首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translating ribosomes can skip over stretches of messenger RNA and resume protein chain elongation after a "bypassed" region. We have previously shown that limitation for isoleucyl-tRNA can initiate a ribosome bypass when an AUA codon is in the ribosomal A-site. We have now generalized this effect to other "hungry" codons calling for four different limiting aminoacyl-tRNA species, suggesting that a pause at any A-site will have this effect. We have assessed bypassing in a large family of reporters with nearly every different triplet in the "takeoff site", i.e. the P-site on the 5' side of the hungry codon, and an identical "landing site" codon 16 nucleotides downstream. The different takeoff sites vary over a factor of 50 in bypassing proficiency. At least part of this variation appears to reflect stability of the codon Colon, two colons anticodon interaction at the takeoff site, as indicated by the following: (a) the bypassing proficiency of different tRNAs shows a rough correlation with the frequency of A Colon, two colons U as opposed to G Colon, two colons C pairs in the codon Colon, two colons anticodon association; (b) specific tRNAs bypass more frequently from codons ending in U than from their synonym ending in C; (c) an arginine tRNA with Inosine in the wobble position which reads CGU, CGC, and CGA bypasses much more frequently from the last codon than the first two synonyms.  相似文献   

2.
The expression of minigenes in bacteria inhibits protein synthesis and cell growth. Presumably, the translating ribosomes, harboring the peptides as peptidyl-tRNAs, pause at the last sense codon of the minigene directed mRNAs. Eventually, the peptidyl-tRNAs drop off and, under limiting activity of peptidyl-tRNA hydrolase, accumulate in the cells reducing the concentration of specific aminoacylable tRNA. Therefore, the extent of inhibition is associated with the rate of starvation for a specific tRNA. Here, we used minigenes harboring various last sense codons that sequester specific tRNAs with different efficiency, to inhibit the translation of reporter genes containing, or not, these codons. A prompt inhibition of the protein synthesis directed by genes containing the codons starved for their cognate tRNA (hungry codons) was observed. However, a non-specific in vitro inhibition of protein synthesis, irrespective of the codon composition of the gene, was also evident. The degree of inhibition correlated directly with the number of hungry codons in the gene. Furthermore, a tRNA(Arg4)-sequestering minigene promoted the production of an incomplete beta-galactosidase polypeptide interrupted, during bacterial polypeptide chain elongation at sites where AGA codons were inserted in the lacZ gene suggesting ribosome pausing at the hungry codons.  相似文献   

3.
Ribosome bypassing refers to the ability of the ribosome::peptidyl-tRNA complex to slide down the message without translation to a site several or dozens of nucleotides downstream and resume protein chain elongation there. The product is an isoform of a protein with a 'coding' gap corresponding to the region of the message which was bypassed. Previous work showed that ribosome bypassing was strongly stimulated at 'hungry' codons calling for a tRNA whose aminoacylation was limited. We have now used the 'minigene' phenomenon to ascertain whether depletion of the pool of specific isoacceptors has a similar effect. High level expression of plasmid-borne minigenes results in the sequestration as peptidyl-tRNA of tRNA cognate to the last triplet of the minigene, thereby limiting protein synthesis for lack of the tRNA in question. We find that induction of a minigene ending in AUA stimulates bypassing at an AUA codon, but not in a control sequence with AGA at the test position; induction of a minigene ending in AGA stimulates bypassing at the latter but not the former. Induction of the AUA minigene also stimulates both leftward and rightward frameshifting at 'shifty' sequences containing an AUA codon. The normal, background frequency of bypassing at an AUA codon is markedly reduced by increasing the cellular level of the tRNA which reads the codon. Thus, the frequency of bypassing can be increased or decreased by lowering or raising the concentration of a relevant tRNA isoacceptor. These observations suggest that the occurrence of ribosome bypassing reflects the length of the pause at a given codon.  相似文献   

4.
A 50-nucleotide coding gap divides bacteriophage T4 gene 60 into two open reading frames. In response to cis-acting stimulatory signals encrypted in the mRNA, the anticodon of the ribosome-bound peptidyl tRNA dissociates from a GGA codon at the end of the first open reading frame and pairs with a GGA codon 47 nucleotides downstream just before the second open reading frame. Mutations affecting ribosomal protein L9 or tRNA(Gly)(2), the tRNA that decodes GGA, alter the efficiency of bypassing. To understand the mechanism of ribosome slippage, this work analyzes the influence of these bypassing signals and mutant translational components on -1 frameshifting at G GGA and hopping over a stop codon immediately flanked by two GGA glycine codons (stop-hopping). Mutant variants of tRNA(Gly)(2) that impair bypassing mediate stop-hopping with unexpected landing specificities, suggesting that these variants are defective in ribosomal P-site codon-anticodon pairing. In a direct competition between -1 frameshifting and stop-hopping, the absence of L9 promotes stop-hopping at the expense of -1 frameshifting without substantially impairing the ability of mutant tRNA(Gly)(2) variants to re-pair with the mRNA by sub-optimal pairing. These observations suggest that L9 defects may stimulate ribosome slippage by enhancing mRNA movement through the ribosome rather than by inducing an extended pause in translation or by destabilizing P-site pairing.Two of the bypassing signals, a cis-acting nascent peptide encoded by the first open reading frame and a stemloop signal located in the 5' portion of the coding gap, stimulate peptidyl-tRNA slippage independently of the rest of the gene 60 context. Evidence is presented suggesting that the nascent peptide signal may stimulate bypassing by destabilizing P-site pairing.  相似文献   

5.
Recently, a model of the flux of amino acids through transfer RNAs (tRNAs) and into protein has been developed. The model predicts that the charging level of different isoacceptors carrying the same amino acid respond very differently to variation in supply of the amino acid or of the rate of charging. It has also been shown that ribosome bypassing is specifically stimulated at 'hungry' codons calling for an aminoacyl-tRNA in short supply. We have constructed two reporters of bypassing, which differ only in the identity of the serine codon subjected to starvation. The stimulation of bypassing as a function of starvation differed greatly between the two serine codons, in good agreement with the quantitative predictions of the model.  相似文献   

6.
Efficiency of T4 Gene 60 Translational Bypassing   总被引:2,自引:0,他引:2       下载免费PDF全文
Ribosomes translating bacteriophage T4 gene 60 mRNA bypass 50 noncoding nucleotides from a takeoff site at codon 46 to a landing site just upstream of codon 47. A key signal for efficient bypassing is contained within the nascent peptide synthesized prior to takeoff. Here we show that this signal is insensitive to the addition of coding information at its N terminus. In addition, analysis of amino-terminal fusions, which allow detection of all major products synthesized from the gene 60 mRNA, show that 50% of ribosomes bypass the coding gap while the rest either terminate at a UAG stop codon immediately following codon 46 or fail to resume coding. Bypassing efficiency estimates significantly lower than 50% were obtained with enzymatic reporter systems that relied on comparing test constructs to constructs with a precise excision of the gap (gap deletion). Further analysis showed that these estimates are distorted by differences between test and gap deletion functional mRNA levels. An internal translation initiation site at Met12 of gene 60 (which eliminates part of the essential nascent peptide) also distorts these estimates. Together, these results support an efficiency estimate of ~50%, less than previously reported. This estimate suggests that bypassing efficiency is determined by the competition between reading signals and release factors and gives new insight into the kinetics of bypassing signal action.  相似文献   

7.
Escherichia coli possesses a unique RNase activity that cleaves stop codons in the ribosomal aminoacyl-tRNA binding site (A-site) during inefficient translation termination. This A-site mRNA cleavage allows recycling of arrested ribosomes by facilitating recruitment of the tmRNA•SmpB ribosome rescue system. To test whether A-site nuclease activity also cleaves sense codons, we induced ribosome pausing at each of the six arginine codons using three strategies; rare codon usage, arginine starvation, and inactivation of arginine tRNAs with colicin D. In each instance, ribosome pausing induced mRNA cleavage within the target arginine codons, and resulted in tmRNA-mediated SsrA-peptide tagging of the nascent polypeptide. A-site mRNA cleavage did not require the stringent factor ppGpp, or bacterial toxins such as RelE, which mediates a similar nuclease activity. However, the efficiency of A-site cleavage was modulated by the identity of the two codons immediately upstream (5′ side) of the A-site codon. Starvation for histidine and tryptophan also induced A-site cleavage at histidine and tryptophan codons, respectively. Thus, A-site mRNA cleavage is a general response to ribosome pausing, capable of cleaving a variety of sense and stop codons. The induction of A-site cleavage during amino acid starvation suggests this nuclease activity may help to regulate protein synthesis during nutritional stress.  相似文献   

8.
Programmed ribosomal bypassing occurs in decoding phage T4 gene 60 mRNA. Half the ribosomes bypass a 50 nucleotide gap between codons 46 and 47. Peptidyl-tRNA dissociates from the "take-off" GGA, codon 46, and re-pairs to mRNA at a matched GGA "landing site" codon directly 5' of codon 47 where translation resumes. The system described here allows the contribution of peptidyl-tRNA re-pairing to be measured independently of dissociation. The matched GGA codons have been replaced by 62 other matched codons, giving a wide range of bypassing efficiencies. Codons with G or C in either or both of the first two codon positions yielded high levels of bypassing. The results are compared with those from a complementary study of non-programmed bypassing, where the combined effects of peptidyl-tRNA dissociation and reassociation were measured. The wild-type, GGA, matched codons are the most efficient in their gene 60 context in contrast to the relatively low value in the non-programmed bypassing study.  相似文献   

9.
Rare AGA or AGG codons close to the initiation codon inhibit protein synthesis by a tRNA-sequestering mechanism as toxic minigenes do. To further understand this mechanism, a parallel analysis of protein synthesis and peptidyl-tRNA accumulation was performed using both a set of lacZ constructs where AGAAGA codons were moved codon by codon from +2, +3 up to +7, +8 positions and a series of 3-8 codon minigenes containing AGAAGA codons before the stop codon. Beta-galactosidase synthesis from the AGAAGA lacZ constructs (in a Pth defective in vitro system without exogenous tRNA) diminished as the AGAAGA codons were closer to AUG codon. Likewise, beta-galactosidase expression from the reporter +7 AGA lacZ gene (plus tRNA, 0.25 microg/microl) waned as the AGAAGAUAA minigene shortened. Pth counteracted both the length-dependent minigene effect on the expression of beta-galactosidase from the +7 AGA lacZ reporter gene and the positional effect from the AGAAGA lacZ constructs. The +2, +3 AGAAGA lacZ construct and the shortest +2, +3 AGAAGAUAA minigene accumulated the highest percentage of peptidyl-tRNA(Arg4). These observations lead us to propose that hungry codons at early positions, albeit with less strength, inhibit protein synthesis by a minigene-like mechanism involving accumulation of peptidyl-tRNA.  相似文献   

10.
11.
A J Herr  J F Atkins    R F Gesteland 《The EMBO journal》1999,18(10):2886-2896
Translating ribosomes bypass a 50 nucleotide coding gap in bacteriophage T4 gene 60 mRNA between codons 46 and 47 in order to synthesize the full-length protein. Bypassing of the coding gap requires peptidyl-tRNA2Gly detachment from a GGA codon (codon 46) followed by re-pairing at a matching GGA codon just before codon 47. Using negative selection, based on the sacB gene from Bacillus subtilis, Escherichia coli mutants were isolated which reduce bypassing efficiency. All of the mutations are in the gene for tRNA2Gly. Most of the mutations disrupt the hydrogen bonding interactions between the D- and T-loops (G18*psi55 and G19*C56) which stabilize the elbow region in nearly all tRNAs. The lone mutation not in the elbow region destabilizes the anticodon stem at position 40. Previously described Salmonella typhimurium mutants of tRNA2Gly, which reduce the stability of the T-loop, were also tested and found to decrease bypassing efficiency. Each tRNA2Gly mutant is functional in translation (tRNA2Gly is essential), but has a decoding efficiency 10- to 20-fold lower than wild-type. This suggests that rigidity of the elbow region and the anticodon stem is critical for both codon-anticodon stability and bypassing.  相似文献   

12.
Maintenance of the correct open reading frame by the ribosome   总被引:5,自引:0,他引:5       下载免费PDF全文
During translation, a string of non-overlapping triplet codons in messenger RNA is decoded into protein. The ability of a ribosome to decode mRNA without shifting between reading frames is a strict requirement for accurate protein biosynthesis. Despite enormous progress in understanding the mechanism of transfer RNA selection, the mechanism by which the correct reading frame is maintained remains unclear. In this report, evidence is presented that supports the idea that the translational frame is controlled mainly by the stability of codon–anticodon interactions at the P site. The relative instability of such interactions may lead to dissociation of the P-site tRNA from its codon, and formation of a complex with an overlapping codon, the process known as P-site tRNA slippage. We propose that this process is central to all known cases of +1 ribosomal frameshifting, including that required for the decoding of the yeast transposable element Ty3. An earlier model for the decoding of this element proposed 'out-of-frame' binding of A-site tRNA without preceding P-site tRNA slippage.  相似文献   

13.
The -1 programmed ribosomal frameshifts (PRF), which are used by many viruses, occur at a heptanucleotide slippery sequence and are currently thought to involve the tRNAs interacting with the ribosomal P- and A-site codons. We investigated here whether the tRNA occupying the ribosomal E site that precedes a slippery site influences -1 PRF. Using the human immunodeficiency virus type 1 (HIV-1) frameshift region, we found that mutating the E-site codon altered the -1 PRF efficiency. When the HIV-1 slippery sequence was replaced with other viral slippery sequences, mutating the E-site codon also altered the -1 PRF efficiency. Because HIV-1 -1 PRF can be recapitulated in bacteria, we used a bacterial ribosome system to select, by random mutagenesis, 16S ribosomal RNA (rRNA) mutations that modify the expression of a reporter requiring HIV-1 -1 PRF. Three mutants were isolated, which are located in helices 21 and 22 of 16S rRNA, a region involved in translocation and E-site tRNA binding. We propose a novel model where -1 PRF is triggered by an incomplete translocation and depends not only on the tRNAs interacting with the P- and A-site codons, but also on the tRNA occupying the E site.  相似文献   

14.
Translation elongation is an accurate and rapid process, dependent upon efficient juxtaposition of tRNAs in the ribosomal A- and P-sites. Here, we sought evidence of A- and P-site tRNA interaction by examining bias in codon pair choice within open reading frames from a range of genomes. Three distinct and marked effects were revealed once codon and dipeptide biases had been subtracted. First, in the majority of genomes, codon pair preference is primarily determined by a tetranucleotide combination of the third nucleotide of the P-site codon, and all 3 nt of the A-site codon. Second, pairs of rare codons are generally under-used in eukaryotes, but over-used in prokaryotes. Third, the analysis revealed a highly significant effect of tRNA-mediated selection on codon pairing in unicellular eukaryotes, Bacillus subtilis, and the gamma proteobacteria. This was evident because in these organisms, synonymous codons decoded in the A-site by the same tRNA exhibit significantly similar P-site pairing preferences. Codon pair preference is thus influenced by the identity of A-site tRNAs, in combination with the P-site codon third nucleotide. Multivariate analysis identified conserved nucleotide positions within A-site tRNA sequences that modulate codon pair preferences. Structural features that regulate tRNA geometry within the ribosome may govern genomic codon pair patterns, driving enhanced translational fidelity and/or rate.  相似文献   

15.
To synthesize a protein, a ribosome moves along a messenger RNA (mRNA), reads it codon by codon, and takes up the corresponding ternary complexes which consist of aminoacylated transfer RNAs (aa-tRNAs), elongation factor Tu (EF-Tu), and GTP. During this process of translation elongation, the ribosome proceeds with a codon-specific rate. Here, we present a general theoretical framework to calculate codon-specific elongation rates and error frequencies based on tRNA concentrations and codon usages. Our theory takes three important aspects of in-vivo translation elongation into account. First, non-cognate, near-cognate and cognate ternary complexes compete for the binding sites on the ribosomes. Second, the corresponding binding rates are determined by the concentrations of free ternary complexes, which must be distinguished from the total tRNA concentrations as measured in vivo. Third, for each tRNA species, the difference between total tRNA and ternary complex concentration depends on the codon usages of the corresponding cognate and near-cognate codons. Furthermore, we apply our theory to two alternative pathways for tRNA release from the ribosomal E site and show how the mechanism of tRNA release influences the concentrations of free ternary complexes and thus the codon-specific elongation rates. Using a recently introduced method to determine kinetic rates of in-vivo translation from in-vitro data, we compute elongation rates for all codons in Escherichia coli. We show that for some tRNA species only a few tRNA molecules are part of ternary complexes and, thus, available for the translating ribosomes. In addition, we find that codon-specific elongation rates strongly depend on the overall codon usage in the cell, which could be altered experimentally by overexpression of individual genes.  相似文献   

16.
On the mechanism of ribosomal frameshifting at hungry codons   总被引:9,自引:0,他引:9  
In a few, rather rare cases, frameshift mutant alleles are phenotypically suppressed during limitation for particular aminoacyl-tRNA species. The simplest interpretation is compensatory ribosome frameshifting at a "hungry" codon in the vicinity of the suppressed frameshift mutation. We have now tested this interpretation directly by obtaining amino acid sequence data on such a phenotypically suppressed protein. We used a plasmid-borne lacZ gene, engineered to be in the (+) reading frame. Its background leakiness is increased by two orders of magnitude during lysyl-tRNA limitation. The enzyme made under this condition has the amino acid sequence expected from the DNA sequence up to the first lysine codon, then shifts in the (-) direction to recreate the correct lacZ reading frame. The lysine is replaced by serine, presumably due to cognate reading of an overlapping AGC codon displaced by one base to the 3' side of the AAG codon. When the 3' overlapping codon is AGA or AGG, there is no ribosome frameshifting; when it is AGU (read by the same serine tRNA) there is frameshifting, although less efficiently than in the case of AGC. The mechanism of cognate overlapping reading contradicts more elaborate models that two of the authors have suggested previously. However, the possibility remains that there is more than one mechanism of ribosome frameshifting at hungry codons.  相似文献   

17.
Two competing events, termination and readthrough (or nonsense suppression), can occur when a stop codon reaches the A-site of a translating ribosome. Translation termination results in hydrolysis of the final peptidyl-tRNA bond and release of the completed nascent polypeptide. Alternatively, readthrough, in which the stop codon is erroneously decoded by a suppressor or near cognate transfer RNA (tRNA), results in translation past the stop codon and production of a protein with a C-terminal extension. The relative frequency of termination versus readthrough is determined by parameters such as the stop codon nucleotide context, the activities of termination factors and the abundance of suppressor tRNAs. Using a sensitive and versatile readthrough assay in conjunction with RNA interference technology, we assessed the effects of depleting eukaryotic releases factors 1 and 3 (eRF1 and eRF3) on the termination reaction in human cell lines. Consistent with the established role of eRF1 in triggering peptidyl-tRNA hydrolysis, we found that depletion of eRF1 enhances readthrough at all three stop codons in 293 cells and HeLa cells. The role of eRF3 in eukarytotic translation termination is less well understood as its overexpression has been shown to have anti-suppressor effects in yeast but not mammalian systems. We found that depletion of eRF3 has little or no effect on readthrough in 293 cells but does increase readthrough at all three stop codons in HeLa cells. These results support a direct role for eRF3 in translation termination in higher eukaryotes and also highlight the potential for differences in the abundance or activity of termination factors to modulate the balance of termination to readthrough reactions in a cell-type-specific manner.  相似文献   

18.
By utilizing an enzymatically reconstructed tRNA variant containing an altered anticodon sequence, we have examined the different biochemical behavior of translation between the Watson-Crick type and the wobble type base pair interactions at the first anticodon position. We have found that the Watson-Crick type base pair has an advantage in translation in contrast to the wobble type base pair by comparing the efficiency of transpeptidation of native tRNA(Phe) (anticodon; GmAA) with its variant tRNA (anticodon; AAA) in the poly(U)-programmed ribosome system. Thomas et al. [Proc. Natl. Acad. Sci. U.S. (1988) 85, 4242-4246] showed that the wobble codon at the ribosomal A-site accepted its cognate tRNA less efficiently than the Watson-Crick base pairing codon. We report here that the wobble interaction at the ribosomal P-site also affected the rate of translation. This variable translational rate may be a mechanism of gene regulation through preferential codon usage.  相似文献   

19.
In the divE mutant, which has a temperature-sensitive mutation in the tRNA1(Ser) gene, the synthesis of beta-galactosidase is dramatically decreased at the non-permissive temperature. In Escherichia coli, the UCA codon is only recognized by tRNA1(Ser). Several genes containing UCA codons are normally expressed at 42 degrees C in the divE mutant. Therefore, it is unlikely that the defect is due to the general translational deficiency of the mutant tRNA1(Ser). In this study, we constructed mutant lacZ genes, in which one or several UCA codons at eight positions were replaced with other serine codons such as UCU or UCC, and we examined the expression of these mutant genes in the divE mutant. We found that a single UCA codon at position 6 or 462 was sufficient to cause the same level of reduced beta-galactosidase synthesis as that of the wild-type lacZ gene, and that the defect in beta-galactosidase synthesis was accompanied by a low level of lacZ mRNA. It was also found that introduction of an rne-1 pnp-7 double mutation restored the expression of mutant lacZ genes with only UCA codons at position 6 or 462. A polarity suppressor mutation in the rho gene had no effect on the defect in lacZ gene expression in the divE mutant. We propose a model to explain these results.  相似文献   

20.
In a lacZ expression vector (pMC1403Plac), all 64 codons were introduced immediately 3' from the AUG initiation codon. The expression of the second codon variants was measured by immunoprecipitation of the plasmid-coded fusion proteins. A 15-fold difference in expression was found among the codon variants. No distinct correlation could be made with the level of tRNA corresponding to the codons and large differences were observed between synonymous codons that use the same tRNA. Therefore the effect of the second codon is likely to be due to the influence of its composing nucleotides, presumably on the structure of the ribosomal binding site. An analysis of the known sequences of a large number of Escherichia coli genes shows that the use of codons in the second position deviates strongly from the overall codon usage in E. coli. It is proposed that codon selection at the second position is not based on requirements of the gene product (a protein) but is determined by factors governing gene regulation at the initiation step of translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号