Iba, T. Takeya, F. R. Cross, T. Hanafusa, and H. Hanafusa, Proc. Natl. Acad. Sci. U.S.A. 81:4424-4428, 1984; R. C. Parker, R. Swanstrom, H. E. Varmus, and J. M. Bishop, p. 19-26, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; R. C. Parker, H. E. Varmus, and J. M. Bishop, Cell 37:131-139, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, p. 9-17, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, Proc. Natl. Acad. Sci. U.S.A. 81:7071-7075; and K. C. Wilhelmsen, W. G. Tarpley, and H. M. Temin, p. 303-308, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984), we found that both types of Moloney murine leukemia virus long terminal repeat-src expression plasmids induced focus formation, although c-src induced only 1% as many foci as v-src. The focus-selected c-src overexpressed cells had altered morphology and limited growth in soft agarose but were not tumorigenic in vivo. Cleveland digests, comparative in vitro kinase assays, secondary transfections, and immunoprecipitations indicated that focus formation was caused by rare transfection events that resulted in very high-level pp60c-src expression rather than by mutations of the transfected c-src genes. These results suggest that pp60v-src induced transformation is not a completely spurious activity which is unrelated to the function of pp60c-src but that it represents a perturbation of already existent molecular control processes involving pp60c-src.  相似文献   

14.
15.
We report here experiments undertaken in pairs of hepatocytes that demonstrate a marked voltage sensivity of junctional conductance and, thus, contradict earlier findings reported by this laboratory (Spray, D.C., R.D.ginzberg, E.A., E. A. Morales, Z. Gatmaitan and I.M. Arias, 1986, J. Cell Biol. 101:135-144; Spray C.D. R.L. White, A.C. Campos de Carvalho, and M.V.L. Bennett. 1984. Biophys. J. 45:219-230) and by others (Dahl, G., T. Moller, D. Paul, R. Voellmy, and R. Werner. 1987. Science [Wash. DC] 236:1290-1293; Riverdin, E.C., and R. Weingart. 1988. Am. J. Physiol. 254:C226-C234). Expression in exogenous systems, lipid bilayers in which fragments of isolated gap junction membranes were incorporated (Young, J.D.-E., Z. Cohn, and N.B. Gilula. 1987. Cell. 48:733-743.) and noncommunicating cells transfected with connexin32 cDNA (Eghbali, B., J.A. Kessler, and D.C. Spray. 1990. Proc. Natl. Acad. Sci. USA. 87:1328-1331), support these findings and indicate that the voltage-dependent channel is composed of connexin32, the major gap junction protein of rat liver (Paul, D. 1986. J. Cell Biol. 103:123-134).  相似文献   

16.
Hydrogen bonding between the 3' terminus of 16 S rRNA (... C-A-C-C-U-C-C-U-U-A-OH3) and complementary sequences within the initiator region of mRNA may be a crucial event in the specific initiation of protein biosynthesis (Shine, J., and Dalgarno, L. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 1342-1346; Steitz, J. A., and Jakes, K. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 4734-4738). Using equilibrium dialysis, we have studied the binding of G-A-dG-dG-U (which is complementary to the 3' end of 16 S rRNA and which has been synthesized enzymatically) to initiation factor-free Escherichia coli ribosomes. We have also investigated the effects of the pentanucleotide on initiation reactions in E. coli ribosomes. G-A-dG-dG-U has a specific binding site on the 30 S ribosome with an association constant of 2 x 10(6) M-1 at 0 degrees C. G-A-dG-dG-U inhibits the R17 mRNA-dependent binding of fMet-tRNA by about 70%, both with 70 S ribosomes and 30 S subunits. In contrast, the A-U-G-dependent initiation reaction and the poly(U)-dependent Phe-tRNA binding was not affected by the pentanucleotide with both ribosomal species.  相似文献   

17.
Synthetic DNA substrates containing an acetylaminofluorene (AAF) adduct at each of the three guanine in the G1G2CG3CC sequence were constructed and tested as substrates for reconstituted E.coli (A)BC excinuclease and human excinuclease in HeLa cell-free extract (CFE). The (A)BC excinulcease repaired the three substrates with relative efficiencies of G1:G2:G3 of 100:18:66 in agreement with an earlier report [Seeberg, E., and Fuchs, R.P.P. (1990) Proc. Natl Acad. Sci. USA 87, 191-194]. The same lesions were repaired by the human excinuclease with the strikingly different efficiencies of G1:G2:G3 as 38:100:68. These results reveal that the human excinuclease is affected by the sequence context of the lesion in a different manner than its prokaryotic counterpart.  相似文献   

18.
Previous kinetic and absorption hybridization experiments had demonstrated that the DNA of the B95-8 strain of Epstein-Barr virus was missing approximately 10% of the DNA sequences present in the DNA of the HR-1 strain (R.F. Pritchett, S.D. Hayward, and E. Kieff, J. Virol. 15:556-569, 1975; B. Sugder, W.C. Summers, and G. Klein, J. Virol. 18:765-775, 1976). The HR-1 strain differs from other laboratory strains, including the B95-8 and W91 strains, and from virus present in throat washings from patients with infectious mononucleosis in its inability to transform lymphocytes into lymphoblasts capable of long-term growth in culture (P. Gerber, Lancet i:1001, 1973; J. Menezes, W. Leibold, and G. Klein, Exp. Cell. Res. 92:478-484, 1975; G. Miller, D. Coope, J. Niederman, and J. Pagano, J. Virol. 18:1071-1080, 1976; G. Miller, J. Robinson, L. Heston, and M. Lipman, Proc. Natl. Acad. Sci. U.S.A. 71:4006-4010, 1974). In the experiments reported here, the restriction enzyme fragments of Epstein-Barr virus DNA which contain sequences which differ among the HR-1, B95-8, and W91 strains have been identified. The DNA of the HR-1, B95-8, and W91 strains each differed in complexity. The sequences previously shown to be missing in the B95-8 strain were contained in the EcoRI-C and -D and Hsu I-E and -N fragments of the HR-1 strain and in the EcoRI-C and Hsu I-D and -E fragments of the W91 strain. The HR-1 strain was missing DNA contained in EcoRI fragments A and J through K and Hsu I fragment B of the B95-8 strain and in the EcoRI-A and Hsu I-B fragments of the W91 strain. The relationship of these data to the linkage map of restriction enzyme fragments of the DNA of the B95-8 and W91 strains (E. Kieff, N. Raab-Traub, D. Given, W. King, A.T. Powell, R. Pritchett, and T. Dambaugh, In F. Rapp and G. de-The, ed., Oncogenesis and Herpesviruses III, in press; D. Given and E. Kieff, submitted for publication) and the possible significance of the data are discussed.  相似文献   

19.
A comparison of DNA polymerase III core enzyme (McHenry, C. S., and Crow, W. (1979) J. Biol. Chem. 254, 1748-1753) prepared from wild type Escherichia coli and a strain harboring the mutator gene, mutD5 (Degnen, G. E., and Cox, E. C. (1974) J. Bacteriol. 17, 477-487) has revealed several differences in their properties. Among these are alterations in the heat stability, divalent cation requirement, pH optimum, 3'----5'-single strand exonuclease activity, and DNA-dependent conversion of a deoxynucleoside triphosphate to its corresponding monophosphate ("turnover"). The decrease in the 3'-single strand exonuclease and turnover indicate a defect in the editing function of the mutD strain, which is at least in part responsible for the high spontaneous mutation rate in mutD. Transformation of mutD by a hybrid plasmid, pRD3, constructed from an EcoRI restriction fragment of E. coli and pBR322, cures mutD of its abnormally high mutation rate, and simultaneously restores its 3'-exonuclease activity. These observations are consistent with the notion that the mutD gene product is a subunit of DNA polymerase III, and it either contains the catalytic site for the 3'-exonuclease or modulates its activity. From a consideration of the known molecular weights of the subunits in DNA polymerase III core (McHenry C. S., and Crow, W. (1979) J. Biol. Chem. 254, 1748-1753) the molecular weights of the two proteins translated in maxicells transformed with pRD3, and from a comparison of our results with those obtained with the mutator dnaQ (Horiuchi, T., Maki, H., Maruyama, M., and Sekiguchi, M. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 3770-3774) and the work of Cox and Horner (Cox, E. C., and Horner, D. L. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 2295-2299) as well as Echols et al. (Echols, H., Lu, C., and Burgers, P. M. J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 2189-2192) we tentatively assign the mutD gene product to the epsilon subunit of DNA polymerase III.  相似文献   

20.
Mutants of Rhizobium meliloti which are deficient in exopolysaccharide synthesis have been classified into six different genetic groups (A through F) (J. A. Leigh, E. R. Signer, and G. C. Walker, Proc. Natl. Acad. Sci. USA 82:6231-6235, 1985). Using physical and genetic techniques, we have demonstrated that the group E Exo- mutants carry deletions in the exoA-exoB region of the megaplasmid pRmeSU47b. We have constructed strains carrying defined deletions which remove up to 200 kilobases of pRmeSU47b, including the exoA-exoB region. These derivatives have the same phenotypes as do the group E mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号