首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 584 毫秒
1.
光周期对西葫芦185品系顶芽和叶片衰老的调控   总被引:2,自引:1,他引:1  
在短日照下 ,西葫芦 (CucurbitapepoLinn .) 185品系的植株发生衰老。结构学、基因表达与系列生化分析证实 :短日照启动了顶端分生组织由营养生长锥向花芽的转化 ,进而其组成细胞发生编程性死亡 (PCD) ,导致顶端生长势的丧失 ;与长日照处理相比 ,短日照处理在发育晚期也引起大量叶肉细胞发生PCD ,进而叶片出现衰老。核酸酶活性的高度表达是PCD过程中一个非常重要的分子事件。实验证实 ,西葫芦 185品系植株衰老进程的发生与顶端分生组织和叶肉细胞中发生PCD密切相关。  相似文献   

2.
茎顶端分生组织在植物发育过程中的保持、转变和逆转   总被引:1,自引:0,他引:1  
顶端分生组织(shoot apical meristems,SAM)为产生新的器官和组织而不断提供新的细胞,它的活性依赖于平衡分生组织细胞的增殖和器官发生之间关系的调控基因.来自不具备光合能力的顶端分生组织的细胞可形成具有光合能力的营养器官.在从营养生长到生殖发育的转变过程中,茎顶端分生组织,转变为花序分生组织,最终形成花分生组织.在进入开花决定状态以前,SAM的状态很大程度上受到环境信号和转录调控因子的影响.以模式植物拟南芥为主,对在顶端分生组织的保持和转变中复杂同时又有差异的基因调控网络进行讨论.在花和花序分生组织逆转过程中,SAM中的细胞也受到相关基因的调控,且表达方式存在明显的时空差异.因此,具有决定性的和未决定性双重特性的分生组织之间的转变和相互协调,对于器官发生和形态建成起到至关重要的作用.  相似文献   

3.
以拟南芥野生型(C24)和T-DNA插入诱发的突变体(155系)为材料,通过表型分析、组织切片、GUS基因表达的组织化学定位等研究方法对155系的形态结构和生长发育进行了较为细致的观察分析,结果发现:(1)T-DNA插入诱发的155系突变体植株矮化,叶片等器官体积减小,营养生长阶段延长,发育较C24缓慢;(2)同一时期155系的茎顶端分生组织面积较C24减小,顶端平坦,细胞层数减少,两侧叶原基基部之间的距离缩短,呈现出发育迟缓、从茎顶端分生组织向花分生组织转变延迟等特征;(3)GUS基因特异性地在155系茎顶端分生组织和维管组织中表达.结果表明,T-DNA诱捕基因可能在茎顶端分生组织中发挥作用,由于T-DNA的插入使该基因的功能受到了影响,进而影响了155系中茎顶端分生组织的发育模式,产生了155系的一系列表型改变.  相似文献   

4.
电镜观察揭示,三角杨(Populus deltoides Marsh.)和冬小麦(Triticum aestivum L. cv.Seward 80004)的胞间连丝(PD)结构在8 h短日照和寒冷冬季里发生明显的变化,并在这两种植物之间表现出明显的区别.在16 h长日照条件下,杨树顶芽分生组织和冬小麦幼叶组织细胞壁中形成大量的PD,染色较深,并可看到细胞质中的内质网(ER)与PD中ER的连接;在冬小麦幼叶组织中还可观察到典型的"颈型"PD,其中央桥管(压扁的ER)清晰可见.在短日照条件下,杨树顶芽细胞壁中出现许多不完整的、中断的PD,有些PD在壁的中部发生膨胀,形成空腔,看不到中央桥管.然而,冬小麦幼叶组织中的PD不发生明显的改变,与长日照条件下的结构基本相似.在寒冷冬季里,杨树PD结构的变化与短日照的相似.冬小麦的PD也发生明显的变化,主要表现在两个方面:一是PD口被一种电子稠密物质堵塞;二是颈区口径缩小.PD的这些变化以及在这两种植物(木本和草本)之间的区别,证实了木本杨树和草本冬小麦对短日照反应和休眠状态的不同.短日照能诱发木本杨树基因表达的改变,产生结构和生理生化过程的变化,进入休眠,并在秋季低温共同作用下,进一步发展抗寒力.这里观察到杨树PD在短日照和寒冬中的中断正是从结构上导致其植株进入休眠和提高抗寒力的一个过程.冬小麦对短日照不起反应,低温则能诱发其抗寒基因表达,发展抗寒力,但不产生"生理休眠",所以它的PD在短日照下不发生变化,在低温下的改变则很容易恢复,当冬小麦在大气温度升高时,颈口的堵塞物质会迅速消失,口径也会迅速扩大,植株随即迅速恢复生长.  相似文献   

5.
梨实生树童区技梢顶端分生组织中中央区、周缘区和肋状分生组织的细胞核中DNA含量分别低于、无差异于和高于成年区枝梢顶端分生组织中各相应区域,童区顶端分生组织中这三个区域的细胞中RNA含量都比成年区低。童区与成年区顶端分生组织的细胞核面积无差异,细胞面积的差异只出现在中央区。  相似文献   

6.
以玉米光敏感自交系CML288和不敏感自交系黄早4为实验材料,采用长日照15 h、短日照9 h的不同光周期处理,利用激光扫描共聚焦显微镜(laser scanning confocal microscope, LCSM)观察了不同叶龄期玉米茎尖分生组织的形态学变化.结果表明,短日照能促进玉米开花,促进茎端分生组织向生殖生长转化,黄早4和CML288分别在6叶期和7叶期完成茎尖分生组织的生殖转化;而长日照则明显延迟开花,延迟茎尖分生组织向生殖生长转化,黄早4和CML288分别在8叶期和11叶期完成茎尖分生组织的生殖转化;因此光周期诱导玉米开花因光照条件和品种有一定差异,短日照条件下,光敏感和不敏感的玉米自交系开花提前,花期更接近,而长日照条件下光敏感玉米自交系开花延迟要比不敏感自交系明显得多.  相似文献   

7.
本文采用解剖学方法研究花椰菜、青花菜、结球甘蓝和大白菜在生长发育过程中顶端分生组织结构的变化及之间存在的差异。结果显示它们的顶端分生组织结构都是由最初幼苗的原套-原体结构逐渐发育到过渡型分区结构、典型化五个分区结构,至开始进入生殖生长时期的四个分区结构(形成层状细胞区消失)。四种植物在进入生殖生长后,顶端分生组织细胞行为不同:大白菜和甘蓝顶端亚外套两侧细胞分裂分化形成顶生叶原基,在顶生叶原基内侧的细胞将进行分裂产生花序侧枝原基。花椰菜和青花菜顶端亚外套两侧细胞分裂形成花序分生组织,花序分生组织增生即为花球体;内部解剖结构表现为分生组织不断分裂增多的过程。这些结果为研究花序表型发生的解剖学本质及分子生物学研究分生组织发育方向奠定了基础。  相似文献   

8.
植物衰老中的编程性细胞死亡   总被引:5,自引:0,他引:5  
本文通过对植物衰老和动植物中编程性细胞死亡(PCD)的研究,阐述了植物衰老中PCD存在的依据,澄清了植物衰老和PCD的关系,提出了植物衰老中可能的PCD发生途径,为调控植物衰老的遗传操作提供依据.  相似文献   

9.
《植物衰老生理与分子生物学》是国家农业部教育司和农业出版社共同组织编辑出版的《中国博士专著·农业领域》系列丛书中的一册 ,于 2 0 0 1年 9月出版 ,由沈成国主编。该书较详细而全面地反映了近年来我国在植物衰老领域中的研究进展 ,其中植株整体水平衰老、植物根与根瘤衰老部分比较新颖 ,有我国在此领域的研究特色。同时也系统地介绍了国外在此领域的研究情况和进展 ,如从植物细胞编程性死亡 (PCD)的特征、植物衰老与PCD、植物环境互作中的PCD、PCD的分子机制与调控等方面对细胞编程性死亡进行了全面阐述。另外 ,专著还介绍了一些…  相似文献   

10.
HD-ZipⅢ基因家族成员在植物生长发育中起重要作用,主要涉及调控植物胚的发育模式、茎顶端分生组织的形成、叶片极性的形成、维管系统的发育等多个方面.尤其在植物叶片的发育中起重要作用.尽管HD-ZipⅢ家族成员在陆生植物中高度保守,但基于拟南芥多重突变体的遗传分析揭示了HD-ZipⅢ家族的功能在进化过程中已有所分化.本文报道了一个HD-ZipⅢ家族成员OsHox33,并分析了其功能,研究结果表明,其在水稻叶片衰老中起重要作用.为了揭示OsHox33的功能,本研究构建两个特异的RNAi载体(一个干涉片段来自OsHox33的5′端,另一个来自OsHox33的3′非翻译区)干扰OsHox33的表达,结果表明,两个载体的转基因植株都展示了叶片早衰的相似表型,表明干扰OsHox33的表达加速了水稻叶片的衰老.pOsHox33::GUS及RT-PCR分析表明,OsHox33在水稻幼嫩的器官中有较高的表达,尤其在茎顶端分生组织、居间分生组织及愈伤等幼嫩组织有较高的表达.不同时期叶片实时定量PCR分析表明,OsHox33在水稻幼叶中有较高的表达,但在衰老叶片中表达降低.另外,不同时期叶片叶绿体电子显微镜超微结构显示,OsHox33 RNAi转基因植株加速了叶绿体结构的降解,与OsHox33 RNAi转基因植株的表型相一致.基因表达调控结果显示,OsHox33可以调控水稻叶片衰老特性基因GS1和GS2的表达,干扰OsHox33的表达降低了GS1的表达,但增加了GS2的表达.本文对于HD-ZipⅢ家族在植物生长发育中的功能提供了新的理解.  相似文献   

11.
Senescence is the process of programmed degradation. The G2 line of pea exhibits apical senescence-delaying phenotype under short-day (SD) conditions, but the mechanism regulating the apical senescence is still largely unknown. Gibberellin (GA) was proved to be able to delay this apical senescence phenotype in G2 pea grown under long-day (LD) conditions. Here we show that the initiation of cell death signals in the terminal floral meristem was involved in the regulation of apical senescence in pea plants. SD signals prevented the formation of the cell death region in the apical mersitem. Moreover, GA3 treatment could effectively inhibit the occurrence of cell death-mediated apical senescence in LD-grown apical buds. Therefore, our data suggest that the prevention of apical senescence in SD-grown G2 pea through GA3 treatment may be largely responsible for the regulation of occurrence of the DNA fragmentation in apical meristem.  相似文献   

12.
G2 pea exhibits an apical senescence delaying phenotype under short-day (SD) conditions; however, the structural basis for its apical development is still largely unknown. In the present study, the apical meristem of SD-grown G2 pea plants underwent a transition from vegetative to indeterminate inflorescence meristem, but the apical meristem of long-day (LD)-grown G2 pea plants would be further converted to determinate floral meristem. Both SD signal and GA3 treatment enhanced expression of the putative calcium transporter PPF1, and pea homologs of TFL1 (LF and DET), whereas LD signal suppressed their expression at 60 d post-flowering compared with those at 40 d post-flowering. Both PPF1 and LF expressed at the vegetative and reproductive phases in SD-grown apical buds, but floral initiation obviously increased the expression level of PPF1 compared with the unchanged expression level of LF from 40 to 60 d post-flowering. In addition, although the floral initiation significantly enhanced the expression levels of PPF1 and DET, DET was mainly expressed after floral initiation in SD-grown apical buds. Therefore, the main structural difference between LD- and SD-grown apical meristem in G2 pea lies in whether their apical indeterminate inflorescence medstem could be converted to the determinate structure.  相似文献   

13.
14.
15.
Carbohydrate metabolism of barley (Hordeum vulgare) leaves induced to accumulate sucrose (Suc) and fructans was investigated at the single-cell level using single-cell sampling and analysis. Cooling of the root and shoot apical meristem of barley plants led to the accumulation of Suc and fructan in leaf tissue. Suc and fructan accumulated in both mesophyll and parenchymatous bundle-sheath (PBS) cells because of the reduced export of sugars from leaves under cooling and to increased photosynthesis under high photon fluence rates. The general trends of Suc and fructan accumulation were similar for mesophyll and PBS cells. The fructan-to-Suc ratio was higher for PBS cells than for mesophyll cells, suggesting that the threshold Suc concentration needed for the initiation of fructan synthesis was lower for PBS cells. Epidermal cells contained very low concentrations of sugar throughout the cooling experiment. The difference in Suc concentration between control and treated plants was much less if compared at the single-cell level rather than the whole-tissue level, suggesting that the vascular tissue contains a significant proportion of total leaf Suc. We discuss the importance of analyzing complex tissues at the resolution of individual cells to assign molecular mechanisms to phenomena observed at the whole-plant level.  相似文献   

16.
Reversion of flowering in Glycine Max (Fabaceae)   总被引:1,自引:0,他引:1  
Photoperiodic changes, if occurring before a commitment to flowering is established, can alter the morphological pattern of plant development. In this study, Glycine max (L.) Merrill cv. Ransom plants were initially grown under an inductive short-day (SD) photoperiod to promote flower evocation and then transferred to a long-day (LD) photoperiod to delay flower development by reestablishing vegetative growth (SD-LD plants). Some plants were transferred back to SD after 4-LD exposures to repromote flowering (SD-LD-SD plants). Alterations in organ initiation patterns, from floral to vegetative and back to floral, are characteristic of a reversion phenomenon. Morphological features that occurred at the shoot apical meristem in SD, LD, SD-LD, and SD-LD-SD plants were observed using scanning electron microscopy (SEM). Reverted plants initiated floral bracts and resumed initiation of trifoliolate leaves in the two-fifths floral phyllotaxy prior to terminal inflorescence development. When these plants matured, leaf-bract intermediates were positioned on the main stem instead of trifoliolate leaves. Plants transferred back to a SD photoperiod flowered earlier than those left in LD conditions. Results indicated that in plants transferred between SDs and LDs, photoperiod can influence organ initiation in florally evoked, but not committed, G. max plants.  相似文献   

17.
18.
Itoh JI  Kitano H  Matsuoka M  Nagato Y 《The Plant cell》2000,12(11):2161-2174
The mechanism regulating the pattern of leaf initiation was analyzed by using shoot organization (sho) mutants derived from three loci (SHO1, SHO2, and SHO3). In the early vegetative phase, sho mutants show an increased rate of leaf production with random phyllotaxy. The resulting leaves are malformed, threadlike, or short and narrow. Their shoot apical meristems are relatively low and wide, that is, flat shaped, although their shape and size are highly variable among plants of the same genotype. Statistical analysis reveals that the shape of the shoot meristem rather than its size is closely correlated with the variations of plastochron and phyllotaxy. Rapid and random leaf production in sho mutants is correlated with the frequent and disorganized cell divisions in the shoot meristem and with a reduction of expression domain of a rice homeobox gene, OSH1. These changes in the organization and behavior of the shoot apical meristems suggest that sho mutants have fewer indeterminate cells and more determinate cells than wild type, with many cells acting as leaf founder cells. Thus, the SHO genes have an important role in maintaining the proper organization of the shoot apical meristem, which is essential for the normal initiation pattern of leaf primordia.  相似文献   

19.
A unique feature of flowering plants is their ability to produce organs continuously, for hundreds of years in some species, from actively growing tips called apical meristems. All plants possess at least one form of apical meristem, whose cells are functionally analogous to animal stem cells because they can generate specialized organs and tissues. The shoot apical meristem of angiosperm plants acts as a continuous source of pluripotent stem cells, whose descendents become incorporated into organ primordia and acquire different fates. Recent studies are unveiling some of the molecular pathways that specify stem cell fate in the center of the shoot apical meristem, that confer organ founder cell fate on the periphery, and that connect meristem patterning elements with events at the cellular level. The results are providing important insights into the mechanisms through which shoot apical meristems integrate cell fate decisions with cellular proliferation and global regulation of growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号