首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Dentin collagen fibrils were studied in situ by atomic force microscopy (AFM). New data on size distribution and the axial repeat distance of hydrated and dehydrated collagen type I fibrils are presented. Polished dentin disks from third molars were partially demineralized with citric acid, leaving proteins and the collagen matrix. At this stage collagen fibrils were not resolved by AFM, but after exposure to NaOCl(aq) for 100-240 s, and presumably due to the removal of noncollagenous proteins, individual collagen fibrils and the fibril network of dentin connected to the mineralized substrate were revealed. High-aspect-ratio silicon tips in tapping mode were used to image the soft fibril network. Hydrated fibrils showed three distinct groups of diameters: 100, 91, and 83 nm and a narrow distribution of the axial repeat distance at 67 nm. Dehydration resulted in a broad distribution of the fibril diameters between 75 and 105 nm and a division of the axial repeat distance into three groups at 67, 62, and 57 nm. Subfibrillar features (4 nm) were observed on hydrated and dehydrated fibrils. The gap depth between the thick and thin repeating segments of the fibrils varied from 3 to 7 nm. Phase mode revealed mineral particles on the transition from the gap to the overlap zone of the fibrils. This method appears to be a powerful tool for the analysis of fibrillar collagen structures in calcified tissues and may aid in understanding the differences in collagen affected by chemical treatments or by diseases.  相似文献   

2.
Induction and prevention of chondrocyte hypertrophy in culture   总被引:18,自引:10,他引:8       下载免费PDF全文
Primary chondrocytes from whole chick embryo sterna can be maintained in suspension culture stabilized with agarose for extended periods of time. In the absence of FBS, the cells remain viable only when seeded at high densities. They do not proliferate at a high rate but they deposit extracellular matrix with fibrils resembling those of authentic embryonic cartilage in their appearance and collagen composition. The cells exhibit many morphological and biochemical characteristics of resting chondrocytes and they do not produce collagen X, a marker for hypertrophic cartilage undergoing endochondral ossification. At low density, cells survive in culture without FBS when the media are conditioned by chondrocytes grown at high density. Thus, resting cartilage cells in agarose cultures can produce factors required for their own viability. Addition of FBS to the culture media leads to profound changes in the phenotype of chondrocytes seeded at low density. Cells form colonies at a high rate and assume properties of hypertrophic cells, including the synthesis of collagen X. They extensively deposit extracellular matrix resembling more closely that of adult rather than embryonic cartilage.  相似文献   

3.
Volume measurements were performed on intact bull and mouse sperm heads and amembranous sperm nuclei, both in the fully hydrated (fluid cell) and dehydrated (air-dried on glass coverslips) states by atomic force microscopy (AFM). Data were obtained by analyzing a small population of cells/nuclei, as well as by performing repeated measurements on single cells imaged following the addition of increasing concentrations of propanol. Results show that the volume of fully hydrated, intact sperm heads and amembranous sperm chromatin particles are at least twice the volume of their air-dried counterparts. Dehydration occurs rapidly in air, and the reduction in volume of chromatin induced by water loss appears to be completely reversible. These studies demonstrate that both mouse and bull sperm chromatin are extensively hydrated in the native state, and are not as compact as previous studies have suggested. © 1996 Wiley-Liss, Inc.  相似文献   

4.
In the embryo, fibroblasts migrating through extracellular matrices (ECM) are generally elongate in shape, exhibiting a leading pseudopodium with filopodial extensions, and a trailing cell process. Little is known about the mechanism of movement of embryonic cells in ECM, for studies of fibroblast locomotion in the past have been largely confined to observations of flattened cells grown on planar substrata. We confirm here that embryonic avian corneal fibroblasts migrating within hydrated collagen gels in vitro have the bipolar morphology of fibroblasts in vivo, and we show for the first time that highly flattened gerbil fibroma fibroblasts, grown as cell lines on planar substrata, can also respond to hydrated collagen gels by becoming elongate in shape. We demonstrate that the collagen-mediated change in cell shape is accompanied by dramatic rearrangement of the actin, α-actinin, and myosin components of the cytoskeleton. By immunofluorescence, the stress fibers of the flattened corneal fibroblasts grown on glass are seen to stain with antiactin, anti-α-actinin, and antimyosin, as has been reported for fibroma and other fibroblasts grown on glass. Stress fibers, adhesion plaques, and ruffles do not develop when the corneal or fibroma fibroblast is grown in ECM; these features seem to be a response to strong attachment of the cell underside to a planar substratum. When the fibroblasts are grown in ECM, antimyosin staining is distributed diffusely through the cytoplasm. Antiactin and anti-α-actinin stain the microfilamentous cell cortex strongly. We suggest that locomotion of the fibroblast in ECM is accompanied by adhesion of the cell to the collagen fibrils and may involve an interaction of the myosin-rich cytosol with the actin-rich filamentous cell cortex. Interestingly, the numerous filopodia that characterize the tips of motile pseudopodia of cells in ECM are very rich in actin and α-actinin, but seem to lack myosin; if filopodia use myosin to move, the interaction must be at a distance. Soluble collagen does not convert flattened fibroblasts on planar substrata to bipolar cells. Thus, the effect of collagen on the fibroblast cytoskeleton seems to depend on the presence of collagen fibrils in a gel surrounding the cell.  相似文献   

5.
The extracellular matrix in tissues such as bone, tendon and cornea contains ordered, parallel arrays of collagen type I fibrils. Cells embedded in these matrices frequently co-align with the collagen fibrils, suggesting that ordered fibrils provide structural or signalling cues for cell polarization. To study mechanisms of matrix-induced cell alignment, we used nanoscopically defined two-dimensional matrices assembled of highly aligned collagen type I fibrils. On these matrices, different cell lines expressing integrin alpha(2)beta(1) polarized strongly in the fibril direction. In contrast, alpha(2)beta(1)-deficient cells adhered but polarized less well, suggesting a role of integrin alpha(2)beta(1) in the alignment process. Time-lapse atomic force microscopy (AFM) demonstrated that during alignment cells deform the matrix by reorienting individual collagen fibrils. Cells deformed the collagen matrix asymmetrically, revealing an anisotropy in matrix rigidity. When matrix rigidity was rendered uniform by chemical cross-linking or when the matrix was formed from collagen fibrils of reduced tensile strength, cell polarization was prevented. This suggested that both the high tensile strength and pliability of collagen fibrils contribute to the anisotropic rigidity of the matrix, leading to directional cellular traction and cell polarization. During alignment, cellular protrusions contacted the collagen matrix from below and above. This complex entanglement of cellular protrusions and collagen fibrils may further promote cell alignment by maximizing cellular traction.  相似文献   

6.
Summary Monolayers of cultured epithelial cells have been prepared from fragments of guinea pig pancreatic excretory ducts isolated by a simple procedure employing collagenase digestion and manual selection, through which virtually all of the ductal system can be recovered. The isolated fragments were cultured in enriched Waymouth's medium on extracellular matrices of various composition and thickness, including: thin (<5 μm) and thick (0.5 mm) layers of rat tail collagen; thin layers of human placental collagen; thin layers of Matrigel (a reconstituted basement membrane material); uncoated tissue culture plastic; and the cellulose ester membranes of Millipore Millicells. Cells spread rapidly from duct fragments cultured on uncoated plastic or on plastic coated with thin layers of rat tail collagen or human placental collagen and formed epithelial monolayers. However, these cells were squamous and lacked the abundant basolateral membrane amplification and apical microvilli characteristic of freshly isolated duct epithelial cells. Cells did not spread from duct fragments cultured on Matrigel. In contrast, when fragments of pancreatic ducts were explanted onto either a thick layer of rat tail collagen or onto Millicell membranes, cells readily spread and formed confluent monolayers of cuboidal epithelial cells characterized by abundant mitochondria, apical microvilli, and basolateral plasma membrane elaboration. These results demonstrate that different forms of extracellular matrix modulate the growth and differentiation of pancreatic duct epithelial cells, and that culture on a permeable substrate markedly enhances the maintenance of differentiated characteristics in this cell type. The monolayers formed on Millicell membranes should provide a useful model system for physiologic analysis of the regulation of electrolyte secretion by this epithelium. This research was supported by grants DK32994 and DK35912 from the National Institutes of Health, Bethesda, MD.  相似文献   

7.
Type II collagen is the main structural component of hyaline cartilages where it forms networks of thin fibrils that differ in morphology from the much thicker fibrils of type I collagen. We studied here in vitro the formation of fibrils of pepsin-treated recombinant human type II collagen produced in insect cells. Two kinds of type II collagen preparation were used: low hydroxylysine collagen having 2.0 hydroxylysine residues/1,000 amino acids, including 1.3 glycosylated hydroxylysines; and high hydroxylysine collagen having 19 hydroxylysines/1,000 amino acids, including 8.9 glycosylated hydroxylysines. A marked difference in fibril formation was found between these two kinds of collagen preparation, in that the maximal turbidity of the former was reached within 5 min under the standard assay conditions, whereas the absorbance of the latter increased until about 600 min. The critical concentration with the latter was about 10-fold, and the absorbance/microgram collagen incorporated into the fibrils was about one-sixth. The morphology of the fibrils was also different, in that the high hydroxylysine collagen formed thin fibrils with essentially no interfibril interaction or aggregation, whereas the low hydroxylysine collagen formed thick fibrils on a background of thin ones. The data thus indicate that regulation of the extents of lysine hydroxylation and hydroxylysine glycosylation may play a major role in the regulation of collagen fibril formation and the morphology of the fibrils.  相似文献   

8.
A model for the electrostatic properties of hydrated collagen fibrils, based on the concept of a “penetrable” protein, has been evaluated through studies of collagen fibrils that had been chemically modified to change their electrostatic properties,. A value of 0.28 ± 0.07 ml/g was found for the intrafibrillar space sterically inaccessible to a molecule that had an equivalent spherical radius of 4.5 Å. The net intrinsic charge on reconstituted collagen is +14 mol/mol under physiological conditions, but decreases, at constant pH, with ionic strength. A value of 7.1 for the pK of the histidine and α-amino groups in reconstituted collagen was obtained through the application of the electrostatic model to this effect. The values obtained for calcium binding parameters for collagen fibrils, under solution conditions in which the nonspecific electrostatic properties of collagen fibrils were eliminated (3–5 M tetramethyl ammonium chloride), were in agreement with values obtained in 0.16 M NaCl solutions calculated through the use of the electrostatic theory. These are 0.73 ± 0.23 and 56.2 ± 12.3 sites per molecule with intrinsic association constants of 1101 ± 386 and 21.4 ± 5.2 M?1, respectively. The model also predicts that an average 4-mV potential difference exists between the reconstituted collagen fibrils and physiological solutions, and that collagen fibrils under such conditions have piezoelectriclike properties. The pattern of interaction of ions with collagen fibrils is such that an allosteric mechanism for the catalytic step in the mineralization of collagen is a possibility.  相似文献   

9.
Pollen from Collomia grandiflora Dougl. ex Lindl., Phoenix dactylifera L. and Zea mays L. was examined by freeze-fracture electron microscopy. Particular attention was paid to the organization of the cell membranes in the naturally dehydrated, as compared to the fully hydrated, state. All membranes examined had a normal bilayer organization similar to that seen in the hydrated cells of these and other plants. This organization of dry pollen membranes is discussed as it relates to physiological studies (e.g., leakage of ions during hydration), and to biophysical properties of biological and model membranes under various conditions of hydration and dehydration.Abbreviations EF, PF exoplasmic and protoplasmic fracture, respectively - HII hexagonal II - IMPs intramembranous particles  相似文献   

10.
Tumor metastasis is characterized by enhanced invasiveness and migration of tumor cells through the extracellular matrix (ECM), resulting in extravasation into the blood and lymph and colonization at secondary sites. The ECM provides a physical scaffold consisting of components such as collagen fibrils, which have distinct dimensions at the nanoscale. In addition to the interaction of peptide moieties with tumor cell integrin clusters, the ECM provides a physical guide for tumor cell migration. Using nanolithography we set out to mimic the physical dimensions of collagen fibrils using lined nanotopographical silicon surfaces and to explore whether metastatic tumor cells are uniquely able to respond to these physical dimensions. Etched silicon surfaces containing nanoscale lined patterns with varying trench and ridge sizes (65–500 nm) were evaluated for their ability to distinguish between a non-metastatic (253J) and a highly metastatic (253J-BV) derivative bladder cancer cell line. Enhanced alignment was distinctively observed for the metastatic cell lines on feature sizes that mimic the dimensions of collagen fibrils (65–100 nm lines, 1:1–1:1.5 pitch). Further, these sub-100 nm lines acted as guides for migration of metastatic cancer cells. Interestingly, even at this subcellular scale, metastatic cell migration was abrogated when cells were forced to move perpendicular to these lines. Compared to flat surfaces, 65 nm lines enhanced the formation of actin stress fibers and filopodia of metastatic cells. This was accompanied by increased formation of focal contacts, visualized by immunofluorescent staining of phospho-focal adhesion kinase along the protruding lamellipodia. Simple lined nanotopography appears to be an informative platform for studying the physical cues of the ECM in a pseudo-3D format and likely mimics physical aspects of collagen fibrils. Metastatic cancer cells appear distinctively well adapted to sense these features using filopodia protrusions to enhance their alignment and migration.  相似文献   

11.
Collagen Formation by Fibroblasts of the Chick Embryo Dermis   总被引:17,自引:9,他引:8       下载免费PDF全文
This investigation has sought to determine the relation between collagen fiber and fibroblast during fibrogenesis. Toward this end the surfaces of chick fibroblasts grown under in vitro conditions have been examined with the electron microscope after fixation in OsO4. Supplementary information has been obtained from thin sections of fibroblasts fixed in situ during phases of fiber production. The evidence provided by these studies and by various conditions of the experiments indicates that the unit fibrils of collagen form in close association with the cell surface. They were never observed within the cell. When these unit fibrils form in bundles it appears as though templates of some nature, possibly coinciding with stress fibers within the cell cortex, influence the polymerization of the fibrils out of material available at the cell surface. From here the fibrils and bundles of them are shed into the intercellular spaces and there grow to limited diameters by accretion of materials from the general milieu.  相似文献   

12.
Differentiation of hypertrophic chondrocytes toward an osteoblast-like phenotype occurs in vitro when cells are transferred to anchorage- dependent culture conditions in the presence of ascorbic acid (Descalzi Cancedda, F., C. Gentili, P. Manduca, and R. Cancedda. 1992. J. Cell Biol. 117:427-435). This process is enhanced by retinoic acid addition to the culture medium. Here we compare the growth of hypertrophic chondrocytes undergoing this differentiation process to the growth of hypertrophic chondrocytes maintained in suspension culture as such. The proliferation rate is significantly higher in the adherent hypertrophic chondrocytes differentiating to osteoblast-like cells. In cultures supplemented with retinoic acid the proliferation rate is further increased. In both cases cells stop proliferating when mineralization of the extracellular matrix begins. We also report on the ultrastructural organization of the osteoblast-like cell cultures and we show virtual identity with cultures of osteoblasts grown from bone chips. Cells are embedded in a dense meshwork of type I collagen fibers and mineral is observed in the extracellular matrix associated with collagen fibrils. Differentiating hypertrophic chondrocytes secrete large amounts of an 82-kD glycoprotein. The protein has been purified from conditioned medium and identified as ovotransferrin. It is transiently expressed during the in vitro differentiation of hypertrophic chondrocytes into osteoblast-like cells. In cultured hypertrophic chondrocytes treated with 500 nM retinoic acid, ovotransferrin is maximally expressed 3 d after retinoic acid addition, when the cartilage-bone-specific collagen shift occurs, and decays between the 5th and the 10th day, when cells have fully acquired the osteoblast-like phenotype. Similar results were obtained when retinoic acid was added to the culture at the 50 nM "physiological" concentration. Cells expressing ovotransferrin also coexpress ovotransferrin receptors. This suggests an autocrine mechanism in the control of chondrocyte differentiation to osteoblast-like cells.  相似文献   

13.
Collagen fibres within the extracellular matrix lend tensile strength to tissues and form a functional scaffold for cells. Cells can move directionally along the axis of fibrous structures, in a process important in wound healing and cell migration. The precise nature of the structural cues within the collagen fibrils that can direct cell movement are not known. We have investigated the structural features of collagen that are required for directional motility of mouse dermal fibroblasts, by analysing cell movement on two-dimensional collagen surfaces. The surfaces were prepared with aligned fibrils of collagen type I, oriented in a predefined direction. These collagen-coated surfaces were generated with or without the characteristic 67 nm D-periodic banding. Quantitative analysis of cell morphodynamics showed a strong correlation of cell elongation and motional directionality with the orientation of D-periodic collagen microfibrils. Neither directed motility, nor cell body alignment, was observed on aligned collagen lacking D-periodicity, or on D-periodic collagen in the presence of peptide containing an RGD motif. The directional motility of fibroblast cells on aligned collagen type I fibrils cannot be attributed to contact guidance, but requires additional structural information. This allows us to postulate a physiological function for the 67 nm periodicity.  相似文献   

14.
Human adipose derived stem cells (hASCs) can be easily isolated and their plasticity has been well characterized. Several TGF-β superfamily ligands can direct hASCs towards chondrocytes. However, these ligands are difficult to purify and expensive. We have developed a library of Activin/BMP2 chimeric ligands (AB2 ligands) by systematically mixing their sequence segments and have tested their chondrogenic potential in hASCs. Cells cultured in monolayer or in a pellet culture system were incubated with a chemically defined medium supplemented with the chimeric ligands for 4 or 6 weeks and showed higher expression levels of type II collagen, aggrecan, and Sox9 mRNAs when compared with control and non-treated cells. Moreover, toluidine blue, alcian blue, and Masson's trichrome staining was markedly increased in treated cells, both in cell pellet and monolayer assays. In addition, immunohistochemical staining for detection of type I collagen, type II collagen, and Sox 9 demonstrated the acquisition of a chondrogenic phenotype in both culture systems. We present here an inexpensive and robust protocol for differentiation of hASCs towards chondrocytes in a reproducible and highly efficient manner. The AB2 ligands employed are easily produced and have properties that may become useful in cell therapy.  相似文献   

15.
It has long been recognised that the alignment of fibrils of an extracellular matrix can guide cell displacement along an axis. However, bidirectional guidance alone is insufficient to explain the directed translocation of cell populations in an embryo. Evidence is presented here that matrix fibrils can also be arranged to confer a unidirectional bias on cell displacement. When chick heart fibroblasts were cultured between two collagen matrices pretreated by shearing, the displacements of these cells were biased in the direction opposite to that of pre-shear. A possible explanation is that cells detect the directional arrangement of fibrils linked to a rigid surface. Results of a second experiment suggested that cells can indeed respond directionally to the linkage of fibrils to rigid surfaces. Cells spreading on the surface of matrices were aligned perpendicular to the edge of a rigid body embedded just beneath the surface. For cells close to this body, the effect of linkage was able to override guidance as the more important orienting cue. 'DESMOTAXIS' is suggested as a suitable name for the unidirectional movement of cells in response to the arrangement of fibrils relative to a rigid, anchoring surface. In the embryo, several factors could generate such arrangements of extracellular matrices around relatively solid structures. These possibilities are discussed with reference to directed cell migrations in vivo.  相似文献   

16.
The purpose of this study was to assess quantitatively the role of the small GTPase Rho on cell morphology, f-actin organization, and cell-induced matrix remodeling in 3D culture. Human corneal fibroblasts (HTK) were infected with adenoviruses that express green fluorescent protein (GFP) or GFP-N19Rho (dominant negative Rho). One day later cells were plated inside collagen matrices and allowed to spread for 24 h. Cells were fixed and stained for f-actin. Fluorescent (for f-actin) and reflected light (for collagen fibrils) images were acquired using confocal microscopy. Fourier transform analysis was used to assess local collagen fibril alignment, and changes in cell morphology and collagen density were measured using MetaMorph. The decrease in matrix height was used as an indicator of global matrix contraction. HTK and HTK-GFP cells induced significant global matrix contraction; this was inhibited by N19Rho. HTK and HTK-GFP fibroblasts generally had a bipolar morphology and occasional intracellular stress fibers. Collagen fibrils were compacted and aligned parallel to stress fibers and pseudopodia. In contrast, HTK-GFPN19 cells were elongated, and had a more cortical f-actin distribution. Numerous small extensions were also observed along the cell body. In addition, both local collagen fibril density and alignment were significantly reduced. Rho plays a key role in regulating both the morphology and mechanical behavior of corneal fibroblasts in 3D culture. Overall, the data suggest that Rho-kinase dependent cell contractility contributes to global and local matrix remodeling, whereas Rho dependent activation of mDia and/or other downstream effectors regulates the structure and number of cell processes.  相似文献   

17.
A myogenic differentiation program can be realized during the cultivation of Mytilus trossuluscells derived from larvae in premyogenic developmental stages. About 10–15% of cells in such cultures showed that they are capable of contracting actively. The shape of such cells and the high concentration of actin microfilaments indicate a similarity with smooth muscle cells. However, the pattern of contractile activity and the protein composition of these cells differ significantly from the corresponding characteristics of differentiated smooth muscle cells. The proportion between the main proteins of the thick fiber, paramyosin, and myosin in cultivated cells is far lower than in the muscles of larvae or adult molluscs. We also found that substrates with different adhesional characteristics may determine cell development towards one or the other phenotype. Cells attached to the collagen substrate, but not spread on it, had high proliferative potential; the collagen substrate, however, inhibited myogenic differentiation.  相似文献   

18.
Structure and function of bone collagen fibrils   总被引:4,自引:0,他引:4  
The intermolecular volume of fully hydrated collagen fibrils from a number of mineralized and non-mineralized tissues of adult rats has been determined both by an exclusion technique and by a method which involves the monitoring of specific X-ray diffraction parameters. The intermolecular volume of either bone or dentinal fibrils is approximately twice that of either tail or achilles tendon, and the most frequent intermolecular distance in bone or dentine fibrils is approximately 3 Å larger than of the tendons.A number of fibrillar structures are most compatible with the intermolecular volume of rat tail tendon. These include hexagonal molecular packing and orthogonal arrays of microfibrils comprising seven parallel molecular strands. The intermolecular volume of bone or dentinal collagen fibrils, on the other hand, appears to arise from structures having a disordered or pseudo-hexagonal molecular packing, in which the most frequent intermolecular distance is about 19 Å.The space associated with collagen fibrils in adult bone is such that 70 to 80% of the mineral is located within the intermolecular space of the fibrils—approximately equal amounts of mineral being in spaces having lateral dimensions of 25 to 75 Å and 6 to 12 Å, respectively. Particles located in the latter kind of intermolecular space probably constitute, to a large extent, the non-crystalline mineral phase of adult bone.The stereo-chemical constraints on the transport of mineral ions into and within collagen fibrils of bone and tendon support the postulate that bone collagen is an in vivo catalyst for mineral deposition and further suggests that its catalytic activity may be partially regulated through its molecular packing.  相似文献   

19.
Bone has a complex hierarchical structure that has evolved to serve structural and metabolic roles in the body. Due to the complexity of bone structure and the number of diseases which affect the ultrastructural constituents of bone, it is important to develop quantitative methods to assess bone nanoscale properties. Autosomal dominant Osteogenesis Imperfecta results predominantly from glycine substitutions (80%) and splice site mutations (20%) in the genes encoding the α1 or α2 chains of Type I collagen. Genotype–phenotype correlations using over 830 collagen mutations have revealed that lethal mutations are located in regions crucial for collagen–ligand binding in the matrix. However, few of these correlations have been extended to collagen structure in bone. Here, an atomic force microscopy-based approach was used to image and quantitatively analyze the D-periodic spacing of Type I collagen fibrils in femora from heterozygous (Brtl/+) mice (α1(I)G349C), compared to wild type (WT) littermates. This disease system has a well-defined change in the col1α1 allele, leading to a well characterized alteration in collagen protein structure, which are directly related to altered Type I collagen nanoscale morphology, as measured by the D-periodic spacing. In Brtl/+ bone, the D-periodic spacing shows significantly greater variability on average and along the length of the bone compared to WT, although the average spacing was unchanged. Brtl/+ bone also had a significant difference in the population distribution of collagen D-period spacings. These changes may be due to the mutant collagen structure, or to the heterogeneity of collagen monomers in the Brtl/+ matrix. These observations at the nanoscale level provide insight into the structural basis for changes present in bone composition, geometry and mechanical integrity in Brtl/+ bones. Further studies are necessary to link these morphological observations to nanoscale mechanical integrity.  相似文献   

20.
When 19-day fetal rat triceps muscle was cultured for 7 to 14 days upon decalcified, sequentially extracted adult rat bone, cartilage formed within clefts and vascular spaces of the decalcified bone. The bone substrata were prepared by extracting tibias and femurs of Sprague-Dawley rats with 1:1 chloroform:methanol, 0.6 N HCl, 2 M CaCl2, 0.6 M EDTA, 8 M LiCl, and H2O at 56°C. The culture medium used was CMRL 1066 with 15% newborn calf serum. During cultivation, fibroblastic mesenchymal cells migrated out of muscle and into bone crevices where they secreted a cartilaginous matrix composed of thin, randomly dispersed collagen fibrils and proteoglycan granules. The latter are characteristic for cartilage matrix. Extracted bone matrix contained mature collagen fibrils, some of which retained their typical 640-Å banding. Other collagen fibrils were partially disaggregated and expanded to reveal component 50-Å-thick, beaded micro fibrils. Such an expansion of collagen fibrils is known to result from exposure to proteoglycan solvents such as 2 M CaCl2. The decalcified bone matrix contained many residual devitalized cells and cell fragments which often were seen in close proximity to chondrifying mesenchymal cells. This finding indicates the possibility that residual cellular material could play a role in stimulating cartilage development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号