首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
《Gene》1998,210(1):25-36
The 86-kDa IE2 nuclear phosphoprotein encoded by the human cytomegalovirus (HCMV) major immediate-early (MIE) gene behaves as both a non-specific transactivator of viral and cellular gene expression and as a specific DNA-binding protein targeted to the cis-repression sequence (CRS) at the cap site of its own promoter/enhancer region. Although the IE2 protein produced in bacteria has been shown to bind to the 14-bp palindromic CRS motif and IE2 synthesized in vitro forms stable dimers in solution through the conserved C-terminus of the protein, there is no direct evidence as yet that the intracellular mammalian forms of IE2 do so. Here, we show that the intact HCMV IE2 protein both binds to CRS DNA and dimerizes in yeast cells. In a one-hybrid assay system, a GAL4/IE2 fusion protein expressed in yeast cells activated target HIS3 expression only when CRS sites were located upstream of the GAL1 minimal promoter, but failed to do so on mutant CRS sites, demonstrating a requirement for sequence-specific DNA-binding by IE2. Examination of a series of deletion and triple amino acid point mutations in the C-terminal half of IE2 mapped the domains required for DNA-binding in yeast to the entire region between codons 313 and 579, whereas in the previous in vitro study with truncated bacterial GST fusion proteins, it was mapped to between codons 346 and 579. Transient co-transfection assays with deleted IE2 effector genes in Vero cells showed that the extra segment of IE2 between codons 313 and 346 is also required for both autoregulation and transactivation activity in mammalian cells. In a two-hybrid assay to study IE2 self-interations, we generated both GAL4 DNA-binding (DB) and activation domain (A)/IE2 fusion proteins and showed that IE2 could also dimerize or oligomerize through the C-terminus of the protein in yeast cells. Domains required for this interaction were all mapped to within the region between codons 388 and 542, which is coincident with the domain mapped previously for dimerization by co-translation and immunoprecipitation in vitro. Comparison of the domains of the IE2 protein required for CRS binding and dimerization in yeast suggests that these activities correlate precisely with requirements for the negative autoregulation function of the IE2 protein in mammalian cells.  相似文献   

4.
5.
6.
7.
The functional insect ecdysteroid receptor is comprised of the ecdysone receptor (EcR) and Ultraspiracle (USP). The ligand-binding domain (LBD) of USP was fused to the GAL4 DNA-binding domain (GAL4-DBD) and characterized by analyzing the effect of site-directed mutations in the LBD. Normal and mutant proteins were tested for ligand and DNA binding, dimerization, and their ability to induce gene expression. The presence of helix 12 proved to be essential for DNA binding and was necessary to confer efficient ecdysteroid binding to the heterodimer with the EcR (LBD), but did not influence dimerization. The antagonistic position of helix 12 is indispensible for interaction between the fusion protein and DNA, whereas hormone binding to the EcR (LBD) was only partially reduced if fixation of helix 12 was disturbed. The mutation of amino acids, which presumably bind to a fatty acid evoked a profound negative influence on transactivation ability, although enhanced transactivation potency and ligand binding to the ecdysteroid receptor was impaired to varying degrees by mutation of these residues. Mutations of one fatty acid-binding residue within the ligand-binding pocket, 1323, however, evoked enhanced transactivation. The results confirmed that the LBD of Ultraspiracle modifies ecdysteroid receptor function through intermolecular interactions and demonstrated that the ligand-binding pocket of USP modifies the DNA-binding and transactivation abilities of the fusion protein.  相似文献   

8.
9.
Sato B  Sommer M  Ito H  Arvin AM 《Journal of virology》2003,77(22):12369-12372
Varicella-zoster virus (VZV) is an alphaherpesvirus that causes two diseases, chickenpox and zoster. VZV open reading frame 4 (ORF4) encodes the immediate-early 4 (IE4) protein, which is conserved among alphaherpesvirus and has transactivation activity in transient transfections. To determine whether the ORF4 gene product is essential for viral replication, we used VZV cosmids to remove ORF4 from the VZV genome. Deleting ORF4 was incompatible with recovery of infectious virus, whereas transfections done by using repaired cosmids with ORF4 inserted at a nonnative site yielded virus. To analyze the functional domain of IE4, we introduced a mutation altering the C-terminal amino acids, KYFKC (K443S), which was designed to disrupt the dimerization of IE4 protein. Transfections with these mutant cosmids yielded no virus, indicating that this KYFKC motif was essential for IE4 function.  相似文献   

10.
The IE2 86-kDa gene product is an essential regulatory protein of human cytomegalovirus (HCMV) with several functions, including transactivation, negative autoregulation, and cell cycle regulation. In order to understand the physiological significance of each of the IE2 functions, discriminating mutants of IE2 are required that can be tested in a viral background. However, no such mutants of IE2 are available, possibly reflecting structural peculiarities of the large and ill-defined C-terminal domain of IE2. Here, we revisited the C-terminal domain by analyzing IE2 mutants for transactivation, DNA binding, autoregulation, and cell cycle regulation in parallel. We found it to contain an unexpectedly concise core domain (amino acids 450 to 544) that is defined by its absolute sensitivity to any kind of mutation. In contrast, the region adjacent to the core (amino acids 290 to 449) generally tolerates mutations much better. Although it contributes more specific sequence information to distinct IE2 activities, none of the mutations analyzed abolished any particular function. The core is demarcated from the adjacent region by the putative zinc finger region (amino acids 428 to 452). Surprisingly, the deletion of the putative zinc finger region from IE2 revealed that this region is entirely dispensable for any of the IE2 functions tested here in transfection assays. Our work supports the view that the 100 amino acids of the core domain hold the key to most functions of IE2. A systematic, high-density mutational analysis of this region may identify informative mutants discriminating between various IE2 functions that can then be tested in a viral background.  相似文献   

11.
H J Himmelfarb  J Pearlberg  D H Last  M Ptashne 《Cell》1990,63(6):1299-1309
A mutant yeast in which a weak GAL4-derived activator functions as a strong activator bears a single mis-sense mutation in GAL11 (a.k.a. SPT13). The first 74 amino acids of GAL4, including the zinc-dependent DNA binding region, attached to an acidic activating sequence, are sufficient to respond both to GAL11 and to our mutant GAL11P (potentiator). PPR1, a yeast activator with a similar zinc finger sequence, also responds to GAL11 and to GAL11P, whereas regulators bearing unrelated DNA binding motifs do not. GAL11 itself works as a strong activator when tethered to DNA by fusion to the bacterial LexA protein, and deletion of GAL11 is known to cause a 5- to 10-fold reduction in GAL4 activity. We suggest that a complex of GAL4 and GAL11 constitutes a particularly strong activator; evidence that the putative GAL4-GAL11 complex ordinarily forms preferentially on DNA suggests a biological rationale for GAL11 action.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号