首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In an effort to develop a new way of drug delivery, especially for polyenic antifungal molecules, we have incorporated amphotericin B (AmB) into biodegradable galactosylated poly (L-lactic acid) (L-PLA) and poly (L-lactic-co-glycolic acid) (PLGA) microspheres. These drug carriers were prepared by solvent evaporation using an oil/water (o/w) emulsion. The ratio of galactosyl spacers with different chain lengths was 1.74-2.78%. The maximal quantity of AmB encapsulated reported to 100 mg of the galactosylated microspheres was 7.14 mg for L-PLA (encapsulation rate 45% of mole) and 6.42 mg for PLGA derivatives (encapsulation rate 81% of mole). In our yeast model, drug release depended on three factors: (i) presence of galactosylated antennae, (ii) length of galactosyl antenna and (iii) nature of the polymer. More of the AmB trapped in PLGA microspheres was released than from PLA microspheres. These novel functionalised microspheres could be required for the delivering of therapeutic agents according to their recognition to specific cells.  相似文献   

2.
The activity and subcellular distribution of carbonic anhydrase in a coccolithophorid alga, CCMP 299, was examined. The enzyme could not be detected in crude cell homogenates but was present at high specific activity (27.5 unit·mg?1 protein) in chloroplasts (density, 1.14 g·cm?3) isolated in a sucrose gradient. The carbonic anhydrase activity was sensitive to known inhibitors. Inhibition at 50% (I50) was obtained with concentrations of 4.60 mM and 2.65 mM for acetazolamide and NaN3, respectively. These levels are more consistent with patterns of inhibition previously observed for chloroplastic (as compared to periplasmic) carbonic anhydrase. In this organism, carbonic anhydrase was localized in the chloroplast stroma. These findings are discussed in terms of the relationship among dissolved inorganic carbon interconversions, photosynthesis, and calcification.  相似文献   

3.
Biological activity of rhBMP-2 released from PLGA microspheres   总被引:20,自引:0,他引:20  
Human recombinant bone morphogenetic protein-2 (rhBMP-2) has been proven effective in stimulating the regeneration of bone in both skeletal and extraskeletal locations. Through encapsulation within, and release from, biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) microspheres, a proven vehicle for sustained delivery of various proteins, the local concentrations of rhBMP-2 could be maintained at optimal levels to stimulate bone regeneration and remodeling at the site of healing in diverse clinical settings. Thus the purpose of this work was to investigate the encapsulation of rhBMP-2 in PLGA microspheres and its biologic activity upon release. Using in vitro tests in simulated body fluids, the effect of rhBMP-2 released from PLGA microspheres upon osteoblast cell cultures was found to be statistically similar to the effect produced by positive controls consisting of nonencapsulated aqueous rhBMP-2 in simulated body fluids. This clarifies an important step in skeletal tissue engineering strategies aimed at the use of encapsulated rhBMP-2 to stimulate bone regeneration and remodeling.  相似文献   

4.
Separated plasma and whole blood non-bicarbonate buffering capacities, together with plasma and gill carbonic anhydrase activities and endogenous plasma carbonic anhydrase inhibitor activity were investigated in three species of fish: the brown bullhead (Ameirus nebulosus), a teleost; the longnose skate (Raja rhina), an elasmobranch; and the spotted ratfish (Hydrolagus colliei), a chimaeran. The objective was to test the hypothesis that species possessing gill membrane-bound carbonic anhydrase and/or plasma carbonic anhydrase activity would also exhibit high plasma nonbicarbonate buffering capacity relative to whole blood non-bicarbonate buffering capacity and would lack an endogenous plasma carbonic anhydrase inhibitor. Separated plasma non-bicarbonate buffering capacity constituted > or = 40% of whole-blood buffering in all three species. In addition, all species lacked an endogenous plasma carbonic anhydrase inhibitor. Separated plasma from skate and ratfish contained carbonic anhydrase activity, whereas bullhead plasma did not. Examination of the subcellular distribution and characteristics of branchial carbonic anhydrase activity revealed that the majority of branchial carbonic anhydrase activity originated from the cytoplasmic fraction in all species, with only 3-5% being associated with a microsomal fraction. The microsomal carbonic anhydrase activity of bullhead and ratfish was significantly reduced by washing, indicating the presence of carbonic anhydrase activity that was not integrally associated with the membrane pellet, microsomal carbonic anhydrase activity in skate was unaffected by washing. In addition, microsomal carbonic anhydrase activity from skate and ratfish but not bullhead gills was released to a significant extent from its membrane association by treatment with phosphatidylinositol-specific phospholipase C. The results obtained for skate are consistent with published data for dogfish, suggesting that the possession of branchial membrane-bound carbonic anhydrase activity may be a generalised elasmobranch characteristic. Ratfish, which also belong to the class Chondrichthyes, exhibited a similar pattern. Unlike skate and ratfish, bullhead exhibited high plasma non-bicarbonate buffering capacity and lacked an endogenous carbonic anhydrase inhibitor in the absence of plasma and gill membrane-bound carbonic anhydrase activities.  相似文献   

5.
The stability, in vitro release, and in vitro cell transfection efficiency of plasmid DNA (pDNA) poly (D,L.-lactide-co-glycolide) (PLGA) microsphere formulations were investigated. PLGA microspheres containing free and polylysine (PLL)-complexed pDNA were prepared by a water-oil-water solvent extraction/evaporation technique. Encapsulation enhanced the retention of the supereoiled structure of pDNA as determined by gel electrophoresis. PLL complexation of pDNA prior to encapsulation increased both the stability of the supercoiled form and the encapsulation efficiency. Free pDNA was completely degraded after exposure to DNase while encapsulation protected the pDNA from enzymatic degradation. Rapid initial in vitro release of pDNA was obtained from microspheres containing free pDNA. while the release from microspheres containing PLL-complexed pDNA was sustained for more than 42 days. Bioactivity of encapsulated pDNA determined by in vitro cell transfection using Chinese hamster ovary cells (CHO) showed that the bioactivity of encapsulated pDNA was retained in both formulations but to a greater extent with PLL-complexed pDNA microspheres. These results demonstrated that PLGA microspheres could be used to formulate a controlledrelease delivery system for pDNA that can protect the pDNA from DNase degradation without loss of functional activity.  相似文献   

6.
The purpose of this research was to assess the physicochemical properties of a controlled release formulation of recombinant human growth hormone (rHGH) encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) composite microspheres. rHGH was loaded in poly(acryloyl hydroxyethyl) starch (acHES) microparticles, and then the protein-containing microparticles were encapsulated in the PLGA matrix by a solvent extraction/evaporation method. rHGH-loaded PLGA microspheres were also prepared using mannitol without the starch hydrogel microparticle microspheres for comparison. The detection of secondary structure changes in protein was investigated by using a Fourier Transfer Infrared (FTIR) technique. The composite microspheres were spherical in shape (44.6±2.47 μm), and the PLGA-mannitol microspheres were 39.7±2.50 μm. Drug-loading efficiency varied from 93.2% to 104%. The composite microspheres showed higher overall drug release than the PLGA/mannitol microspheres. FTIR analyses indicated good stability and structural integrity of HGH localized in the microspheres. The PLGA-acHES composite microsphere system could be useful for the controlled delivery of protein drugs.  相似文献   

7.
The peroxidase-antiperoxidase technique was used for immunocytochemical localization of carbonic anhydrase in the mouse spinal cord to detect whether this antigen was normally present in myelinated fibers, in oligodendrocytes in both white and gray matter, and in astrocytes, and to determine where the carbonic anhydrase might be localized in the spinal cords of dysmyelinating mutant (shiverer) mice. The most favorable methods for treating tissue were: 1) immersion in formalin-ethanol-acetic acid followed by paraffin embedding, or 2) light fixation with paraformaldehyde and preparation of vibratome sections. Carnoy's solution, followed by paraffin embedding, extracted myelin from the tissue, while aqueous aldehydes, when used before paraffin embedding, reduced staining everywhere except at sites of compact myelin. The latter conclusion was based, in part, on the almost complete loss of this antigen from the shiverer cord, where compact myelin is known to be virtually absent but where membrane-bound carbonic anhydrase was demonstrated enzymatically. When the optimal methods were used with normal mouse cords, carbonic anhydrase was found throughout the white matter columns and in the oligodendrocytes in gray and white matter. The staining of the white matter was attributed to myelinated fibers because of the similarity in distribution to both a histological myelin stain and the immunocytochemical staining for myelin basic protein. In the mutant mice the oligodendrocyte cell bodies and processes, which were stained in all areas of the spinal cord, were particularly numerous at the periphery of the sections. In contrast to the oligodendrocytes, the fibrous astrocytes appeared to lack carbonic anhydrase, or to have lower than detectable levels, since the astrocyte marker, glial fibrillary acidic protein, had a very different distribution from that of carbonic anhydrase. Even finer localization was obtained in vibratome sections, where the antibody against carbonic anhydrase permitted visualization of the processes connecting oligodendrocytes to myelinated fibers in the normal adult spinal cord.  相似文献   

8.
Plasma membranes were isolated from green leaves of maize ( Zea mays ), spinach ( Spinacia oleracea ), Setaria viridis and wheat ( Triticum aestivum cv. Omase) by aqueous two-phase partitioning. Carbonic anhydrase activity was detected in these membranes. The activity was inhibited by specific inhibitors for carbonic anhydrase, acetazolamide and ethoxyzolamide. The carbonic anhydrase activity was markedly enhanced by the addition of Triton X-100 to the plasma membranes. The highest activity was obtained in the presence of 0.015% detergent. The activity was scarcely affected when the plasma membrane vesicles were treated with proteinase K, but largely inactivated by the protease after treating the membranes with Triton X-100. These results indicate that carbonic anhydrase faces the cytoplasmic side of the membrane since plasma membranes purified by aqueous two-phase partitioning are tightly sealed vesicles of right side-out orientation (apoplastic side-out). With leaves of C4 plants, 20 to 60% of the total carbonic anhydrase activity was found in the microsomal fraction. By contrast, only 1 to 3% of the activity was found in the microsomal fraction from leaves of C3 plants. Western blot analysis showed that a polypeptide in the spinach plasma membrane cross-reacted with an antiserum raised against spinach chloroplast carbonic anhydrase, and that the molecular mass of the plasma membrane enzyme was higher than that of the chloroplast carbonic anhydrase (28 and 26 kDa, respectively). This indicates the presence of different molecular species of carbonic anhydrase in the chloroplast and the plasma membrane.  相似文献   

9.
重组人粒细胞集落刺激因子缓释微球的研究   总被引:1,自引:0,他引:1  
目的:研究固体/油/水法制备重组人粒细胞集落刺激因子缓释微球,为开发其缓释剂型进行初步研究。方法:以聚乳酸.聚羟乙酸共聚物(PLGA)为载体材料:用固体/油/水法和水/油/水法制备载rhG-CSF缓释微球;考察粒径大小、外观、包封率等理化性质;用MieroBCA法考察微球的体外释药特性及影响因素;用SEC-HPLC和MTT比色法初步评价了微球制备工艺过程对rhG-CSF稳定性的影响。结果:两种方法制得的微球形态圆整、分散性良好,包封率均超过80%。固/油/水法制得的微球体外释放在2周内可超过90%,而水/油/水法制得的微球在相同的时间内仅释放30%。对于固/油/水法制备过程,SEC-HPLC法测定蛋白无明显聚集体出现,MTT法测定蛋白活性无明显损失。结论:实验证明了固/油/水法制备的PLGA微球可以实现2周以上的体外缓释。  相似文献   

10.
In order to broaden our understanding of the eukaryotic CO2-concentrating mechanism the occurrence and localization of a thylakoid-associated carbonic anhydrase (EC 4.2.1.1) were studied in the green algae Tetraedron minimum and Chlamydomonas noctigama. Both algae induce a CO2-concentrating mechanism when grown under limiting CO2 conditions. Using mass-spectrometric measurements of 18O exchange from doubly labelled CO2, the presence of a thylakoid-associated carbonic anhydrase was confirmed for both species. From purified thylakoid membranes, photosystem I (PSI), photosystem II (PSII) and the light-harvesting complex of the photosynthetic apparatus were isolated by mild detergent gel. The protein fractions were identified by 77 K fluorescence spectroscopy and immunological studies. A polypeptide was found to immunoreact with an antibody raised against thylakoid carbonic anhydrase (CAH3) from Chlamydomonas reinhardtii. It was found that this polypeptide was mainly associated with PSII, although a certain proportion was also connected to light harvesting complex II. This was confirmed by activity measurements of carbonic anhydrase in isolated bands extracted from the mild detergent gel. The thylakoid carbonic anhydrase isolated from T. minimum had an isoelectric point between 5.4 and 4.8. Together the results are consistent with the hypothesis that thylakoid carbonic anhydrase resides within the lumen where it is associated with the PSII complex. Received: 13 May 2000 / Accepted: 16 August 2000  相似文献   

11.
Carbonic anhydrase, a zinc enzyme catalyzing the interconversion of carbon dioxide and bicarbonate, is nearly ubiquitous in the tissues of highly evolved eukaryotes. Here we report on the first known plant-type (beta-class) carbonic anhydrase in the archaea. The Methanobacterium thermoautotrophicum DeltaH cab gene was hyperexpressed in Escherichia coli, and the heterologously produced protein was purified 13-fold to apparent homogeneity. The enzyme, designated Cab, is thermostable at temperatures up to 75 degrees C. No esterase activity was detected with p-phenylacetate as the substrate. The enzyme is an apparent tetramer containing approximately one zinc per subunit, as determined by plasma emission spectroscopy. Cab has a CO(2) hydration activity with a k(cat) of 1.7 x 10(4) s(-1) and K(m) for CO(2) of 2.9 mM at pH 8.5 and 25 degrees C. Western blot analysis indicates that Cab (beta class) is expressed in M. thermoautotrophicum; moreover, a protein cross-reacting to antiserum raised against the gamma carbonic anhydrase from Methanosarcina thermophila was detected. These results show that beta-class carbonic anhydrases extend not only into the Archaea domain but also into the thermophilic prokaryotes.  相似文献   

12.
This research compared the binding and release of recombinant human bone morphogenetic protein 2 (rhBMP-2) with a series of hydrophobic and hydrophilic poly-lactide-co-glycolide (PLGA) copolymers. Porous microspheres were produced via a double emulsion process. Binding and incorporation of protein were achieved by soaking microspheres in buffered protein solutions, filtering, and comparing protein concentration remaining to nonmicrosphere-containing samples. Protein release was determined by soaking bound microspheres in a physiological buffer and measuring protein concentration (by reversed-phase high-performance liquid chromatography) in solution over time. Normalized for specific surface area and paired by polymer molecular weight. microspheres made from hydrophilic 50∶50 or 75∶25 PLGA bound significantly more protein than microspheres made from the corresponding hydrophobic PLGA. Increased binding capacity correlated with higher polymer acid values. With certain polymers, rhBMP-2 adsorption was decreased or inhibited at high protein concentration, but protein loading could be enhanced by increasing the protein solution:PLGA (volume:mass) ratio or by repetitive soaking. Microspheres of various PLGAs released unbound protein in 3 days, whereas the subsequent bound protein release corresponded to mass loss. RhBMP-2 binding to PLGA was controlled by the acid value, protein concentration, and adsorption technique. The protein released in 2 phases: the first occurred over 3 days regardless of PLGA used and emanated from unbound, incorporated protein, while the second was controlled by mass loss and therefore was dependent on the polymer molecular weight. Overall, control of rhBMP-2 delivery is achievable by selection of PLGA microsphere carriers. Published: October, 7, 2001.  相似文献   

13.
A poly(gamma-glutamic acid) (gammaPGA)-cholesterol conjugate was synthesized and the properties of an aqueous solution were evaluated. The conjugate showed amphiphilic nature derived from the hydrophilic gammaPGA backbone and the hydrophobic cholesterol side chain. The conjugate spontaneously formed nanoparticles in the aqueous solution of the low concentration, and the high concentration resulted in the formation of the physical gel. By utilizing the self-aggregating properties of the conjugate in water, an artificial chaperone was developed. The complex of protein with the nanoparticles of the conjugate was formed and the protein was released upon the dissociation of the nanoparticles by the addition of beta-cyclodextrin. For denatured carbonic anhydrase, the activity was recovered in the artificial chaperone of the nanoparticle conjugate.  相似文献   

14.
1. Carbonic anhydrase (carbonate hydro-lyase, EC 4.2.1.1) has been purified from erythrocytes of hagfish (Myxine glutinosa). A single form with low specific CO2 hydration activity was isolated. The purified carbonic anhydrase appeared homogeneous judging from polyacrylamide gel electrophoresis and gel filtration experiments. The protein has a molecular weight of about 29 000, corresponding to about 260 amino acid residues. This molecular weight is in accordance with other vertebrate carbonic anhydrases with the exception of the elasmobranch enzymes, which have Mr 36 000--39 000. 2. The molecular weight obtained for hagfish carbonic anhydrase indicates that a carbonic anhydrase with Mr approx. 29 000 is the ancestral type of the vertebrate enzyme rather than, as in sharks, a heavier carbonic anhydrase molecule. 3. The circular dichroism spectrum may indicate a somewhat different structural arrangement of aromatic amino acid residues in this enzyme than in the mammalian carbonic anhydrases. 4. The enzyme is strongly inhibited by acetazolamide and also to a lesser extent by monovalent anions. 5. Zn2+, which is essential for activity, appears, contrary to other characterized carbonic anhydrases, less strongly bound in the active site of the enzyme.  相似文献   

15.
Approximately half the carbonic anhydrase activity of sheep parotid-gland homogenate is derived from a high-Mr protein [Fernley, Wright & Coghlan (1979) FEBS Lett. 105, 299-302]. This enzyme has now been purified to homogeneity, and its properties were compared with those of the well-characterized sheep carbonic anhydrase II. The protein has an apparent Mr of 540,000 as measured by gel filtration under non-denaturing conditions and an apparent subunit Mr of 45,000 as measured by SDS/polyacrylamide-gel electrophoresis. After deglycosylation with the enzyme N-glycanase the protein migrates with an apparent Mr of 36,000 on SDS/polyacrylamide-gel electrophoresis. The CO2-hydrating activity was 340 units/mg compared with 488 units/mg for sheep carbonic anhydrase II measured under identical conditions. This enzyme does not, however, hydrolyse p-nitrophenyl acetate. The enzyme contains 0.8 g-atom of zinc/mol of protein subunit. The peptide maps of the two carbonic anhydrases differ significantly from one another, indicating they are not related closely structurally. Unlike the carbonic anhydrase II isoenzyme, which has a blocked N-terminus, the high-Mr enzyme has a free glycine residue at its N-terminus.  相似文献   

16.
Here we report the existence, purification and characterisation of carbonic anhydrase in Plasmodium falciparum. The infected red cells contained carbonic anhydrase approximately 2 times higher than those of normal red cells. The three developmental forms of the asexual stages, ring, trophozoite and schizont were isolated from their host red cells and found to have stage-dependent activity of the carbonic anhydrase. The enzyme was purified to homogeneity from the crude extract of P. falciparum using multiple steps of fast liquid chromatographic techniques. It had a Mr of 32 kDa and was active in a monomeric form. The human red cell enzyme was also purified for comparison with the parasite enzyme. The parasite enzyme activity was sensitive to well-known sulfonamide-based inhibitors of both bacterial and mammalian enzymes, sulfanilamide and acetazolamide. The kinetic properties and the amino terminal sequences of the purified enzymes from the parasite and host red cell were found to be different, indicating that the purified protein most likely exhibited the P. falciparum carbonic anhydrase activity. In addition, the enzyme inhibitors had antimalarial effect against in vitro growth of P. falciparum. Moreover, the vital contribution of the carbonic anhydrase to the parasite survival makes the enzyme an attractive target for therapeutic evaluation.  相似文献   

17.
The purification, immobilization, and characterization of carbonic anhydrase (CA) secreted by Bacillus subtilis VSG-4 isolated from tropical soil have been investigated in this work. Carbonic anhydrase was purified using ammonium sulfate precipitation, Sephadex-G-75 column chromatography, and DEAE-cellulose chromatography, achieving a 24.6-fold purification. The apparent molecular mass of purified CA obtained by SDS-PAGE was found to be 37 kD. The purified CA was entrapped within a chitosan-alginate polyelectrolyte complex (C-A PEC) hydrogel for potential use as an immobilized enzyme. The optimum pH and temperature for both free and immobilized enzymes were 8.2 and 37°C, respectively. The immobilized enzyme had a much higher storage stability than the free enzyme. Certain metal ions, namely, Co(2+), Cu(2+), and Fe(3+), increased the enzyme activity, whereas CA activity was inhibited by Pb(2+), Hg(2+), ethylenediamine tetraacetic acid (EDTA), 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB), and acetazolamide. Free and immobilized CAs were tested further for the targeted application of the carbonation reaction to convert CO(2) to CaCO(3). The maximum CO(2) sequestration potential was achieved with immobilized CA (480?mg CaCO(3)/mg protein). These properties suggest that immobilized VSG-4 carbonic anhydrase has the potential to be used for biomimetic CO(2) sequestration.  相似文献   

18.
Lecithin based microemulsions were used as model systems for enzymic studies. The phase behavior of the system: purified soya bean lecithin/propan-1-ol/isooctane/water was examined. It was found that the ability of the system to solubilize water was strongly affected by the lecithin and alcohol concentrations. Trypsin was entrapped in lecithin microemulsion systems of different composition and tested for proteolytic activity on the hydrolysis of lysine-p-nitroanilide (LNA). The kinetic constants were determined and in most cases the ratio kcat/Km was higher than that observed in aqueous solution. The optimum enzyme activity was found at pH 9 for the system formulated with 5% w/w lecithin in isooctane, while increasing wo, where wo = [H2o]/[Lecithin], the enzyme activity followed a bell-shaped pattern with a maximum at wo= 20. The stability of trypsin in microemulsions was higher in the low water containing systems. Using the fluorescence quenching technique it was found that the system compartmentalization depended on the water content and the presence of the enzyme. Time-resolved luminescence decay studies were carried out to clarify the effect of the water content and the presence of the enzyme molecules on the micro-emulsion structure. The analysis of the luminescence data was done with a “percolation” model of stretched exponential. A dramatic variation of the water/oil interface occurred above the percolation threshold, while the addition of the enzyme induced a more restricted microenvironment.  相似文献   

19.
The main purpose of this study is to elucidate the effect of adrenocorticoids on Mg2+-HCO3(-)-ATPase and carbonic anhydrase which are thought to be related to anion transport in mammalian intestinal mucosa and renal tubulus. Rat duodenal mucosa, large intestinal mucosa and kidney cortex were excised and homogenized with mannitol-Tris buffer (pH 7.1) and brush border fraction and cytosol were obtained by a differential fractionation procedure. Brush border Mg2+-HCO3(-)-ATPase and cytosol carbonic anhydrase activities in the duodenal mucosa decreased to 70% and 37% of normal values, respectively 5-11 days after adrenalectomy. Adrenalectomy also decreased significantly both enzyme activities in large intestinal mucosa; on the other hand, renal enzyme activities did not change. Four hours after a single injection of 20-80 micrograms/kg of aldosterone, ip, to adrenalectomized rats, Mg2+-HCO3(-)-ATPase and carbonic anhydrase activities in duodenal mucosa increased gradually to normal or near normal in dose-dependent fashion. Both enzyme activities in large intestinal mucosa were also increased by a larger dose of aldosterone. Again, renal enzyme activities were not affected by any dose of aldosterone. In contrast, corticosterone (1 mg and 4 mg/kg) and dexamethasone (50 micrograms 200 micrograms/kg) had no replacement effect on enzyme activities in all organs. These results showed that the mineralocorticoid, but not glucocorticoids, is a regulator of the enzyme activity of Mg2+-HCO3(-)-ATPase and carbonic anhydrase from intestinal mucosa. The true mechanisms by which both enzymes are activated by aldosterone are not clear at present.  相似文献   

20.
The enzymic activity of plant urease encapsulated into liposomes from egg lecithin was studied. Liposomes contained 3-5% of the initial enzymic preparation. Incorporation of urease into liposomes increases the permeability of the lecithin membrane for urea. The liposome membrane provides protection of the incorporated material from the inhibitory action of heavy metal ions. Kinetics of the reactions catalyzed by the free enzyme and encapsulated one is different. Km for the encapsulated enzyme is 1 X 10(-3) M and for free urease--4 X 10(-4) M, that is related to limited substrate mass transfer rate and as a result of it due to inhomogeneity of the catalysis proceeding in liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号