共查询到20条相似文献,搜索用时 19 毫秒
1.
We investigated the control of proliferation and differentiation in the larval Caenorhabditis elegans hermaphrodite germ line through analysis of glp-1 and lag-2 mutants, cell ablations, and ultrastructural data. After the first several rounds of germ cell division, GLP-1, a receptor of the LIN-12/Notch family, governs germline proliferation. We analyzed the proximal proliferation (Pro) phenotype in glp-1(ar202) and found that initial meiosis was delayed and spatially mispositioned. This is due, at least in part, to a heightened response of the mutant GLP-1 receptor to multiple sources of the somatic ligand LAG-2, including the proximal somatic gonad. We investigated whether proximal LAG-2 affects germline proliferation in the wild type. Our results indicate that (1) LAG-2 is necessary for GLP-1-mediated germline proliferation and prevention of early meiosis, and (2) several distinct anatomical sources of LAG-2 in the larval somatic gonad functionally overlap to promote proliferation and prevent early meiosis. Ultrastructural studies suggest that mitosis is not restricted to areas of direct DTC-germ line contact and that the germ line shares a common cytoplasm in larval stages. We propose that downregulation of the GLP-1 signaling pathway in the proximal germ line at the time of meiotic onset is under tight temporal and spatial control. 相似文献
2.
Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line 总被引:2,自引:0,他引:2
Jaramillo-Lambert A Ellefson M Villeneuve AM Engebrecht J 《Developmental biology》2007,308(1):206-221
The replication of chromosomes in meiosis is an important first step for subsequent chromosomal interactions that promote accurate disjunction in the first of two segregation events to generate haploid gametes. We have developed an assay to monitor DNA replication in vivo in mitotic and meiotic germline nuclei of the nematode Caenorhabditis elegans. Using mutants that affect the mitosis/meiosis switch, we show that meiotic S phase is at least twice as long as mitotic S phase in C. elegans germ cell nuclei. Furthermore, our assay reveals that different regions of the genome replicate at different times, with the heterochromatic-like X chromosomes replicating at a distinct time from the autosomes. Finally, we have exploited S-phase labeling to monitor the timing of progression through meiotic prophase. Meiotic prophase for oocyte production in hermaphrodites lasts 54-60 h. Further, we find that the duration of the pachytene sub-stage is modulated by the presence of sperm. On the other hand, meiotic prophase for sperm production in males is completed by 20-24 h. Possible sources for the sex-specific differences in meiotic prophase kinetics are discussed. 相似文献
3.
Cytoplasmic polyadenylation element-binding proteins (CPEBs) are well-conserved RNA-binding proteins, which regulate mRNA translation mainly through control of poly(A) elongation. Here, we show that CPB-3, one of the four CPEB homologs in C. elegans, positively regulates multiple aspects of oocyte production. CPB-3 protein was highly expressed in early meiotic regions of the hermaphrodite gonad. Worms deficient in cpb-3 were apparently impaired in germ cell proliferation and differentiation including sperm/oocyte switching and progression of female meiosis. We also show that cpb-3 is likely to promote the meiotic entry in parallel with gld-3, a component of one of the redundant but essential genetic pathways for the entry to and progression through meiosis. Taken together, CPEB appears to have a conserved role in the early phase of meiosis and in the sperm/oocyte specification, in addition to its reported function during meiotic progression. 相似文献
4.
5.
6.
7.
8.
Inorganic pyrophosphatase (PPase) catalyzes the hydrolysis of inorganic pyrophosphate (PPi) into phosphate (Pi), which provides a thermodynamic driving force for important biosynthetic reactions. The nematode Caenorhabditis elegans gene C47E12.4 encodes a PPase (PYP-1) which shows 54% amino acid identity with human PPase. PYP-1 exhibits specific enzyme activity and is mainly expressed in the intestinal and nervous system. A null mutant of pyp-1 reveals a developmental arrest at early larval stages and exhibits gross defects in intestinal morphology and function. The larval arrest phenotype was successfully rescued by reintroduction of the pyp-1 gene, suggesting that PYP-1 is required for larval development and intestinal function in C. elegans. 相似文献
9.
Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a kcat of 610 min(-1) and a Km of 610 microM using E. coli thioredoxin as substrate. The reported kcat is 25% of the kcat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate. 相似文献
10.
11.
The formation of a complex multicellular organism requires the precise specification of many diverse cell types at the correct time and position throughout development. This may be achieved by coordinating cell fate specification processes with progression through the cell cycle. Here, we show that the extra distal tip cells (DTCs) associated with the loss of cki-1, a Caenorhabditis elegans homologue of the cyclin-dependent kinase inhibitor p27, do not arise from duplications of pre-existing DTCs, but that they are formed from another cell type within the somatic gonad. Results from our laser microsurgery experiments suggest that the extra DTCs are caused by aberrant somatic gonadal precursor cell divisions in the absence of cki-1, resulting in abnormal daughter cell fates. cki-1(RNAi) animals also possess extra anchor cells and ectopic gonad arms with variable sheath cell numbers and positioning. In addition, cki-1(RNAi) animals display an endomitotic oocyte (Emo) phenotype. Our results uncover a novel role of this CKI in cell fate acquisition, either by directly influencing specification, or through a more conventional role in appropriately linking cell cycle phase with this process. 相似文献
12.
The genes that are expressed in most or all types of neurons define generic neuronal features and provide a window into the developmental origin and function of the nervous system. Few such genes (sometimes referred to as pan-neuronal or broadly expressed neuronal genes) have been defined to date and the mechanisms controlling their regulation are not well understood. As a first step in investigating their regulation, we used a computational approach to detect sequences overrepresented in their promoter elements. We identified a ten-nucleotide cis-regulatory motif shared by many broadly expressed neuronal genes and demonstrated that it is involved in control of neuronal expression. Our results further suggest that global and cell-type-specific controls likely act in concert to establish pan-neuronal gene expression. Using the newly discovered motif and genome-level gene expression data, we identified a set of 234 candidate broadly expressed genes. The known involvement of many of these genes in neurogenesis and physiology of the nervous system supports the utility of this set for future targeted analyses. 相似文献
13.
The potential prostate cancer susceptibility gene ELAC2 has a Caenorhabditis elegans homolog (which we call hoe-1, for homolog of ELAC2). We have explored the biological role of this gene using RNAi to reduce gene activity. We found that worms subjected to hoe-1 RNAi are slow-growing and sterile. The sterility results from a drastic reduction in germline proliferation and cell-cycle arrest of germline nuclei. We found that hoe-1 is required for hyperproliferation phenotypes seen with mutations in three different genes, suggesting hoe-1 may be generally required for germline proliferation. We also found that reduction of hoe-1 by RNAi suppresses the multivulva (Muv) phenotype resulting from activating mutations in ras and that this suppression is likely to be indirect. This is the first demonstration of a biological role for this class of proteins in a complex eukaryote and adds important information when considering the role of ELAC2 in prostate cancer. 相似文献
14.
15.
Cytoplasmic intermediate filaments (cIFs) are thought to provide mechanical strength to vertebrate cells; however, their function in invertebrates has been largely unexplored. The Caenorhabditis elegans genome encodes multiple cIFs. The C. elegans ifb-1 locus encodes two cIF isoforms, IFB-1A and IFB-1B, that differ in their head domains. We show that both IFB-1 isoforms are expressed in epidermal cells, within which they are localized to muscle-epidermal attachment structures. Reduction in IFB-1A function by mutation or RNA interference (RNAi) causes epidermal fragility, abnormal epidermal morphogenesis, and muscle detachment, consistent with IFB-1A providing mechanical strength to epidermal attachment structures. Reduction in IFB-1B function causes morphogenetic defects and defective outgrowth of the excretory cell. Reduction in function of both IFB-1 isoforms results in embryonic arrest due to muscle detachment and failure in epidermal cell elongation at the 2-fold stage. Two other cIFs, IFA-2 and IFA-3, are expressed in epidermal cells. We show that loss of function in IFA-3 results in defects in morphogenesis indistinguishable from those of embryos lacking ifb-1. In contrast, IFA-2 is not required for embryonic morphogenesis. Our data indicate that IFB-1 and IFA-3 are likely the major cIF isoforms in embryonic epidermal attachment structures. 相似文献
16.
Maintenance of mitotically cycling germline stem cells (GSCs) is vital for continuous production of gametes. In worms and insects, signaling from surrounding somatic cells play an essential role in the maintenance of GSCs by preventing premature differentiation. In addition, germ cell proteins such as the Drosophila Pumilio and Caenorhabditis elegans FBF, both members of the PUF family translational regulators, contribute to GSC maintenance. FBF functions by suppressing GLD-1, which promotes meiotic entry. However, factors that directly promote GSC proliferation, rather than prevent differentiation, are not known. Here we show that PUF-8, another C. elegans member of the PUF family and MEX-3, a KH domain translational regulator, function redundantly to promote GSC mitosis. We find that PUF-8 protein is highly enriched in mitotic germ cells, which is similar to the expression pattern of MEX-3 described earlier. The puf-8(−) mex-3(−) double mutant gonads contain far fewer germ cells than both single mutants and wild-type. While these cells lack mitotic, meiotic and sperm markers, they retain the germ cell-specific P granules, and are capable of gametogenesis if GLP-1, which normally blocks meiotic entry, is removed. Significantly, we find that at least one of these two proteins is essential for germ cell proliferation even in meiotic entry-defective mutants, which otherwise produce germ cell tumors. We conclude PUF-8 and MEX-3 contribute to GSC maintenance by promoting mitotic proliferation rather than by blocking meiotic entry. 相似文献
17.
18.
The four cephalic sensilla sheath (CEPsh) glial cells are important for development of the nervous system of Caenorhabditis elegans. Whether these invertebrate glia can generate intracellular Ca2+ increases, a hallmark of mammalian glial cell excitability, is not known. To address this issue, we developed a transgenic worm with the specific co-expression of genetically encoded red fluorescent protein and green Ca2+ sensor in CEPsh glial cells. This allowed us to identify CEPsh cells in culture and monitor their Ca2+ dynamics. We show that CEPsh glial cells, in response to depolarization, generate various intracellular Ca2+ increases mediated by voltage-gated Ca2+ channels (VGCCs). Using a pharmacological approach, we find that the L-type is the preponderant VGCC type mediating Ca2+ dynamics. Additionally, using a genetic approach we demonstrate that mutations in three known VGCC α1-subunit genes, cca-1, egl-19 and unc-2, can affect Ca2+ dynamics of CEPsh glial cells. We suggest that VGCC-mediated Ca2+ dynamics in the CEPsh glial cells are complex and display heterogeneity. These findings will aid understanding of how CEPsh glial cells contribute to the operation of the C. elegans nervous system. 相似文献
19.
Barbara Squiban Jér?me Belougne Jonathan Ewbank Olivier Zugasti 《Journal of visualized experiments : JoVE》2012,(60)
RNA interference is a powerful method to understand gene function, especially when conducted at a whole-genome scale and in a quantitative context. In C. elegans, gene function can be knocked down simply and efficiently by feeding worms with bacteria expressing a dsRNA corresponding to a specific gene 1. While the creation of libraries of RNAi clones covering most of the C. elegans genome 2,3 opened the way for true functional genomic studies (see for example 4-7), most established methods are laborious. Moy and colleagues have developed semi-automated protocols that facilitate genome-wide screens 8. The approach relies on microscopic imaging and image analysis. Here we describe an alternative protocol for a high-throughput genome-wide screen, based on robotic handling of bacterial RNAi clones, quantitative analysis using the COPAS Biosort (Union Biometrica (UBI)), and an integrated software: the MBioLIMS (Laboratory Information Management System from Modul-Bio) a technology that provides increased throughput for data management and sample tracking. The method allows screens to be conducted on solid medium plates. This is particularly important for some studies, such as those addressing host-pathogen interactions in C. elegans, since certain microbes do not efficiently infect worms in liquid culture.We show how the method can be used to quantify the importance of genes in anti-fungal innate immunity in C. elegans. In this case, the approach relies on the use of a transgenic strain carrying an epidermal infection-inducible fluorescent reporter gene, with GFP under the control of the promoter of the antimicrobial peptide gene nlp 29 and a red fluorescent reporter that is expressed constitutively in the epidermis. The latter provides an internal control for the functional integrity of the epidermis and nonspecific transgene silencing9. When control worms are infected by the fungus they fluoresce green. Knocking down by RNAi a gene required for nlp 29 expression results in diminished fluorescence after infection. Currently, this protocol allows more than 3,000 RNAi clones to be tested and analyzed per week, opening the possibility of screening the entire genome in less than 2 months. 相似文献