首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: GABAA and benzodiazepine receptors are allosterically coupled, and occupation of either receptor site increases the affinity of the other. Chronic exposure of primary neuronal cultures to benzodiazepine agonists reduces these allosteric interactions. Neurons express multiple GABAA receptor subunits, and it has been suggested that uncoupling is due to changes in the subunit composition of the receptor. To determine if uncoupling could be observed with expression of defined subunits, mouse Ltk cells stably transfected with GABAA receptors (bovine α1, β1, and γ2L subunits) were treated with flunitrazepam (Flu) or clonazepam. The increase in [3H]Flu binding affinity caused by GABA (GABA shift or coupling) was significantly reduced in cells treated chronically with the benzodiazepines, whereas the K D and B max of [3H]Flu binding were unaffected. The uncoupling caused by clonazepam treatment occurred rapidly with a t 1/2 of ∼30 min. The EC50 for clonazepam treatment was ∼0.3 µ M , and cotreatment with the benzodiazepine antagonist Ro 15-1788 (5.6 µ M ) prevented the effect of clonazepam. The uncoupling observed in this system was not accompanied by receptor internalization, is unlikely to be due to changes in receptor subunit composition, and probably represents posttranslational changes. The rapid regulation of allosteric coupling by benzodiazepine treatment of the stably transfected cells should provide insights to the mechanisms of coupling between GABAA and benzodiazepine receptors as well as benzodiazepine tolerance.  相似文献   

2.
t-[35S]Butylbicyclophosphorothionate [( 35S]TBPS) has been shown to bind to the GABAA receptor complex. The binding is modulated allosterically by drugs that interact at components of the receptor complex. The present studies were designed to evaluate the influence of ionic environment and state of equilibrium on the allosteric modification of [35S]TBPS binding. In both I- and Cl- under nonequilibrium conditions, diazepam, gamma-aminobutyric acid (GABA), and pentobarbital (PB) stimulate and methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) inhibits [35S]TBPS binding. In addition, there is an inhibitory component to the effect of GABA and PB at higher drug concentrations. These effects are blocked by the appropriate antagonists for each drug. In Cl-, the stimulation of [35S]TBPS binding by drugs disappears at equilibrium, whereas the inhibition by GABA and PB persists. The inhibitory effect of DMCM in Cl- also disappears at equilibrium. When assayed in I- at equilibrium, however, DMCM stimulates [35S]TBPS binding. In addition, bicuculline, which is without effect under nonequilibrium conditions in either Cl- or I-, stimulates [35S]TBPS binding in I- at equilibrium. The persistent effects of DMCM, bicuculline, and GABA in I- are accompanied by alterations in the affinity of [35S]TBPS for its receptor. In addition, the stimulation of [35S]TBPS binding by GABA is associated with a decreased number of [35S]TBPS binding sites. These data demonstrate that receptor complex interactions with anions influence the responsiveness to drug binding.  相似文献   

3.
Abstract: The large intracellular loop (IL) of the γ2 subunit of the cloned human γ-aminobutyric acidA (GABAA) receptor (γ2IL) was expressed in bacteria as glutathione- S -transferase and staphylococcal protein A fusion proteins. Mice were immunized with the fusion proteins (one protein per animal), and monoclonal antibodies were obtained. Six monoclonal antibodies reacted with the γ2IL moiety of the fusion proteins. Three of these monoclonal antibodies also immunoprecipitated a high proportion of the GABAA/benzodiazepine receptors from bovine and rat brain and reacted with a wide 44,000–49,000-Mr peptide band in immunoblots of affinity-purified GABAA receptors. These monoclonal antibodies are valuable reagents for the molecular characterization of the GABAA receptors in various brain regions.  相似文献   

4.
Abstract: The expression of six mRNA species (α2, α3, α5, β2, β3, and γ2) encoding for GABAA receptor subunits was followed in cultured early postnatal cortical neurons by in situ hybridization histochemistry. In untreated control cultures it was found that these subunit mRNA expression profiles closely follow those seen during development in vivo. α3, α5, and β3 subunit expression declined, α2 expression increased, whereas β2 and γ2 subunit mRNA expression remained relatively constant. To test the hypothesis that GABAA receptor stimulation regulates these expression profiles, we tested the effect of a GABAA receptor positive modulator, allopregnanolone, and a GABAA receptor noncompetitive antagonist, tert -butylbicyclophosphorothionate (TBPS). It was found that allopregnanolone augmented the rate at which the α3, α5, or β3 subunit mRNA expression declined and prevented the increase in α2 subunit mRNA expression. As well, allopregnanolone down-regulated β2 subunit mRNA expression. TBPS, on the other hand, up-regulated α3, α5, β2, and β3 subunit mRNA expression. It also down-regulated the expression of α2 subunit mRNA. Both allopregnanolone and TBPS had no effect on γ2 subunit mRNA expression. These results imply that the developmental switchover of GABA receptor subunit mRNA expression is regulated by GABAA receptor activity.  相似文献   

5.
Abstract: The developmental properties of primary rat cerebellar granule cells have been characterised with respect to their expression of GABAA receptor subtypes using both an immunological approach and radioligand binding assays. At day 1 in culture, the GABAA receptor α1 subunit was detectable in immunoblots and increased in level up to day 9. The GABAA receptor α6 subunit was not detectable at day 1; however, at days 3–5, a specific Mr 58,000 anti-α6 1–16 Cys immunoreactive species was present which further increased in level up to 9 days in culture. Similar qualitative results were obtained for the expression of the GABAA receptor α6 subunit in age-matched rat cerebellar membranes. In parallel studies, it was found that although there was an overall increase in [3H]Ro 15–4513 binding sites with days in culture, the relative contributions of diazepam-sensitive and diazepam-in-sensitive [3H]Ro 15–4513 binding changed. A time-dependent enrichment of the diazepam-insensitive binding site up to a maximum of 74% of total [3H]Ro 15–4513 sites was found. This was concomitant with the appearance of the GABAA receptor α6 subunit. These results are in agreement with the pharmacology described for α6βγ2 cloned receptors. They suggest a developmentally regulated expression of the GABAA receptor α6 subunit gene at a time that is correlated in vivo with establishment of neuronal connections.  相似文献   

6.
GABAA receptors are the major inhibitory neurotransmitter receptors in the brain. Some of them are targets of benzodiazepines that are widely used in clinical practice for their sedative/hypnotic, anxiolytic, muscle relaxant and anticonvulsant effects. In order to rationally separate these different drug actions, we need to understand the interaction of such compounds with the benzodiazepine-binding pocket. With this aim, we mutated residues located in the benzodiazepine-binding site individually to cysteine. These mutated receptors were combined with benzodiazepine site ligands carrying a cysteine reactive group in a defined position. Proximal apposition of reaction partners will lead to a covalent reaction. We describe here such proximity-accelerated chemical coupling reactions of α1S205C and α1T206C with a diazepam derivative modified at the C-3 position with a reactive isothiocyanate group (–NCS). We also provide new data that identify α1H101C and α1N102C as exclusive sites of the reaction of a diazepam derivative where the –Cl atom is replaced by a –NCS group. Based on these observations we propose a relative positioning of diazepam within the benzodiazepine-binding site of α1β2γ2 receptors.  相似文献   

7.
Abstract: P19 embryonic carcinoma (EC) stem cells are pluripotent and are efficiently induced to differentiate into neurons and glia with retinoic acid (RA) treatment. Within 5 days, a substantial number of differentiating P19 cells express gene products that are characteristic of a neuronal phenotype. P19 neurons were used as a model to explore the relationship between neuronal “differentiation” in vitro and the acquisition of γ-aminobutyric acid (GABAA) receptors and functional GABA responses. Pulse-labeling experiments using bromodeoxyuridine indicated that all neurons had become postmitotic within 3–4 days after treatment with RA. This was confirmed by a reduction in the immunocytochemical detection of the undifferentiated stem cell antigen SSEA-1. Subsequently, a transient expression of nestin was observed during the first 5 days in vitro (DIV) after exposure to RA. By 5–10 DIV after RA, a significant number of neurons (~80–90%) expressed immunocytochemically detectable glutamate decarboxylase and GABA coincident with the acquisition of membrane binding sites for tetanus toxin. These phenotypic markers were maintained for >30 DIV after RA. Under current-clamp conditions, random, low-amplitude, spontaneous electrical activity appeared in neurons within the first few days after RA treatment and this was blocked by the specific GABAA receptor antagonist bicuculline. Thereafter, the appearance and progressive increases in the frequency of spontaneous action potentials in P19 neurons were observed that were similarly attenuated by bicuculline. In neurons > 5 DIV after RA, exogenous application of GABA elicited similar action potentials. The onset of excitatory responses to GABA or muscimol in voltage-clamped neurons appeared immediately after the cessation of neuronal mitosis and before the previously reported acquisition of responses to glutamate. In fura-2 imaging studies, the exogenous application of GABA resulted in neuron-specific increases in intracellular Ca2+. Thus, P19 neurons provide an in vitro model for the study of the early acquisition and properties of electrical excitability to GABA and the expression of functional GABAA receptors.  相似文献   

8.
GABAA receptor agonists modulate [3H]diazepam binding in rat cortical membranes with different efficacies. At 23 degrees C, the relative potencies for enhancement of [3H]diazepam binding by agonists parallel their potencies in inhibiting [3H]gamma-aminobutyric acid [( 3H]GABA) binding. The agonist concentrations needed for enhancement of [3H]diazepam binding are up to 35 times higher than for [3H]GABA binding and correspond closely to the concentrations required for displacement of [3H]bicuculline methochloride (BMC) binding. The maximum enhancement of [3H]diazepam varied among agonists: muscimol = GABA greater than isoguvacine greater than 3-aminopropane sulphonic acid (3APS) = imidazoleacetic acid (IAA) greater than 4,5,6,7-tetrahydroisoxazolo (4,5,6)-pyridin-3-ol (THIP) = taurine greater than piperidine 4-sulphonic acid (P4S). At 37 degrees C, the potencies of agonists remained unchanged, but isoguvacine, 3 APS, and THIP acquired efficacies similar to GABA, whereas IAA, taurine, and P4S maintained their partial agonist profiles. At both temperatures the agonist-induced enhancement of [3H]diazepam binding was reversible by bicuculline methobromide and by the steroid GABA antagonist RU 5135. These results stress the importance of studying receptor-receptor interaction under near-physiological conditions and offer an in vitro assay that may predict the agonist status of putative GABA receptor ligands.  相似文献   

9.
Abstract: Two GABAA receptor subunit-specific antibodies anti-α6 and anti-α1 have been used for elucidating the relationship between the presence of α1 and/or α6 subunits in the cerebellar GABAA receptors and the benzodiazepine-binding specificity. Receptor immunoprecipitation with the subunit-specific antibodies shows that 39% of the cerebellar GABAA receptors have α6, whereas 76% of the receptors have α1 as determined by [3H]muscimol binding. Results show that 42–45% of the receptors having α6 also have α1, whereas 13–15% of the receptors that contain α1 also have α6. The immunoprecipitation results as well as immunopurification and immunoblotting experiments reveal the existence of three types of cerebellar GABAA receptors; i.e., one has both α1 and α6 subunits, a second type has α1 but not α6, and a third type has α6 but not α1 subunits. The results also show that receptors where α1 and α6 subunits coexist have two pharmacologically different benzodiazepine-binding properties, each associated with a different α subunit. The α1 subunit contributes the high-affinity binding of [3H]Ro 15-1788 (flumazenil) and the diazepam-sensitive binding of [3H]Ro 15-4513. The α6 subunit contributes the diazepam-insensitive binding of [3H]Ro 15-4513, but it does not bind [3H]Ro 15-1788 with high affinity. Thus, in the cerebellar α1–α6 GABAA receptors, there is no dominance of the pharmacology of one α subunit over the other.  相似文献   

10.
Abstract: Forskolin treatment of cerebellar granule cells in culture resulted in bidirectional regulation of the expression of GABAA receptor α1 and α6 subunits. Thus, forskolin applied at 2 days in vitro (DIV) increased expression of the α1 subunit but decreased the expression of the α6 subunit. Values with respect to control cultures, both assayed at 9 DIV by immunoblotting, were 310 ± 48% for α1 and 25 ± 16% for the α6 subunit. Similar effects were evoked following chronic treatment with both dibutyryl cyclic AMP and 3-isobutyl-1-methylxanthine. Dideoxyforskolin had no effect on the level of expression of either the α1 or the α6 GABAA receptor subunits. The changes in subunit expression were accompanied by a 1.7-fold increase in number of total specific [3H]Ro 15-4513 binding sites expressed by intact cerebellar granule cells. This increase in total binding sites was accommodated by a 2.7-fold increase in number of diazepam-sensitive Ro 15-4513 binding sites in accordance with the observed increase in α1 subunit expression. The number of diazepam-insensitive subtype of binding sites were not significantly changed. These results suggest that GABAA receptor subtype expression can be differentially regulated by intracellular cyclic AMP concentration.  相似文献   

11.
Abstract: Levels of mRNA for the major subunits of the GABAA receptor were assayed in the rat pituitary anterior and neurointermediate lobes by ribonuclease protection assay. α1, β1, β2, β3, and γ2s were found to be the predominant subunits in the anterior lobe, whereas α2, α3, β1, β3, γ2s, and γ1 were the predominant subunits expressed in the neurointermediate lobe. α5, α6, and δ subunits were not detectable. Hill and Scatchard analysis of [3H]muscimol binding to anterior and neurointermediate lobe membranes showed high-affinity binding sites with dissociation constants of 5.6 and 4.5 n M , respectively, and Hill coefficients near 1. Muscimol sites were present at a maximum of 126 fmol/mg in the anterior lobe and 138 fmol/mg in the neurointermediate lobe. The central-type benzodiazepine antagonist [3H]Ro 15-1788 bound to a high-affinity site with a dissociation constant of 1.5 n M in both tissues, at a maximum of 60 fmol/mg in anterior pituitary and 72 fmol/mg in neurointermediate lobe. A Hill coefficient of 1 was measured for this site in both tissues. Assays of CL 218 872 displacement of Ro 15-1788 were consistent with a pure type I benzodiazepine site in the anterior lobe and a pure type II site in the intermediate lobe. These results are consistent with both tissue-specific expression of particular GABAA receptor subunits and receptor heterogeneity within individual cells in the pituitary.  相似文献   

12.
Bicuculline Up-Regulation of GABAA Receptors in Rat Brain   总被引:2,自引:2,他引:0  
Effects of acute and subacute administration of bicuculline on [3H]muscimol, [3H]flunitrazepam, and t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to various brain regions were studied in Sprague-Dawley rats. Acute administration of bicuculline affected neither the KD nor the Bmax of the three receptor sites. In rats treated subacutely with bicuculline (2 mg/kg, i.p., daily for 10 days), [3H]muscimol binding was increased in the frontal cortex, cerebellum, striatum, and substantia nigra. Scatchard analysis revealed that subacute treatment of rats with bicuculline resulted in a significantly lower KD of high-affinity sites in the striatum and in a significantly lower KD of high- and low-affinity sites in the frontal cortex. In the cerebellum, two binding sites were apparent in controls and acutely treated animals; however, only the high-affinity site was defined in subacutely treated animals, with an increase in the Bmax value. Triton X-100 treatment of frontal cortical membranes eliminated the difference in [3H]muscimol binding between control and subacute bicuculline treatments. On the other hand, [3H]muscimol binding was significantly increased in the cerebellum from bicuculline-treated animals even after Triton X-100 treatment. The apparent Ki of bicuculline for the GABAA receptor was also decreased in the frontal cortex and the striatum following the treatment. However, subacute administration of bicuculline affected neither the KD nor the Bmax of [3H]flunitrazepam and [35S]TBPS binding in the frontal cortex and the cerebellum. These results suggest that GABAA receptors are up-regulated after subacute administration of bicuculline, with no change in benzodiazepine and picrotoxin binding sites.  相似文献   

13.
Abstract: His101 of the GABAA receptor α1 subunit is an important determinant of benzodiazepine recognition and a major site of photolabeling by [3H]flunitrazepam. To investigate further the chemical specificity of the residue in this position, we substituted it with phenylalanine, tyrosine, lysine, glutamate, glutamine, or cysteine. The mutant α subunits were coexpressed with the rat β2 and γ2 subunits in TSA201 cells, and the effects of the substitutions on the binding of benzodiazepine site ligands were examined. [3H]Ro 15-4513 bound to all mutant receptors with equal or greater affinity than to the wild-type receptor. However, flunitrazepam and ZK93423 recognition was adversely affected by substitutions of the amino acid in this position. The binding of the antagonists, Ro 15-1788 and ZK93426, was also sensitive to the mutations, with the largest decreases in affinity occurring with the tyrosine, lysine, and glutamate substitutions. In all mutants that recognized flunitrazepam, GABA potentiated the binding of this ligand to a similar extent, suggesting that it is a full agonist at these receptors. The effects of GABA on the binding of Ro 15-1788 and Ro 15-4513 suggest that their efficacies may have been changed by some of the substitutions. This study further emphasizes the importance of the residue at position 101 in both ligand recognition and pharmacological effect.  相似文献   

14.
Abstract: The effect of Zn2+ on t -[3H]butylbicycloorthobenzoate ([3H]TBOB) binding to the GABAA receptor complex was studied autoradiographically in rat brain. Zn2+ inhibited [3H]TBOB binding in a dose-dependent manner at physiological concentrations. Saturation analysis revealed noncompetitive inhibition in various brain regions. The inhibitory effect of Zn2+ had regional heterogeneity; regions showing the greatest inhibition of [3H]TBOB binding were cortical laminae I–III, most areas of hippocampus, striatum, septum, and cerebellar cortex. Regions with relatively less inhibition of [3H]TBOB binding included cortical laminae V–VI, thalamus, superior colliculus, inferior colliculus, and central gray matter. The effect of Zn2+ and those of other GABAA ligands, such as benzodiazepines, bicuculline, isoguvacine, and picrotoxin, on [3H]TBOB binding seemed to be additive. Ni2+, Cd2+, and Cu2+ also inhibited [3H]TBOB binding with a regional heterogeneity similar to that produced by Zn2+. These results are consistent with Zn2+ acting at the previously detected recognition site on the GABAA receptor complex, distinct from the picrotoxin, GABA, and benzodiazepine sites. The regional heterogeneity of the Zn2+ effect may reflect differential regional distribution of GABAA receptor subtypes among brain regions. Other divalent cations probably act at the Zn2+ binding site.  相似文献   

15.
Abstract: GABAA receptors were characterized in cellular fractions isolated from adult bovine brain. The fraction enriched in cortical astrocytes is very rich in high-affinity binding sites for [3H]flunitrazepam and other "central-type" benzodiazepine ligands. The amount of specific [3H]flunitrazepam binding was more than five times higher in the glial fraction than in synaptosomal and perikaryal fractions. [3H]Flunitrazepam was displaced by low concentrations of clonazepam and other specific ligands for central GABAA receptors. Specific binding sites for GABA, flunitrazepam, barbiturates, and picrotoxin-like convulsants were characterized. Allosteric interactions between the different sites were typical of central-type GABAA receptors. The presence of α-subunit(s), as revealed by [3H]flunitrazepam photoaffinity labeling, was demonstrated in all brain fractions at molecular mass 51–53 kDa. Photoaffinity labeling was highest in the glial fraction. However, in primary cultured astrocytes from neonate rat cortex, no photoaffinity labeling was detected. Information obtained from astrocytes in culture should thus be taken with caution when extrapolated to differentiated astroglial cells. Our results actually show that, in mature brain, most of the fully pharmacologically active GABAA receptors are extrasynaptic and expressed in astroglia.  相似文献   

16.
Abstract: The pentameric subunit composition of a large population (36%) of the cerebellar granule cell GABAA receptors that show diazepam (or clonazepam)-insensitive [3H]Ro 15-4513 binding has been determined by immunoprecipitation with subunit-specific antibodies. These receptors have α6, α1, γ2S, γ2L, and β2 or β3 subunits colocalizing in the same receptor complex.  相似文献   

17.
Abstract : In α1, β2, and γ2 subunits of the γ-aminobutyric acid A (GABAA) receptor, a conserved lysine residue occupies the position in the middle of the predicted extracellular loop between the transmembrane M2 and M3 regions. In all three subunits, this residue was mutated to alanine. Whereas the mutation in α1 and β2 subunits results each in about a sixfold shift of the concentration-response curve for GABA to higher concentrations, no significant effect by mutation in the γ subunit was detected. The affinity for the competitive inhibitor bicuculline methiodide was not affected by the mutations in either the α1 subunit or the β2 subunit. Concentration-response curves for channel activation by pentobarbital were also shifted to higher concentrations by the mutation in the α and β subunits. Binding of [3H]Ro 15-1788 was unaffected by the mutation in the α subunit, whereas the binding of [3H]muscimol was shifted to lower affinity. Mutation of the residue in the α1 subunit to E, Q, or R resulted in an about eight-, 10-, or fivefold shift, respectively, to higher concentrations of the concentration-response curve for GABA. From these observations, it is concluded that the corresponding residues on the α1 and β2 subunits are involved more likely in the gating of the channel by GABA than in the binding of GABA or benzodiazepines.  相似文献   

18.
Abstract: In contrast to some other ion channels, there are at present no proteins known that bind specifically to mature GABAA receptor channels. Such proteins may be important for the structural organization and cytoskeletal anchoring of GABAA receptors and could also be expected to have channel modulatory effects. To identify proteins that are associated with naturally occurring GABAA receptors we immunoprecipitated these receptors from detergent-solubilized bovine brain membranes by an antibody directed against the α1-subunit. Tubulin and actin were observed to coprecipitate specifically with the receptors. Nine additional proteins were detected, hinting at a complex protein network associated with α1-subunit-containing GABAA receptors. Results of a biochemical characterization of these G ABAA receptor- t ubulin complex- a ssociated p roteins (GTAPs) are presented here. Peptide mass fingerprinting analysis and microsequencing of tryptic peptides indicated that at least three GTAPs have not been described until the present.  相似文献   

19.
Polyclonal antibodies have been raised against the GABA/benzodiazepine receptor purified to homogeneity from bovine cerebral cortex in deoxycholate and Triton X-100 media. Radioimmunoassay was applied to measure specific antibody production using the 125I-labelled gamma-aminobutyric acid (GABA)/benzodiazepine receptor as antigen. The antibodies specifically immunoprecipitated the binding sites for [3H]muscimol and for [3H]flunitrazepam from purified preparations. In addition, when a 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulphonate (CHAPS) extract of bovine brain membranes was treated with the antibodies, those sites as well as the [3H]propyl-beta-carboline-3-carboxylate binding, the [35S]t-butylbicyclophosphorothionate binding (TBPS), the barbiturate-enhanced [3H]flunitrazepam binding, and the GABA-enhanced [3H]flunitrazepam binding were all removed together into the immunoprecipitate. Western blot experiments showed that these antibodies recognise the alpha-subunit of the purified GABA/benzodiazepine receptor. These results further support the existence in the brain of a single protein, the GABAA receptor, containing a set of regulatory binding sites for benzodiazepines and chloride channel modulators.  相似文献   

20.
Abstract: To investigate the subcellular compartments that are involved in the endocytosis and intracellular trafficking of GABAA/benzodiazepine receptors, we have studied the distribution and properties of clonazepam-displaceable binding of [3H]flunitrazepam to membrane fractions from rat brain. The microsomal fraction was subjected to density centrifugation and gel filtration to isolate clathrin-coated vesicles. Homogeneity of the coated-vesicle fraction was demonstrated by using electron microscopy and by analysis of clathrin subunits and clathrin light-chain kinase. Vesicles exhibiting specific binding of [3H]flunitrazepam eluted from the sieving gel as a separate peak, which was coincident with that for coated vesicles. Scatchard analysis of equilibrium binding of [3H]flunitrazepam to coated vesicles yielded a KD value of 21 ± 4.7 nM and a Bmax value of 184 ± 28 fmol/mg. The KD value for coated vesicles was 12-19-fold that found with microsomal or crude synaptic membranes. This low-affinity benzodiazepine receptor was not identified on any other subcellular fraction and thus appears to be a novel characteristic of coated vesicles. The Bmaxvalue for coated vesicles, expressed per milligram of protein, corresponded to 16 and 115% of that found for crude synaptic and microsomal membrane fractions, respectively. Because the trafficking of neurotransmitter receptors via clathrin-coated vesicles is most likely to occur through endocytosis, the data suggest that an endocytotic pathway may be involved in the removal of GABAA/benzodiazepine receptors from the neuronal surfaces of the rat brain. This mechanism could play a role in receptor sequestration and down-regulation that is produced by exposure to GABA and benzodiazepine agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号