首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1995,131(6):1377-1386
Protein translocation into the yeast endoplasmic reticulum requires the transport of ATP into the lumen of this organelle. Microsomal ATP transport activity was reconstituted into proteoliposomes to characterize and identify the transporter protein. A polypeptide was purified whose partial amino acid sequence demonstrated its identity to the product of the SAC1 gene. Accordingly, microsomal membranes isolated from strains harboring a deletion in the SAC1 gene (sac1 delta) were found to be deficient in ATP-transporting activity as well as severely compromised in their ability to translocate nascent prepro- alpha-factor and preprocarboxypeptidase Y. Proteins isolated from the microsomal membranes of a sac1 delta strain were incapable of stimulating ATP transport when reconstituted into the in vitro assay system. When immunopurified to homogeneity and incorporated into artificial lipid vesicles, Sac1p was shown to reconstitute ATP transport activity. Consistent with the requirement for ATP in the lumen of the ER to achieve the correct folding of secretory proteins, the sac1 delta strain was shown to have a severe defect in transport of procarboxypeptidase Y out of the ER and into the Golgi complex in vivo. The collective data indicate an intimate role for Sac1p in the transport of ATP into the ER lumen.  相似文献   

2.
The yeast phosphoinositide phosphatase Sac1p localizes to endoplasmic reticulum (ER) and Golgi membranes and has compartment-specific functions in these organelles. In this study we analyzed in detail the topology of Sac1p. Our data show that Sac1p is a type II transmembrane protein with a large N-terminal cytosolic domain, which is anchored in the membrane by the two potential transmembrane helices near the C terminus. Based on this topology, we created a mutation that caused retention of Sac1p in the ER and as a consequence showed specific alterations in cellular phosphoinositide levels. Our results suggest that Sac1p controls a pool of phosphatidylinositol 3-phosphate and phosphatidylinositol 4-phosphate in the ER. Retention of Sac1p in the ER also stimulates ATP transport into the ER lumen but causes the same Golgi-specific defects that are seen in a sac1 null mutant. Taken together this study provides evidence that Sac1p is an important 4-phosphatase in the ER controlling different aspects of ER-based protein processing and secretion.  相似文献   

3.
The yeast protein Sac1p is involved in a range of cellular functions, including inositol metabolism, actin cytoskeletal organization, endoplasmic reticulum ATP transport, phosphatidylinositol-phosphatidylcholine transfer protein function, and multiple-drug sensitivity. The activity of Sac1p and its relationship to these phenotypes are unresolved. We show here that the regulation of lipid phosphoinositides in sac1 mutants is defective, resulting in altered levels of all lipid phos- phoinositides, particularly phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. We have identified two proteins with homology to Sac1p that can suppress drug sensitivity and also restore the levels of the phosphoinositides in sac1 mutants. Overexpression of truncated forms of these suppressor genes confirmed that suppression was due to phosphoinositide phosphatase activity within these proteins. We have now demonstrated this activity for Sac1p and have characterized its specificity. The in vitro phosphatase activity and specificity of Sac1p were not altered by some mutations. Indeed, in vivo mutant Sac1p phosphatase activity also appeared unchanged under conditions in which cells were drug-resistant. However, under different growth conditions, both drug sensitivity and the phosphatase defect were manifest. It is concluded that SAC1 encodes a novel lipid phosphoinositide phosphatase in which specific mutations can cause the sac1 phenotypes by altering the in vivo regulation of the protein rather than by destroying phosphatase activity.  相似文献   

4.
5.
The SAC1 gene product has been implicated in the regulation of actin cytoskeleton, secretion from the Golgi, and microsomal ATP transport; yet its function is unknown. Within SAC1 is an evolutionarily conserved 300-amino acid region, designated a SAC1-like domain, that is also present at the amino termini of the inositol polyphosphate 5-phosphatases, mammalian synaptojanin, and certain yeast INP5 gene products. Here we report that SAC1-like domains have intrinsic enzymatic activity that defines a new class of polyphosphoinositide phosphatase (PPIPase). Purified recombinant SAC1-like domains convert yeast lipids phosphatidylinositol (PI) 3-phosphate, PI 4-phosphate, and PI 3,5-bisphosphate to PI, whereas PI 4,5-bisphosphate is not a substrate. Yeast lacking Sac1p exhibit 10-, 2.5-, and 2-fold increases in the cellular levels of PI 4-phosphate, PI 3,5-bisphosphate, and PI 3-phosphate, respectively. The 5-phosphatase domains of synaptojanin, Inp52p, and Inp53p are also catalytic, thus representing the first examples of an inositol signaling protein with two distinct lipid phosphatase active sites within a single polypeptide chain. Together, our data provide a long sought mechanism as to how defects in Sac1p overcome certain actin mutants and bypass the requirement for yeast phosphatidylinositol/phosphatidylcholine transfer protein, Sec14p. We demonstrate that PPIPase activity is a key regulator of membrane trafficking and actin cytoskeleton organization and suggest signaling roles for phosphoinositides other than PI 4,5-bisphosphate in these processes. Additionally, the tethering of PPIPase and 5-phosphatase activities indicate a novel mechanism by which concerted phosphoinositide hydrolysis participates in membrane trafficking.  相似文献   

6.
Inositol plays a significant role in cellular function and signaling. Studies in yeast have demonstrated an “inositol-less death” phenotype, suggesting that inositol is an essential metabolite. In yeast, inositol synthesis is highly regulated, and inositol levels have been shown to be a major metabolic regulator, with its abundance affecting the expression of hundreds of genes. Abnormalities in inositol metabolism have been associated with several human disorders. Despite its importance, very little is known about the regulation of inositol synthesis and the pathways regulated by inositol in human cells. The current study aimed to address this knowledge gap. Knockout of ISYNA1 (encoding myo-inositol-3-P synthase 1) in HEK293T cells generated a human cell line that is deficient in de novo inositol synthesis. ISYNA1-KO cells exhibited inositol-less death when deprived of inositol. Lipidomic analysis identified inositol deprivation as a global regulator of phospholipid levels in human cells, including downregulation of phosphatidylinositol (PI) and upregulation of the phosphatidylglycerol (PG)/cardiolipin (CL) branch of phospholipid metabolism. RNA-Seq analysis revealed that inositol deprivation induced substantial changes in the expression of genes involved in cell signaling, including extracellular signal-regulated kinase (ERK), and genes controlling amino acid transport and protein processing in the endoplasmic reticulum (ER). This study provides the first in-depth characterization of the effects of inositol deprivation on phospholipid metabolism and gene expression in human cells, establishing an essential role for inositol in maintaining cell viability and regulating cell signaling and metabolism.  相似文献   

7.
Mitochondrial membranes maintain a specific phospholipid composition. Most phospholipids are synthesized in the endoplasmic reticulum (ER) and transported to mitochondria, but cardiolipin and phosphatidylethanolamine are produced in mitochondria. In the yeast Saccharomyces cerevisiae, phospholipid exchange between the ER and mitochondria relies on the ER-mitochondria encounter structure (ERMES) complex, which physically connects the ER and mitochondrial outer membrane. However, the proteins and mechanisms involved in phospholipid transport within mitochondria remain elusive. Here, we investigated the role of the conserved intermembrane space proteins, Ups1p and Ups2p, and an inner membrane protein, Mdm31p, in phospholipid metabolism. Our data show that loss of the ERMES complex, Ups1p, and Mdm31p causes similar defects in mitochondrial phospholipid metabolism, mitochondrial morphology, and cell growth. Defects in cells lacking the ERMES complex or Ups1p are suppressed by Mdm31p overexpression as well as additional loss of Ups2p, which antagonizes Ups1p. Combined loss of the ERMES complex and Ups1p exacerbates phospholipid defects. Finally, pulse-chase experiments using [(14)C]serine revealed that Ups1p and Ups2p antagonistically regulate conversion of phosphatidylethanolamine to phosphatidylcholine. Our results suggest that Ups proteins and Mdm31p play important roles in phospholipid biosynthesis in mitochondria. Ups proteins may function in phospholipid trafficking between the outer and inner mitochondrial membranes.  相似文献   

8.
9.
The integral membrane lipid phosphatase Sac1p regulates local pools of phosphatidylinositol-4-phosphate (PtdIns(4)P) at endoplasmic reticulum (ER) and Golgi membranes. PtdIns(4)P is important for Golgi trafficking, yet the significance of PtdIns(4)P for ER function is unknown. It also remains unknown how localization of Sac1p to distinct organellar membranes is mediated. Here, we show that a COOH-terminal region in yeast Sac1p is crucial for ER targeting by directly interacting with dolicholphosphate mannose synthase Dpm1p. The interaction with Dpm1p persists during exponential cell division but is rapidly abolished when cell growth slows because of nutrient limitation, causing translocation of Sac1p to Golgi membranes. Cell growth-dependent shuttling of Sac1p between the ER and the Golgi is important for reciprocal control of PtdIns(4)P levels at these organelles. The fraction of Sac1p resident at the ER is also required for efficient dolichol oligosaccharide biosynthesis. Thus, the lipid phosphatase Sac1p may be a key regulator, coordinating the secretory capacity of ER and Golgi membranes in response to growth conditions.  相似文献   

10.
In Saccharomyces cerevisiae, the SAC1 gene encodes a polyphosphoinositide phosphatase (PPIPase) that modulates the levels of phosphoinositides, which are key regulators of a number of signal transduction processes. SAC1p has been implicated in multiple cellular functions: actin cytoskeleton organization, secretory functions, inositol metabolism, ATP transport, and multiple-drug sensitivity. Here, we describe the characterization of three genes in Arabidopsis thaliana, AtSAC1a, AtSAC1b, and AtSAC1c, encoding proteins similar to those of yeast SAC1p. We demonstrated that the three AtSAC1 proteins are functional homologs of the yeast SAC1p because they can rescue the cold-sensitive and inositol auxotroph yeast sac1-null mutant strain. The fact that Arabidopsis and yeast SAC1 genes derived from a common ancestor suggests that this plant multigenic family is involved in the phosphoinositide pathway and in a range of cellular functions similar to those in yeast. Using GFP fusion experiments, we demonstrate that the three AtSAC1 proteins are targeted to the endoplasmic reticulum. Their expression patterns are overlapping, with at least two members expressed in each organ. Remarkably, AtSAC1 genes are not expressed during seed development, and therefore additional phosphatases are required to control phosphoinositide levels in seeds.  相似文献   

11.
12.
13.
Cdc50p, a transmembrane protein localized to the late endosome, is required for polarized cell growth in yeast. Genetic studies suggest that CDC50 performs a function similar to DRS2, which encodes a P-type ATPase of the aminophospholipid translocase (APT) subfamily. At low temperatures, drs2Delta mutant cells exhibited depolarization of cortical actin patches and mislocalization of polarity regulators, such as Bni1p and Gic1p, in a manner similar to the cdc50Delta mutant. Both Cdc50p and Drs2p were localized to the trans-Golgi network and late endosome. Cdc50p was coimmunoprecipitated with Drs2p from membrane protein extracts. In cdc50Delta mutant cells, Drs2p resided on the endoplasmic reticulum (ER), whereas Cdc50p was found on the ER membrane in drs2Delta cells, suggesting that the association on the ER membrane is required for transport of the Cdc50p-Drs2p complex to the trans-Golgi network. Lem3/Ros3p, a homolog of Cdc50p, was coimmunoprecipitated with another APT, Dnf1p; Lem3p was required for exit of Dnf1p out of the ER. Both Cdc50p-Drs2p and Lem3p-Dnf1p were confined to the plasma membrane upon blockade of endocytosis, suggesting that these proteins cycle between the exocytic and endocytic pathways, likely performing redundant functions. Thus, phospholipid asymmetry plays an important role in the establishment of cell polarity; the Cdc50p/Lem3p family likely constitute potential subunits specific to unique P-type ATPases of the APT subfamily.  相似文献   

14.
The Saccharomyces cerevisiae SAC1 gene was identified via independent analyses of mutations that modulate yeast actin function and alleviate the essential requirement for phosphatidylinositol transfer protein (Sec14p) activity in Golgi secretory function. The SAC1 gene product (Sac1p) is an integral membrane protein of the endoplasmic reticulum and the Golgi complex. Sac1p shares primary sequence homology with a subfamily of cytosolic/peripheral membrane phosphoinositide phosphatases, the synaptojanins, and these Sac1 domains define novel phosphoinositide phosphatase modules. We now report the characterization of a rat counterpart of Sac1p. Rat Sac1 is a ubiquitously expressed 65-kDa integral membrane protein of the endoplasmic reticulum that is found at particularly high levels in cerebellar Purkinje cells. Like Sac1p, rat Sac1 exhibits intrinsic phosphoinositide phosphatase activity directed toward phosphatidylinositol 3-phosphate, phosphatidylinositol 4-phosphate, and phosphatidylinositol 3,5-bisphosphate substrates, and we identify mutant rat sac1 alleles that evoke substrate-specific defects in this enzymatic activity. Finally, rat Sac1 expression in Deltasac1 yeast strains complements a wide phenotypes associated with Sac1p insufficiency. Biochemical and in vivo data indicate that rat Sac1 phosphatidylinositol-4-phosphate phosphatase activity, but not its phosphatidylinositol-3-phosphate or phosphatidylinositol-3, 5-bisphosphate phosphatase activities, is essential for the heterologous complementation of Sac1p defects in vivo. Thus, yeast Sac1p and rat Sac1 are integral membrane lipid phosphatases that play evolutionary conserved roles in eukaryotic cell physiology.  相似文献   

15.
Chang HJ  Jesch SA  Gaspar ML  Henry SA 《Genetics》2004,168(4):1899-1913
The unfolded protein response pathway (UPR) enables the cell to cope with the buildup of unfolded proteins in the endoplasmic reticulum (ER). UPR loss-of-function mutants, hac1Delta and ire1Delta, are also inositol auxotrophs, a phenotype associated with defects in expression of INO1, the most highly regulated of a set of genes encoding enzymes of phospholipid metabolism. We now demonstrate that the UPR plays a functional role in membrane trafficking under conditions of secretory stress in yeast. Mutations conferring a wide range of membrane trafficking defects exhibited negative genetic interaction when combined with ire1Delta and hac1Delta. At semipermissive temperatures, carboxypeptidase Y transit time to the vacuole was slower in Sec(-) cells containing an ire1Delta or hac1Delta mutation than in Sec(-) cells with an intact UPR. The UPR was induced in Sec(-) cells defective in subcellular membrane trafficking events ranging from ER vesicle trafficking to distal secretion and in erg6Delta cells challenged with brefeldin A. However, the high levels of UPR induction observed under these conditions were not correlated with elevated INO1 expression. Indeed, many of the Sec(-) mutants that had elevated UPR expression at semipermissive growth temperatures failed to achieve wild-type levels of INO1 expression under these same conditions.  相似文献   

16.
17.
Phosphoinositide phosphatases play an essential but as yet not well-understood role in lipid-based signal transduction. Members of a subfamily of these enzymes share a specific domain that was first identified in the yeast Sac1 protein [1]. Sac1 homology domains were shown to exhibit 3- and 4-phosphatase activity in vitro [2, 3] and were also found, in addition to rat and yeast Sac1p, in yeast Inp/Sjl proteins [4, 5] and mammalian synaptojanins [6]. Despite the detailed in vitro characterization of the enzymatic properties of yeast Sac1p, the exact cellular function of this protein has remained obscure. We report here that Sac1p has a specific role in secretion and acts as an antagonist of the phosphatidylinositol 4-kinase Pik1p in Golgi trafficking. Elimination of Sac1p leads to excessive forward transport of chitin synthases and thus causes specific cell wall defects. Similar defects in membrane trafficking are caused by the overexpression of PIK1. Taken together, these findings provide strong evidence that the generation of PtdIns(4)P is sufficient to trigger forward transport from the Golgi to the plasma membrane and that Sac1p is critically required for the termination of this signal.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号