首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rat adipose cells, intracellular Glut4 resides in two distinct vesicular populations one of which contains cellugyrin whereas another lacks this protein (Kupriyanova, T. A., and Kandror, K. V. (2000) J. Biol. Chem. 275, 36263--36268). Cell surface biotinylated MPR and (125)I-labeled transferrin are accumulated in cellugyrin-positive vesicles and to a lesser extent in cellugyrin-negative vesicles. An average cellugyrin-positive vesicle carries not more than one molecule of either Glut4, insulin-responsive aminopeptidase (IRAP), or transferrin receptor (TfR), whereas cellugyrin-negative vesicles contain five to six molecules of Glut4, more than 10 molecules of IRAP, and still one molecule of TfR per vesicle. Cellugyrin-negative vesicles are translocated to the cell surface after insulin stimulation, whereas cellugyrin-positive vesicles maintain intracellular localization both in the absence and in the presence of insulin and, therefore, may be involved in interendosomal protein transport. Both cellugyrin-positive and cellugyrin-negative vesicles are present in extracts of non-homogenized cells and therefore may represent the major form of Glut4 storage in vivo.  相似文献   

2.
3.
Phosphatidylinositols (PI) play important roles in regulating numerous cellular processes including cytoskeletal organization and membrane trafficking. The control of PI metabolism by phosphatidylinositol kinases has been the subject of extensive investigation; however, little is known about how phosphatidylinositol kinases regulate traffic in polarized epithelial cells. Because phosphatidylinositol 4-kinase (PI4K)-mediated phosphatidylinositol 4-phosphate (PI(4)P) production has been suggested to regulate biosynthetic traffic in yeast and mammalian cells, we have examined the role of PI4Kbeta in protein delivery in polarized MDCK cells, at different levels of the biosynthetic pathway. Expression of wild type PI4Kbeta had no effect on the rate of transport of influenza hemagglutinin (HA) through the Golgi complex, but inhibited the rate of trans-Golgi network (TGN)-to-cell surface delivery of this protein. By contrast, expression of dominant-negative, kinase-dead PI4Kbeta (PI4Kbeta(D656A)) inhibited intra-Golgi transport but stimulated TGN-to-cell surface delivery of HA. Moreover, expression of PI4Kbeta(D656A) significantly increased the solubility in cold Triton X-100 of HA staged in the TGN, suggesting that altered association of HA with lipid rafts may be responsible for the enhanced transport rate. Both wild type and kinase-dead PI4Kbeta inhibited basolateral delivery of vesicular stomatitis virus G protein, suggesting an effector function for PI4Kbeta in the regulation of basolateral traffic. Thus, by contrast with the observed requirement for PI4Kbeta activity and PI(4)P for efficient transport in yeast, our data suggest that changes in PI(4)P levels can stimulate and inhibit Golgi to cell surface delivery in mammalian cells.  相似文献   

4.
Phosphoinositide lipids regulate numerous cellular processes in all eukaryotes. The versatility of this phospholipid is provided by combinations of phosphorylation on the 3', 4', and 5' positions of the inositol head group. Two distinct structural families of phosphoinositide (PI) kinases have so far been identified and named after their prototypic members, the PI 3-kinase and phosphatidylinositol (PtdIns) phosphate kinase families, both of which have been found to contain structural homologues possessing PI 4-kinase activity. Nevertheless, the prevalent PtdIns 4-kinase activity in many mammalian cell types is conferred by the widespread type II PtdIns 4-kinase, which has so far resisted molecular characterization. We have partially purified the human type II isoform from plasma membrane rafts of human A431 epidermoid carcinoma cells and obtained peptide mass and sequence data. The results allowed the cDNA containing the full open reading frame to be cloned. The predicted amino acid sequence revealed that the type II enzyme is the prototypic member of a novel, third family of PI kinases. We have named the purified protein type IIalpha and a second human isoform, type IIbeta. The type IIalpha mRNA appears to be expressed ubiquitously in human tissues, and homologues appear to be expressed in all eukaryotes.  相似文献   

5.
Phosphatidylinositol 4-kinases (PI4K) catalyze the first step in the synthesis of phosphatidylinositol 4,5-bisphosphate, an important lipid regulator of several cellular functions. Here we show that the Ca(2+)-binding protein, neuronal calcium sensor-1 (NCS-1), can physically associate with the type III PI4Kbeta with functional consequences affecting the kinase. Recombinant PI4Kbeta, but not its glutathione S-transferase-fused form, showed enhanced PI kinase activity when incubated with recombinant NCS-1, but only if the latter was myristoylated. Similarly, in vitro translated NCS-1, but not its myristoylation-defective mutant, was found associated with recombinant- or in vitro translated PI4Kbeta in PI4Kbeta-immunoprecipitates. When expressed in COS-7 cells, PI4Kbeta and NCS-1 formed a complex that could be immunoprecipitated with antibodies against either proteins, and PI 4-kinase activity was present in anti-NCS-1 immunoprecipitates. Expressed NCS-1-YFP showed co-localization with endogenous PI4Kbeta primarily in the Golgi, but it was also present in the walls of numerous large perinuclear vesicles. Co-expression of a catalytically inactive PI4Kbeta inhibited the development of this vesicular phenotype. Transfection of PI4Kbeta and NCS-1 had no effect on basal PIP synthesis in permeabilized COS-7 cells, but it increased the wortmannin-sensitive [(32)P]phosphate incorporation into phosphatidylinositol 4-phosphate during Ca(2+)-induced phospholipase C activation. These results together indicate that NCS-1 is able to interact with PI4Kbeta also in mammalian cells and may play a role in the regulation of this enzyme in specific cellular compartments affecting vesicular trafficking.  相似文献   

6.
The most abundant and widely expressed mammalian phosphoinositide kinase activity is contributed by phosphatidylinositol 4-kinase IIalpha (PI4KIIalpha). In this study we demonstrate that PI4KIIalpha is a novel GTP-independent target of the wasp venom tetradecapeptide mastoparan and that different mechanisms of activation occur in different subcellular membranes. Following cell membrane fractionation mastoparan specifically stimulated a high activity Golgi/endosomal pool of PI4KIIalpha independently of exogenous guanine nucleotides. Conversely, GTPgammaS stimulated a low activity pool of PI4KIIalpha in a separable dense membrane fraction and this response was further enhanced by mastoparan. Overexpression of PI4KIIalpha increased the basal phosphatidylinositol 4-kinase activity of each membrane pool, as well as the mastoparan-dependent activities, thereby demonstrating that mastoparan specifically activates this isozyme. Both mastoparan and M7, at concentrations known to invoke secretion, stimulated PI4KIIalpha with similar efficacies, resulting in an increase in the apparent V(max) and decrease in K(m) for exogenously added PI. Mastoparan also stimulated PI4KIIalpha immunoprecipitated from the raft fraction, indicating that PI4KIIalpha is a direct target of mastoparan. Finally we reveal a striking dependence of both basal and mastoparan-stimulated PI4KIIalpha activity on endogenous cholesterol concentration and therefore conclude that changes in membrane environment can regulate PI4KIIalpha activity.  相似文献   

7.
Fetal brown adipocytes (parental cells) expressed mainly Glut4 mRNA glucose transporter, the expression of Glut1 mRNA being much lower. At physiological doses, insulin stimulation for 15 min increased 3-fold glucose uptake and doubled the amount of Glut4 protein located at the plasma membrane. Moreover, phosphatidylinositol (PI) 3-kinase activity was induced by the presence of insulin in those cells, glucose uptake being precluded by PI 3-kinase inhibitors such as wortmannin or LY294002. H-raslys12-transformed brown adipocytes showed a 10-fold higher expression of Glut1 mRNA and protein than parental cells, Glut4 gene expression being completely down-regulated. Glucose uptake increased by 10-fold in transformed cells compared to parental cells; this uptake was unaltered in the presence of insulin and/or wortmannin. Transient transfection of parental cells with a dominant form of active Ras increased basal glucose uptake by 5-fold, no further effects being observed in the presence of insulin. However, PI 3-kinase activity (immunoprecipitated with anti-αp85 subunit of PI 3-kinase) remained unaltered in H-ras permanent and transient transfectants. Our results indicate that activated Ras induces brown adipocyte glucose transport in an insulin-independent manner, this induction not involving PI 3-kinase activation.  相似文献   

8.
The effects of phenylarsine oxide and a monoclonal antibody directed against type II phosphatidylinositol 4-kinase (PI4K) on the N-formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated respiratory burst and the PI4K activity in neutrophils were investigated. Fluorescence microscopic imaging showed that the antibody labeled with IANBD amide (N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine) could enter into the cytosol possibly by endocytosis. It was found that the antibody inhibited the fMLP-stimulated respiratory burst but had little effect on the phorbol myristate acetate-activated respiratory burst in neutrophils, whereas phenylarsine oxide inhibited both. It was found that even at higher concentration, the antibody could not completely inhibit the cell response. Using cells preincubated with human immunoglobulin G of the same concentration as the control, the maximal inhibition of the fMLP-stimulated respiratory burst by the antibody against type II PI4K was found to be about 70%, whereas the PI4K activity was inhibited by only about 40%. The discrepancy in depressing the cell response and the enzyme activity may be the result of depletion of the phosphatidylinositol 4,5-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate pools during the incubation of cells with the antibody. Both the 40% inhibition of PI4K activity and 70% depression of the respiratory burst by the type II PI4K antibody may imply that at least 40% of the phosphatidylinositol 4,5-biphosphate was synthesized promptly by all forms of PI4K and phosphatidylinositol-4-phosphate 5-kinase in the fMLP-activated cells. The results suggest that PI4K plays a central role in either phospholipase C or PI3K signaling and that PI3K, PI4K, and phosphatidylinositol 4-phosphate 5-kinase must be considered as an integrated family for the phosphatidylinositol 3,4,5-trisphosphate initiated signaling.  相似文献   

9.
Insulin and insulin-like growth factor I signals are mediated via phosphorylation of a family of insulin receptor substrate (IRS) proteins, which may serve both complementary and overlapping functions in the cell. To study the metabolic effects of these proteins in more detail, we established brown adipocyte cell lines from wild type and various IRS knockout (KO) animals and characterized insulin action in these cells in vitro. Preadipocytes derived from both wild type and IRS-2 KO mice could be fully differentiated into mature brown adipocytes. In differentiated IRS-2 KO adipocytes, insulin-induced glucose uptake was decreased by 50% compared with their wild type counterparts. This was the result of a decrease in insulin-stimulated Glut4 translocation to the plasma membrane. This decrease in insulin-induced glucose uptake could be partially reconstituted in these cells by retrovirus-mediated re-expression of IRS-2, but not overexpression of IRS-1. Insulin signaling studies revealed a total loss of IRS-2-associated phosphatidylinositol (PI) 3-kinase activity and a reduction in phosphotyrosine-associated PI 3-kinase by 30% (p < 0.05) in the KO cells. The phosphorylation and activity of Akt, a major downstream effector of PI 3-kinase, as well as Akt-dependent phosphorylation of glycogen synthase kinase-3 and p70S6 kinase were not affected by the lack of IRS-2; however, there was a decrease in insulin stimulation of Akt associated with the plasma membrane. These results provide evidence for a critical role of IRS-2 as a mediator of insulin-stimulated Glut4 translocation and glucose uptake in adipocytes. This occurs without effects in differentiation, total activation of Akt and its downstream effectors, but may be caused by alterations in compartmentalization of these downstream signals.  相似文献   

10.
Insulin resistance is commonly associated with obesity in rodents. Using mice made obese with goldthioglucose (GTG-obese mice), we have shown that insulin resistance results from defects at the level of the receptor and from intracellular alterations in insulin signalling pathway, without major alteration in the number of the Glut 4 glucose transporter. Activation of phosphatidylinositol 3-kinase (PI 3-kinase) was found to be profoundly affected in response to insulin. This defect appears very early in the development of obesity, together with a marked decrease in IRS 1 tyrosine phosphorylation. In order to better understand the abnormalities in glucose transport in insulin resistance, we have studied the pathway leading from the insulin receptor kinase stimulation to the translocation of the Glut 4 containing vesicles. This stimulation involves the activation of PI 3-kinase, which in turns activates protein kinase B. We have then focussed at the mechanism of vesicle exocytosis, and more specifically at the role of the small GTPase Rab4 in this process. We have shown that Rab4 participates, first in the intracellular retention of the Glut 4 containing vesicles, second in the insulin signalling pathway leading to glucose transporter translocation.  相似文献   

11.
12.
We previously found that pathophysiological concentrations (< or = 10 nm) of an amyloid beta protein (Abeta25-35) reduced the plasma membrane phosphatidylinositol monophosphate level in cultured rat hippocampal neurons with a decrease in phosphatidylinositol 4-monophosphate-dependent Cl- -ATPase activity. As this suggested an inhibitory effect of Abeta25-35 on plasma membrane phosphatidylinositol 4-kinase (PI4K) activity, in vitro effects of Abetas on PI4K activity was examined using rat brain subcellular fractions and recombinant human type II PI4K (PI4KII). Abeta25-35 (10 nm) inhibited PI4KII activity, but neither PI 3-kinase (PI3K) nor type III PI4K (PI4KIII) activity, in microsomal fractions, while 100 nm Abeta25-35 inhibited PI3K activity in mitochondrial fractions. In plasma membrane-rich fractions, Abetas (> 0.5 nm) dose-dependently inhibited PI4KII activity, the maximal inhibition to 77-87% of control being reached around 10 nm of Abetas without significant changes in apparent Km values for ATP and PI, suggesting non-competitive inhibition by Abetas. The inhibition by 10 nm Abeta25-35 was reversible. In recombinant human PI4KIIalpha, inhibition profiles of Abetas were similar to those in rat brain plasma membranes. Therefore, pathophysiological concentrations of Abetas directly and reversibly inhibited plasma membrane PI4KII activity, suggesting that plasma membrane PI4KII is a target of Abetas in the pathogenesis of Alzheimer's disease.  相似文献   

13.
Abstract

Insulin resistance is commonly associated with obesity in rodents. Using mice made obese with goldthioglucose (GTG-obese mice), we have shown that insulin resistance results from defects at the level of the receptor and from intracellular alterations in insulin signalling pathway, without major alteration in the number of the Glut 4 glucose transporter. Activation of phosphatidylinositol 3-kinase (PI 3-kinase) was found to be profoundly affected in response to insulin. This defect appears very early in the development of obesity, together with a marked decrease in IRS 1 tyrosine phosphorylation. In order to better understand the abnormalities in glucose transport in insulin resistance, we have studied the pathway leading from the insulin receptor kinase stimulation to the translocation of the Glut 4 containing vesicles. This stimulation involves the activation of PI 3-kinase, which in turns activates protein kinase B. We have then focussed at the mechanism of vesicle exocytosis, and more specifically at the role of the small GTPase Rab4 in this process. We have shown that Rab4 participates, first in the intracellular retention of the Glut 4 containing vesicles, second in the insulin signalling pathway leading to glucose transporter translocation.  相似文献   

14.
Syntaxin 6 regulates Glut4 trafficking in 3T3-L1 adipocytes   总被引:2,自引:0,他引:2       下载免费PDF全文
Insulin stimulates the movement of glucose transporter-4 (Glut4)-containing vesicles to the plasma membrane of adipose cells. We investigated the role of post-Golgi t-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in the trafficking of Glut4 in 3T3-L1 adipocytes. Greater than 85% of syntaxin 6 was found in Glut4-containing vesicles, and this t-SNARE exhibited insulin-stimulated movement to the plasma membrane. In contrast, the colocalization of Glut4 with syntaxin 7, 8, or 12/13 was limited and these molecules did not translocate to the plasma membrane. We used adenovirus to overexpress the cytosolic domain of these syntaxin's and studied their effects on Glut4 traffic. Overexpression of the cytosolic domain of syntaxin 6 did not affect insulin-stimulated glucose transport, but increased basal deGlc transport and cell surface Glut4 levels. Moreover, the syntaxin 6 cytosolic domain significantly reduced the rate of Glut4 reinternalization after insulin withdrawal and perturbed subendosomal Glut4 sorting; the corresponding domains of syntaxins 8 and 12 were without effect. Our data suggest that syntaxin 6 is involved in a membrane-trafficking step that sequesters Glut4 away from traffic destined for the plasma membrane. We speculate that this is at the level of traffic of Glut4 into its unique storage compartment and that syntaxin 16 may be involved.  相似文献   

15.
Protein kinase D (PKD) regulates the fission of vesicles originating from the trans-Golgi network. We show that phosphatidylinositol 4-kinase IIIbeta (PI4KIIIbeta) - a key player in the structure and function of the Golgi complex - is a physiological substrate of PKD. Of the three PKD isoforms, only PKD1 and PKD2 phosphorylated PI4KIIIbeta at a motif that is highly conserved from yeast to humans. PKD-mediated phosphorylation stimulated lipid kinase activity of PI4KIIIbeta and enhanced vesicular stomatitis virus G-protein transport to the plasma membrane. The identification of PI4KIIIbeta as one of the PKD substrates should help to reveal the molecular events that enable transport-carrier formation.  相似文献   

16.
Insulin increases glucose uptake into muscle via glucose transporter-4 (GLUT4) translocation to the cell membrane, but the regulated events in GLUT4 traffic are unknown. Here we focus on the role of class IA phosphatidylinositol (PI) 3-kinase and specific phosphoinositides in the steps of GLUT4 arrival and fusion with the membrane, using L6 muscle cells expressing GLUT4myc. To this end, we detected the availability of the myc epitope at the cell surface or intravesicular spaces and of the cytosol-facing C-terminal epitope, in cells and membrane lawns derived from them. We observed the following: (a) Wortmannin and LY294002 at concentrations that inhibit class IA PI 3-kinase reduced but did not abate the C terminus gain, yet the myc epitope was unavailable for detection unless lawns or cells were permeabilized, suggesting the presence of GLUT4myc in docked, unfused vesicles. Accordingly, GLUT4myc-containing vesicles were detected by immunoelectron microscopy of membranes from cells pretreated with wortmannin and insulin, but not insulin or wortmannin alone. (b) Insulin caused greater immunological availability of the C terminus than myc epitopes, suggesting that C terminus unmasking had occurred. Delivering phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) to intact cells significantly increased lawn-associated myc signal without C terminus gain. Conversely, phosphatidylinositol 3-phosphate (PI3P) increased the detection of C terminus epitope without any myc gain. We propose that insulin regulates GLUT4 membrane arrival, fusion, and C terminus unmasking, through distinct phosphoinositides. PI(3,4,5)P(3) causes arrival and fusion without unmasking, whereas PI3P causes arrival and unmasking without fusion.  相似文献   

17.
Insulin stimulates the movement of the facilitative glucose transporter glucose transporter-4 (Glut4) from an intracellular compartment to the plasma membrane in adipocytes and muscle cells, resulting in an increased rate of glucose uptake. Insulin-stimulated Glut4 translocation and glucose transport are abolished by wortmannin, a specific inhibitor of phosphatidylinositol 3'-kinase (PI3K). Here, we demonstrate that neomycin, a drug that masks the cellular substrate of PI3K, phosphatidylinositol 4,5-bisphosphate (PIP), prevents wortmannin inhibition of insulin-stimulated (2)Glut4 translocation and glucose transport without activating protein kinase B, a downstream effector of PI3K. These results suggest that PIP(2) may have an important regulatory function in insulin-stimulated Glut4 translocation and glucose transport.  相似文献   

18.
Insulin stimulation of Glut 4 translocation requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase) but the downstream pathway remains ill-defined. We demonstrated that the overexpression of PDK1 (3-phosphoinositide-dependent protein kinase 1), a downstream effector of PI 3-kinase, stimulated Glut 4 translocation in adipocytes. This effect does not require the PH domain of PDK1, but expression of the pleckstrin homology domain-deleted PDK1 inhibits the effect of insulin, but not okadaic acid, on Glut 4 translocation. These results support a role of the PDK1 pathway in the transmission of insulin signal to Glut translocation.  相似文献   

19.
The Akt substrate AS160 (TCB1D4) regulates Glut4 exocytosis; shRNA knockdown of AS160 increases surface Glut4 in basal adipocytes. AS160 knockdown is only partially insulin-mimetic; insulin further stimulates Glut4 translocation in these cells. Insulin regulates translocation as follows: 1) by releasing Glut4 from retention in a slowly cycling/noncycling storage pool, increasing the actively cycling Glut4 pool, and 2) by increasing the intrinsic rate constant for exocytosis of the actively cycling pool (k(ex)). Kinetic studies were performed in 3T3-L1 adipocytes to measure the effects of AS160 knockdown on the rate constants of exocytosis (k(ex)), endocytosis (k(en)), and release from retention into the cycling pool. AS160 knockdown released Glut4 into the actively cycling pool without affecting k(ex) or k(en). Insulin increased k(ex) in the knockdown cells, further increasing cell surface Glut4. Inhibition of phosphatidylinositol 3-kinase or Akt affected both k(ex) and release from retention in control cells but only k(ex) in AS160 knockdown cells. Glut4 vesicles accumulate in a primed pre-fusion pool in basal AS160 knockdown cells. Akt regulates the rate of exocytosis of the primed vesicles through an AS160-independent mechanism. Therefore, there is an additional Akt substrate that regulates the fusion of Glut4 vesicles that remain to be identified. Mathematical modeling was used to test the hypothesis that this substrate regulates vesicle priming (release from retention), whereas AS160 regulates the reverse step by stimulating GTP turnover of a Rab protein required for vesicle tethering/docking/fusion. Our analysis indicates that fusion of the primed vesicles with the plasma membrane is an additional non-Akt-dependent insulin-regulated step.  相似文献   

20.
Interaction of the Listeria surface protein InlB with the hepatocyte growth factor receptor Met activates signalling events that trigger bacterial internalization into mammalian epithelial cells. We show here that purified phagosomes containing InlB-coated beads display type II phosphatidylinositol 4-kinase (PI4K) activity. In human epithelial HeLa cells, both PI4KIIalpha and PI4KIIbeta isoforms are corecruited with Met around InlB-coated beads or wild-type Listeria during the early steps of internalization, and phosphatidylinositol 4-phosphate [PI(4)P] is detected at the entry site. We demonstrate that PI4KIIalpha or PI4KIIbeta knockdown, but not type III PI4Kbeta knockdown, inhibits Listeria internalization. Production of PI(4)P derivatives such as phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] upon InlB stimulation is not affected by PI4KIIalpha or beta knockdown, suggesting that these phosphoinositides are generated by a type III PI4K. Strikingly, knockdown of the PI(4)P ligand and clathrin adaptor AP-1 strongly inhibits bacterial entry. Together, our results reveal a yet non-described role for type II PI4Ks in phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号