首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of gas phase diffusion in insect gas exchange remains unclear. The role of diffusion in gas exchange of developing Hyalophora cecropia pupae was examined by altering the gaseous diffusion coefficient in the breathing mixture. Gaseous diffusion coefficients were manipulated by substituting helium or sulfur hexafluoride for the nitrogen usually present in air. Sensitive mass loss recordings were employed to monitor gas exchange activity. Mass loss recordings showed a two-phase cycle, open and closed-flutter. Mass loss rates during the open and closed-flutter periods were not altered in proportion to the changes induced in the rate of diffusion. Open-phase duration was inversely and proportionally related to the diffusion coefficient. These results are consistent with changes in spiracle resistance or convective flow during the open period in response to a change in the diffusion coefficient. In addition, they indicate a significant gas phase diffusive resistance within the pupal tracheal system. This previously unreported gas phase resistance appears to be a major determinant of the duration of the open period and thus of overall water loss rates in these pupae.  相似文献   

2.
The gaseous exchange pathways of Sticla latifrons Rich. and Pseudocyphellaria amphisticta Kremp. were examined using both light and scanning electron microscopes. The size and frequency of the pores in the gas exchange structures (cyphellae and pseudocyphellae) and in the medulla were measured and from these CO2 diffusion resistances were calculated. Pseudocyphellae were found to be smaller and more widely spaced than cyphellae, consequently the resistance of the pseudocyphellae, was much greater than that of the cyphellae. Medulla resistances were low in both lichens and are probably unimportant, even at high water contents. No evidence of hyphal swelling was found. Gas exchange structure resistances were more than five fold greater than medulla resistances. It is suggested that this arrangement of resistances may simultaneously encourage refixation of respired CO2 and maintain a non desiccating environment for the lichen algae. The internal transport resistances calculated in this work approximate experimentally obtained values.  相似文献   

3.
In many filamentous cyanobacteria, oxygenic photosynthesis is restricted to vegetative cells, whereas N(2) fixation is confined to microoxic heterocysts. The heterocyst has an envelope that provides a barrier to gas exchange: N(2) and O(2) diffuse into heterocysts at similar rates, which ensures that concentrations of N(2) are high enough to saturate N(2) fixation while respiration maintains O(2) at concentrations low enough to prevent nitrogenase inactivation. I propose that the main gas-diffusion pathway is through the terminal pores that connect heterocysts with vegetative cells. Transmembrane proteins would make the narrow pores permeable enough and they might provide a means of regulating the rate of gas exchange, increasing it by day, when N(2) fixation is most active, and decreasing it at night, minimizing O(2) entry. Comparisons are made with stomata, which regulate gas exchange in plants.  相似文献   

4.
1. The exchange of oxygen and carbon dioxide between skin and environment is commonplace in the vertebrates. In many lower vertebrates, the skin is the major or even sole avenue for respiration.
2. As implied by the physical laws governing diffusion of gases, the skin diffusion coefficient, surface area, gas diffusion distance and transcutaneous gas partial pressures may independently or jointly affect cutaneous respiration. In vertebrates, each of these variables has undergone modification that may be related to dependence upon cutaneous gas exchange.
3. Both theoretical models and experimental data suggest that cutaneous gas exchange is limited by the rate of diffusion. However, changes in convection of the respiratory medium and of blood may partially compensate for diffusion limitation, and potentially function in the regulation of cutaneous gas exchange.
4. Typically, the skin is one of several gas exchangers, although many salamanders and some species in other vertebrate groups breathe solely through the skin. The cutaneous contribution to overall gas exchange is often most important in small animals, at cool temperatures, at low levels of activity and in normoxic and normocapnic conditions. Branchial and pulmonary respiration increasingly predominate in other circumstances.
5. Often, the skin figures more prominently in CO2, excretion than in O2, uptake.
6. Cutaneous gas exchange emerges in vertebrates as a process perhaps less effective and more constrained than branchial or pulmonary exchange but also less energetically costly. Its utility is indicated by its wide and successful exploitation in vertebrates occupying a diverse array of habitats.  相似文献   

5.
The water exchange has been measured in oocytes of siredon mexicanum and rana temporaria, and in unfertilized eggs and early gastrulae of the former species, by recording the D2O? H2O exchange with the cartesian diver balance. In oocytes, where no diffusion barrier to water is demonstrable, the temperature coefficient Q10 for the exchange of water is about 1.3–1.4, corresponding to that of free diffusion. in unfertilized eggs, and in early gastrulae the exchange is considerably slowed down, indicating that a surface membrane to some extent limits the rate of exchange. at the same time the Q10 value is increased, lying in the range 2.3–3.8. since it is most likely that the exchange even in this case occurs by diffusion, but through membrane pores, it is concluded that the area available for diffusion (pore size or number, or both) increases with temperature.  相似文献   

6.
There is an ongoing debate on how to correct leaf gas exchange measurements for the unavoidable diffusion leakage that occurs when measurements are done in non‐ambient CO2 concentrations. In this study, we present a theory on how the CO2 diffusion gradient over the gasket is affected by leaf‐mediated pores (LMP) and how LMP reduce diffusive exchange across the gaskets. Recent discussions have so far neglected the processes in the quasi‐laminar boundary layer around the gasket. Counter intuitively, LMP reduce the leakage through gaskets, which can be explained by assuming that the boundary layer at the exterior of the cuvette is enriched with air from the inside of the cuvette. The effect can thus be reduced by reducing the boundary layer thickness. The theory clarifies conflicting results from earlier studies. We developed leaf adaptor frames that eliminate LMP during measurements on delicate plant material such as grass leaves with circular cross section, and the effectiveness is shown with respiration measurements on a harp of Deschampsia flexuosa leaves. We conclude that the best solution for measurements with portable photosynthesis systems is to avoid LMP rather than trying to correct for the effects.  相似文献   

7.
The relative importance of stratified inhomogeneity in the mammalian lung has been considered both theoretically and experimentally. Calculations show that alveolar-capillary diffusion resistance is not limiting for inert gas exchange. Previous model calculations have concluded that stratified inhomogeneity is not likely to be an important mechanism in limiting gas exchange. Experimental data with inspired boluses of inert gas show the presence of stratified inhomogeneity. However, another possible mechanism, related to interaction of diffusion and convection, remains as a possible explanation for these findings. Stratified inhomogeneity appears to play a role in gas exchange in the normal rat, but the role of stratified inhomogeneity in humans and other animals is yet to be determined.  相似文献   

8.
In view of the increasing evidence that multicomponent diffusion effects could be significant in biological gas exchange systems, a non-equimolar film model of multicomponent diffusion was derived. “Osmotic” ternary diffusion was studied for the gas systems He−N2−O2, He−SF6−O2, and N2−SF6−O2. Diffusional fluxes and concentration profiles were calculated under both the “square-root” and the “product” flux conditions. Results were also compared with those obtained using the equimolar flux condition. It was found that the greater the difference of the diffusibilities between the two active components in a system, the greater the osmotic fluxes, and also the more alinear the concentration profiles. These results support the suggestion that the “product” condition applies to molecular diffusion in free space, the “square-root” condition to molecular diffusion in pores, and the equimolar flux condition to closed diffusion systems.  相似文献   

9.
Structural aspects of gas exchange   总被引:1,自引:0,他引:1  
The lung is composed of several million small air spaces, lined by a delicate tissue membrane separating air from capillary blood. The design features of the gas exchange region in the lung are optimal for gaseous diffusion, by having a very extensive contact surface but with a minimal tissue barrier composed of an epithelial and endothelial layer separating an interstitial layer. The extent of the gas exchange surface in adult lungs is determined by general maturation which in turn is influenced by metabolic requirements of the organism. Environmental factors can modulate the pattern of ultimate lung development. Lung inflation causes air spaces to expand mainly by a process of tissue unfolding beneath an extremely thin layer of alveolar surfactant. This ensures cellular integrity during extreme deformations while at the same time providing a reserve of gas exchange surface so that functional diffusion capacity at all lung volumes is less than the structural maximum.  相似文献   

10.
A simplified pore-to-pore hopping model for the two-phase diffusion problem is developed for the analysis of the pulsed gradient spin echo (PGSE) attenuation of water diffusion in the condensed cell suspension systems. In this model, the two phases inside and outside the cells are treated as two different kinds of pores, and the spin-bearing molecules perform hopping diffusion between them. The size and the orientations of those two respective pores are considered, and then the diffraction pattern of the PGSE attenuation may be well simulated. Nevertheless, the intensity of the characteristic peak decreases with increasing membrane permeability, from which the exchange time may be estimated. We then analyze the experimental 1H PGSE results of the erythrocytes suspension system. The water-residence lifetime in the erythrocyte is obtained to be 10 ms, which is the same as that estimated from the two-region approximation. Furthermore, the PGSE attenuation curve of addition of p-Chloromercuribenzenesulfonate (p-CMBS) is also discussed. It predicts that the alignment of erythrocytes will become normal to the magnetic field direction after the addition of p-CMBS, and inspection using a light microscope confirms that result.  相似文献   

11.
An abnormal growth form called mound has been hypothesized to be a neoplasm in the filamentous fungus Schizophyllum commune. An alternative hypothesis is that mounds represent some unusual developmental form in the fruiting body morphogenetic pathway. Hydrophobin proteins have been found in fruiting bodies where they line the surface of gas exchange pores and function to keep the pores hydrophobic. To further determine possible relationships between mounds and fruiting bodies, mound tissue was examined for gas exchange pores and the presence of hydrophobins. Cryoscanning electron microscopic images revealed the presence of channels in mound tissue and presumptive hydrophobin rodlets similar to the air channels in fruiting bodies. Hydrophobin gene expression was also measured in mound tissue using quantitative real-time PCR and showed both monokaryotic and dikaryotic mound tissue exhibited high expression of the dikaryotic specific Sc4 hydrophobin gene. In contrast, Sc4 hydrophobin expression was barely detectable in monokaryotic fruiting bodies. The expression of Sc4 hydrophobin genes in mounds suggests mound development uses this aspect of the dikaryotic fruiting developmental pathway.  相似文献   

12.
An abnormal growth form called mound has been hypothesized to be a neoplasm in the filamentous fungus Schizophyllum commune. An alternative hypothesis is that mounds represent some unusual developmental form in the fruiting body morphogenetic pathway. Hydrophobin proteins have been found in fruiting bodies where they line the surface of gas exchange pores and function to keep the pores hydrophobic. To further determine possible relationships between mounds and fruiting bodies, mound tissue was examined for gas exchange pores and the presence of hydrophobins. Cryoscanning electron microscopic images revealed the presence of channels in mound tissue and presumptive hydrophobin rodlets similar to the air channels in fruiting bodies. Hydrophobin gene expression was also measured in mound tissue using quantitative real-time PCR and showed both monokaryotic and dikaryotic mound tissue exhibited high expression of the dikaryotic specific Sc4 hydrophobin gene. In contrast, Sc4 hydrophobin expression was barely detectable in monokaryotic fruiting bodies. The expression of Sc4 hydrophobin genes in mounds suggests mound development uses this aspect of the dikaryotic fruiting developmental pathway.  相似文献   

13.
Ting, Irwin P., and Walter E. Loomis. (Iowa State U., Ames.) Diffusion through stomates. Amer. Jour. Bot. 50(9): 866–872. Illus. 1963.—It is shown that the rule that diffusion through isolated, small pores is proportional to the diameter rather than the area of the pores is valid for pores of diameters as small as 20 μ, and that the curve extends to the origin at zero diameters, indicating that the law is effective throughout the range of stomatal sizes. Suggestions that an elliptical pore will be relatively more effective in diffusion than a circular one and that diffusion is concentrated at the periphery of the pore are not supported by experimental evidence and are physically improbable. Brown and Escombe's conclusion that there is no interference in the diffusion through the individual pores of a multiperforate membrane if the pores are spaced 10 diameters apart is not valid for diffusion through the stomates of a leaf. With pores of 200 μ and less spaced 10 diameters apart, interference increases rapidly with a smaller size and larger number of pores. As a result, the diffusion through a membrane with pores 19 μ in diameter and 190 μ apart was the same as that through a membrane with pores 132 μ in diameter and 1.32 mm apart, although the calculated capacity of the first membrane was 7 times that of the second. The diffusion of water vapor through multiperforate membranes with pores spaced 10 diameters apart has an apparent maximum of 65–70% of the diffusion through an open tube. Calculations of the effect of partial closing of stomates, using Verduin's equation for interference between pores, indicate that the theoretical diffusion capacity of 10 μ stomates spaced at 10 diameters would be increased several times by closing to an average diameter of 5 μ. This increase illustrates the dominant effect of interference in diffusion through small, closely spaced pores. Calculated diffusion through these stomates would not be decreased until they were more than 95% closed. It is concluded that stomatal opening will have no important effect on diffusion from or into a leaf until the stomates are essentially closed.  相似文献   

14.
It has been previously proposed that acetylene reduction data at subsaturating acetylene concentrations could be interpreted by use of the Michaelis-Menten equation, based on the acetylene concentration external to the nodules. One difficulty of this view is that the assumption that the system is not diffusion limited is violated when studying intact nodules. The presence of a gas diffusion barrier in the nodule cortex leads to an alternate expression for the gas exchange rates at subsaturating gas concentrations. A theoretical comparison of the `apparent' Michaelis-Menten model and diffusion model illustrated the difficulties observed in the former model of overestimating the Michaelis-Menten coefficient and yielding a correlation between the Michaelis-Menten coefficient and the maximum rate. On the other hand, use of a diffusion model resulted in (a) estimates of the Michaelis-Menten coefficient consistent with enzyme studies, (b) stability of the estimates of the Michaelis-Menten coefficient independent of treatment, and (c) a sensitivity of the diffusion barrier conductance to plant drought stress. It was concluded that all studies of nodule gas exchange need to consider possible effects caused by the presence of a diffusion barrier.  相似文献   

15.
Abstract. The chorion of the egg in Callosobruchus maculatus (Coleoptera: Bruchidae) provides protection but also has to allow exchange of respiratory gases. A single opening in the chorion (the egg pore) allows diffusion of gases, and young larvae die if the egg pore is blocked. Comparison of respiration rates using a Gilson respirometer showed an increase in oxygen uptake from the first to the seventh day after the egg was laid; the increase was from 6.8 to 11.2 pl/egg/day in a Brazil strain and from 8.6 to 23.5 pl/egg/day in a Yemen strain. The Yemen strain had double the metabolic rate of Brazil-strain insects in the larvae, which are exposed to seed toxins, but not in the non-feeding adults. It is suggested that the higher metabolic rate in the Yemen larvae is related to their ability to develop in seeds that are toxic to the Brazil strain. The egg pore also differed in size and shape between the two strains. The egg pore was cylindrical in the Brazil strain, but shorter and funnel-shaped with an increased external diameter in the Yemen strain. Calculation showed that the different shape and size of the Yemen egg pore would allow a 2–3-fold increase in gas conductance compared with the Brazil strain, and this increase was consistent with the enhanced oxygen requirement of the Yemen larvae, which was a little over twice that of the Brazil larvae at 7 days. The anatomy of egg pores in Cmaculatus thus seems to represent a trade-off between two functions, allowing adequate gas exchange while maintaining the protective function of the chorion.  相似文献   

16.
Ingram GC 《Current biology : CB》2005,15(17):R663-R665
How do plants generate the optimal spacing of stomatal pores on their surfaces to prevent excessive water-loss, whilst allowing efficient gas exchange? New research into the ERECTA family of receptor-like-kinases has provided an important link in the cell-cell signalling pathways controlling this process.  相似文献   

17.
SYNOPSIS. Unlike internal exchange surfaces, the skin contactsan "infinite pool" of air or water with which exchange of gases,water, ions, and other solutes may occur. Even though the "infinitepool" may be well mixed, an unstirred diffusion boundary layeris always present about the skin and may constitute a significantresistance to exchange. The thickness of the diffusion boundarylayer (as approximated by the fluid dynamic boundary layer)is related to the flow of the respiratory medium, viscosityand density of the medium, and the morphology of the exchangesurface. Oxygen microelectrode studies suggest that, in mostcircumstances, the diffusion boundary layer in water is at leastas thick as the blood-respiratory medium distance in amphibianskin. Accordingly, the movement of water about the skin {i.e.,skin ventilation) should have pronounced effects on cutaneousexchange, especially at low "free stream" velocities. Mountingphysiological evidence suggests that: (1) skin ventilation canaugment cutaneous gas exchange; and (2) some vertebrates activelyventilate their skins, especially in aquatic hypoxia. The ubiquityand significance of diffusion boundary layers are central toa general understanding of cutaneous exchange and all surface-mediatedexchange processes.  相似文献   

18.
Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.  相似文献   

19.
Both ventilation and blood flow in the secondary lobule of the lung are stratified; each unit of lung tissue in the proximal portion of the lobule receives up to four times the blood flow of units in the peripheral portion. Questions of the limiting role of gas diffusion within the small airways become virtually irrelevant in the face of this stratification of function.The central portion of the lobule, with its high ventilation, blood flow, and gas exchange, is very vulnerable; small lesions at this site will produce disproportionately large disturbances of gas exchange and of pulmonary vascular resistance. This may well account for some of the phenomena of conditions such as centrilobular emphysema and pulmonary microembolism.  相似文献   

20.
Transpiration of cuticular membranes isolated from the lower stomatous surface of Hedera helix (ivy) leaves was measured using a novel approach which allowed a distinction to be made between gas phase diffusion (through stomatal pores) and solid phase diffusion (transport through the polymer matrix membrane and cuticular waxes) of water molecules. This approach is based on the principle that the diffusivity of water vapour in the gas phase can be manipulated by using different gases (helium, nitrogen, or carbon dioxide) while diffusivity of water in the solid phase is not affected. This approach allowed the flow of water across stomatal pores ('stomatal transpiration') to be calculated separately from the flow across the cuticle (cuticular transpiration) on the stomatous leaf surface. As expected, water flux across the cuticle isolated from the astomatous leaf surface was not affected by the gas composition since there are no gas-filled pores. Resistance to flux of water through the solid cuticle on the stomatous leaf surface was about 11 times lower than cuticular resistance on the astomatous leaf surface, indicating pronounced differences in barrier properties between cuticles isolated from both leaf surfaces. In order to check whether this difference in resistance was due to different barrier properties of cuticular waxes on both leaf sides, mobility of 14C-labelled 2,4-dichlorophenoxy-butyric acid 14C-2,4-DB) in reconstituted cuticular wax isolated from both leaf surfaces was measured separately. However, mobility of 14C-2,4-DB in reconstituted wax isolated from the lower leaf surface was 2.6 times lower compared with the upper leaf side. The significantly higher permeability of the ivy cuticle on the lower stomatous leaf surface compared with the astomatous surface might result from lateral heterogeneity in permeability of the cuticle covering normal epidermal cells compared with the cuticle covering the stomatal cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号