首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence lifetime and intensity quenching studies of human plasma apolipoprotein A-I (apo A-I) in aqueous solution and in recombinant lipoprotein complexes with dimyristoylphosphatidylcholine (DMPC) indicate differences in conformational dynamics. In aqueous solution, the bimolecular quenching constants (k*) for lipid-free apo A-I fluorescence quenching by oxygen and acrylamide are 2.4 X 10(9) and 0.38 X 10(9) M-1 s-1, respectively. These values are independent of the oligomeric form of the protein. There is no correlation between the relatively small k* for apo A-I, which reflects rapid, low-amplitude protein fluctuations, and the labile conformational changes of apo A-I folding reactions, like denaturation, which occur on a slower time scale. In recombinant DMPC/apo A-I complexes (100:1 molar ratio) the protein increases in amphiphilic alpha-helical structure as it blankets the lipid matrix. The apparent k* for oxygen quenching of apo A-I fluorescence in the complex is large and increases in a temperature-dependent manner. We have introduced a two-compartment model, which discriminates the source of quencher molecules as aqueous or lipid, to describe oxygen quenching of DMPC/apo A-I fluorescence. The magnitude and temperature dependence of the apparent k* predominantly reflect the partitioning of oxygen between the two phases rather than being a probe of the lipid physical state. Calculations of the helical hydrophobic moment in apo A-I indicate that tryptophan residues 8 and 72 occur at the lipid-protein interface of amphiphilic alpha-helices, whereas the other two tryptophan residues (50, 108) lie on the nonpolar faces of amphiphilic helices.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Complexes formed between apolipoprotein A-I (apo A-I) and dimyristoylphosphatidylcholine (DMPC) or egg phosphatidylcholine have been studied by high-field 1H NMR, nondenaturing gradient gel electrophoresis, electron microscopy, and gel filtration chromatography. Emphasis has been placed on an analysis of the particle size distribution within the micellar complexes produced at lipid/protein molar ratios of 40-700. As determined by electron microscopy and gel filtration of DMPC/apo A-I complexes, the size of the discoidal micelles produced appears to increase uniformly with an increasing lipid/protein ratio. By electron microscopy, the diameters of isolated DMPC/apo A-I discoidal micelles range from approximately 89 A at a 40 molar ratio to 205 A at a 700 molar ratio. Analysis of the micellar complexes by 1H NMR shows that concomitant with the increase in size is the progressive downfield shift of the choline N-methyl proton resonance of the complex which is observed from 3.245 to 3.267 ppm over the above molar ratio range. The relationship between chemical shift and micelle size is most simply interpreted as arising from a weighted averaging of two lipid environments--lipid-lipid and lipid-protein. In contrast to the above interpretation of the gel filtration experiments on DMPC/apo A-I complexes, nondenaturing gradient gel electrophoresis analysis of particle size distribution leads to an unexpected observation: as the DMPC/apo A-I ratio increases, discrete complexes of increasing size are formed in an apparently quantized manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The mechanism of the association of human plasma apolipoprotein A-I (apo A-I) with the acidic phospholipids, dimyristoylphosphatidylglycerol (DMPG), egg yolk phosphatidylglycerol, and dioleoylphosphatidylserine as well as with the zwitterionic dimyristoylphosphatidylcholine (DMPC) has been studied using turbidimetry, circular dichroism, high-sensitivity differential scanning calorimetry, and electron microscopy. The association of apo A-I with multilamellar liposomes of acidic phospholipids is rapid over a broad temperature range at and above the temperature of the lipid gel to liquid crystalline transition, Tc. This is in contrast to zwitterionic phosphatidylcholine which recombines with apo A-I only over a narrow temperature range around Tc. The complex of apo A-I with DMPC denatures at elevated temperatures giving rise to a calorimetrically detectable transition. The temperature range and width of this transition is shown to be markedly dependent on the heating rate. This is again in contrast to apo A-I recombinants with DMPG which show no calorimetrically detectable thermal denaturation, at least in a temperature range up to 100 degrees C. Also circular dichroism data indicate high resistance of apo A-I to thermal unfolding in the presence of DMPG. It is concluded that the complexes of apo A-I with DMPC are thermodynamically stable only at temperatures near Tc, whereas above and below this temperature range the stability of these recombinants is determined by kinetic factors. In contrast, complexes of apo A-I with DMPG and other acidic phospholipids may be thermodynamically stable over a wide temperature range greater than or equal to Tc. In spite of these fundamental differences between zwitterionic and acidic phospholipids in their mode of association with apo A-I, the binding affinity and the morphology of the recombinants are similar. Both apo A-I X DMPC and apo A-I X DMPG complexes form lipoprotein particles having a discoidal shape.  相似文献   

4.
Apolipoprotein A-IV was isolated from the d less than 1.21 g/ml fraction of rat serum by gel filtration followed by heparin-Sepharose affinity chromatography; this method also facilitated the preparation of apolipoprotein A-I and apolipoprotein E. The apolipoprotein A-IV preparation was characterized by SDS-gel electrophoresis, isoelectric focusing, amino acid analysis and immunodiffusion. The lipid-binding properties of this protein were studied. Apolipoprotein A-IV associated with dimyristoylphosphatidylcholine (DMPC) to form recombinants which contained two molecules of apolipoprotein A-IV and had a lipid/protein molar ratio of 110. The density of the DMPC/apolipoprotein A-IV particles was determined to be 1.08 g/ml and the particles were visualized by electron microscopy as discs which were 5.8 nm thick and 18.0 nm in diameter. The stability of the DMPC/apolipoprotein A-IV recombinants, as determined by resistance to denaturation, was comparable to the stability of DMPC/apolipoprotein A-I complexes. However, by competition studies it was found that apolipoprotein A-I competed for the binding to DMPC more effectively than did apolipoprotein A-IV. It is concluded that, while rat apolipoprotein A-IV resembles other apolipoproteins in its lipid-binding characteristics, it may be displaced from lipid complexes by apolipoprotein A-I.  相似文献   

5.
The effect of the inclusion of phosphatidylethanolamine (PE), a phospholipid with unusual packing properties, on the substrate properties of protein-lipid complexes toward lecithin-cholesterol acyltransferase (LCAT) has been studied. Recombinant particles of apolipoprotein A-I with dimyristoylphosphatidylcholine (DMPC), dilauroylphosphatidylethanolamine (DLPE) and cholesterol were prepared at a molar ratio of 1:140:14 (A-I/DMPC/cholesterol) or 1:70:70:14 (A-I/DMPC/DLPE/cholesterol); the efficiency of cholesterol incorporation into complexes containing phosphatidylethanolamine was found to be very pH-dependent, with enhanced cholesterol incorporation at elevated pH values. By incubating the complexes with either purified human LCAT or the d greater than 1.21 g/ml fraction of rat serum as a source of LCAT activity, it was found that a high degree of cholesterol esterification could be achieved with either complex; however, the DLPE-containing complex possessed a much smaller Stokes' diameter than the DMPC-only particle despite compositional similarities between these complexes. With respect to particle diameter the DLPE-containing particles behaved more like complexes prepared with egg yolk lecithin than did complexes prepared with DMPC alone. When human LDL was added to the incubations to provide a source of additional cholesterol, the products were markedly different. Concomitant with an increased cholesteryl ester core was an increase in the protein stoichiometry in both types of particles, from 2 to 3 or 4 apo A-I per particle. The proportion of DLPE to DMPC in the products was reduced from 1:1 to 0.3:1, reflecting a preferential hydrolysis of PE by LCAT, and the Stokes' diameters of the DMPC-only and the DLPE-containing complexes were closely similar. We conclude that the presence of elevated proportions of certain phospholipid species may significantly alter both the physical properties of the particles and their substrate properties with regard to reactions with enzymes of lipid metabolism.  相似文献   

6.
For a better definition of the role of human serum apolipoprotein A-I (apo A-I) in high density lipoprotein structure, a systematic investigation was carried out on factors influencing the in vitro association of this apoprotein with lipids obtained from the parent high density lipoprotein (HDL); these lipids include phospholipids, free cholesterol, cholesteryl esters, and triglycerides. Following equilibration, mixtures of apo A-I and lipids in varying stoichiometric amounts were fractionated by sequential flotation, CsCl density gradient ultracentrifugation, or gel-permeation chromatography, and the isolated complexes were characterized by physicochemical means. As defined by operational criteria (flotation at density 1,063 to 1.21 g/ml), only two types of HDL complexes were reassembled; one, reconstituted HDLS, small with a radius of 31 A, and the other, reconstituted HDLL, large with a radius of 39 A. The two types incorporated all of the lipid constituents of native HDL and contained 2 and 3 mol of apo A-I, respectively. A maximal yield of reconstituted HDL (R-HDL) was observed at an initial protein concentration of 0.1 muM, where apo A-I is predominantly monomeric. At increasing protein concentrations, the amount of apo A-I recovered in R-HDL was found to be proportional to the initial concentration of monomer and dimer in solution. The composition and yield of the complexes were independent of ionic strength and pH within the ranges studied. Both simple incubation and cosonication of apo A-I with HDL phospholipids produced complexes of identical composition, although the yeild of complexes was higher with co-sonication. When the comparison of the same methods was extended to mixtures of apo A-I and whole HDL lipids, the results confirmed previous observations that co-sonication is essential for the incorporation of the neutral lipid into the R-HDL complexes. The results indicate that (a) in vitro complexation of apo A-I with lipids is under kinetic control; (b) apo A-I can generate a lipid-protein complex with properties similar to those of the parent lipoprotein; (c) the process requires well defined experimental conditions and, most importantly, the presence in solution of monomers and dimers of apo A-I; (d) the number of apo A-I molecules incorporated into R-HDL determines the size and structure of the reassembled particle. All of these observations strongly support the essential role of apo A-I in the structure of human HDL.  相似文献   

7.
Discoidal complexes have been prepared from 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the apoproteins of HDL3 (apo HDL3) or purified apo A-I. Gel electrophoresis established that apo HDL3 contained 74% apo A-I. Deconvolution and curve-fitting of the infra-red amide I band of the apoprotein in the lipid-protein complex revealed a secondary structure containing approximately 40% alpha-helix and 50% beta-structure. This contrasted with the results from circular dichroism studies (Surewicz et al. (1986) J. Biol. Chem., 261, 16191) of apo A-I/DMPC complexes which predicted 68% alpha-helix and 7% beta-structure. The discrepancy between the two methods and limitations of the two techniques for lipoproteins is discussed.  相似文献   

8.
The products resulting from the association of human apo A-I with binary phospholipid mixtures of dimyristoyl phosphatidylcholine (DMPC) and either dipalmitoyl (DPPC) or distearoyl (DSPC) phosphatidylcholine have been isolated and characterized. Effective lipid . protein complex formation was found to occur at the onset temperature for melting of the gel state, and equal incorporation of both lipid components of the binary mixture was observed. Two sizes of products were obtained, one containing 2 A-I molecules per complex and the other containing 3; the proportions of these two products depended upon the initial phospholipid/protein ratio employed. these two product species were found to be resolvable by density gradient centrifugation as well as gel filtration, reflecting substantial differences in composition as well as size. The ratio of DMPC to DPPC or DSPC was the same in the isolated complexes as in the initial mixture, suggesting that th protein does not associate preferentially with the fluid phase lipid, but with lipid domains in which the components are randomly distributed. Electron microscopy of recombinant particles containing a 2:1 ratio (w/w) of DSPC to DMPC revealed stacks of discs whose thickness was proportionately greater than for discs containing DMPC alone. Also of significance was the finding that recombinant discs containing 3 A-I molecules possessed a diameter approximately 1.5 times larger than recombinant discs containing 2 A-I molecules. These data are consistent with the model for the recombinant particles described by Tall et al. (Tall, A.R., Small, D.M., Deckelbau, R.J., and Shipley, G.G. (1977) J. Biol. Chem. 252; 4701-4711), in which the phospholipid is found as a circular bilayer, the thickness of which is dependent upon the length of the acyl chain, and around which the protein is distributed as an annulus.  相似文献   

9.
To determine the apolipoprotein specificity of high density lipoprotein (HDL) receptor, apolipoprotein A-I (apo-AI) and apolipoprotein A-II (apo-AII) purified from high density lipoprotein3 (HDL3) were reconstituted into dimyristoyl phosphatidylcholine vesicles (DMPC) and their ability to bind to luteinized rat ovarian membranes was examined. Both 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC were shown to bind to ovarian membranes with Kd = 2.87 and 5.70 micrograms of protein/ml, respectively. The binding of both 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC was inhibited by unlabeled HDL3, apo-A-I.DMPC, apo-A-II.DMPC, apo-C-I.DMPC, apo-C-II.DMPC, apo-C-III1.DMPC, and apo-C-III2.DMPC, but not by DMPC vesicles, bovine serum albumin.DMPC or low density lipoprotein. Since the binding labeled apo-A-I.DMPC and apo-A-II.DMPC was inhibited by the DMPC complexes of apo-C groups, the direct binding of 125I-apo-C-III1.DMPC was also demonstrated with Kd = 9.6 micrograms of protein/ml. In addition, unlabeled apo-A-I.DMPC, and apo-A-II.DMPC, as well as apo-C.DMPC, inhibited 125I-HDL3 binding. 125I-apo-A-I, 125I-apo-A-II, and 125I-apo-C-III1 in the absence of DMPC also bind to the membranes. These results suggest that HDL receptor recognizes apolipoprotein AI, AII, and the C group and that the binding specificity of the reconstituted lipoproteins is conferred by their apolipoprotein moiety rather than the lipid environment. In vivo pretreatment of rats with human chorionic gonadotropin resulted in an increase of 125I-apo-A-I.DMPC, 125I-apo-A-II.DMPC, and 125I-apo-C-III1.DMPC binding activities. However, no induction of binding activity was observed when the apolipoprotein was not included in DMPC vesicles. An examination of the equilibrium dissociation constant and binding capacity for 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC after human chorionic gonadotropin treatment revealed that the increase in binding activity was due to an increase in the number of binding sites rather than a change in the binding affinity. These results further support our contention that apo-A-I, apo-A-II, and the apo-C group bind to HDL receptor. In conclusion, the HDL receptor of luteinized rat ovary recognizes apolipoproteins A-I, A-II, and the C group but not low density lipoprotein, and the binding is induced by human chorionic gonadotropin in vivo.  相似文献   

10.
Isolated complexes of apolipoprotein A-I (apoA-I), the major apoprotein of human plasma high-density lipoproteins, and dimyristoylphosphatidylcholine (DMPC) have been prepared and studied by differential scanning calorimetry (DSC) and Raman spectroscopy. DSC studies establish that complexes having lipid to protein ratios of 200, 100, and 50 to 1 each exhibit a broad reversible thermal transition at Tc = 27 degrees C. The enthalpy of lipid melting for each of the three complexes is about 3 kcal/mol of DMPC. Raman spectroscopy indicates that the physical state of lipid molecules in the complexes is different from that in DMPC multilamellar liposomes. Analysis of the C-H stretching region (2800-3000 cm-1) of the complexes and of the pure components in water suggests that below 24 degrees C (Tc for DMPC) there is considerably less lateral order among lipid acyl chains in the complexes than in DMPC liposomes. Above 24 degrees C, these types of interactions appear to contribute equally or slightly less to the complex structure than in pure DMPC. The temperature dependence of peaks in the C-C stretching region (1000-1180 cm-1) reveals a continuous increase in the number of lipid acyl chain C-C gauche isomers over a broad range with increasing temperature. Compared to liposomes, DMPC in the complexes has more acyl chain trans isomers at temperatures above 24 degrees C; at temperatures above ca. 30 degrees C, trans isomer content is about the same for complexes and liposomes. A large change was observed in a protein vibrational band at 1340 cm-1 for pure vs. complexed apoA-I, indicating that protein hydrocarbon side chains are immobilized by lipid binding. The Raman data indicate that the reduction in melting enthalpy for complexes DMPC (approximately 3 kcal/mol) compared to that for free DMPC (approximately 6 kcal/mol) is due to reduced van der Waals interactions in the low-temperature lipid phase.  相似文献   

11.
Two monoclonal antibodies, A17 and A30, were raised against human apolipoprotein A-I (apo A-I). They were studied by competitive inhibition of 125I-labeled HDL3 with HDL subfractions, delipidated apo A-I, and complexes of dimyristoylphosphatidylcholine (DMPC) containing apo A-I and apo A-II. Immunoblotting located the A17 antibody on CNBr fragment 4 of apo A-I and the A30 antibody on CNBr fragment 1. The A17 antigenic determinant was expressed identically in all HDL subclasses, on delipidated apo A-I as well as all on the DMPC-apo A-I and DMPC-apo A-I/apo A-II complexes. In contrast, the apparent affinity constant of the A30 antibody for delipidated apo A-I was about 30-times less than for HDL3 or for apo A-I/apo A-II-phospholipid complexes. These data suggest that the association of apo A-I with phospholipids improves the reactivity of the A30 monoclonal antibody towards apo A-I, and that this antigenic determinant has a different conformation in delipidated apo A-I compared to apo A-I complexed with phospholipids. Turbidimetric and fluorescence experiments monitoring the phospholipid-apo A-I association in the presence and in the absence of the A17 and A30 antibodies were consistent with the competition experiments carried out by solid phase radioimmunoassay (RIA). After reaction of apo A-I with the A30 antibody, we observed an enhancement of the degradation kinetics of large multilamellar vesicles (LMV), while the A17 antibody did not have a significant effect. Calcein leakage experiments carried out below the transition temperature of DPPC showed an enhancement of the degradation kinetics with both monoclonal antibodies, while the phase-transition release was independent of the reaction of apo A-I with the monoclonal antibodies. These data therefore suggest the existence of at least two different types of epitope on apo A-I, which might account for the differences in immunological reactivity of apo A-I that is either delipidated or present on HDL.  相似文献   

12.
Gudheti MV  Lee SP  Danino D  Wrenn SP 《Biochemistry》2005,44(19):7294-7304
We report the combined effects of phospholipase C (PLC), a pronucleating factor, and apolipoprotein A-I (apo A-I), an antinucleating factor, in solutions of model bile. Results indicate that apo A-I inhibits cholesterol nucleation from unilamellar lecithin vesicles by two mechanisms. Initially, inhibition is achieved by apo A-I shielding of hydrophobic diacylglycerol (DAG) moieties so as to prevent vesicle aggregation. Protection via shielding is temporary. It is lost when the DAG/apo A-I molar ratio exceeds a critical value. Subsequently, apo A-I forms small ( approximately 5-15 nm) complexes with lecithin and cholesterol that coexist with lipid-stabilized (400-800 nm) DAG oil droplets. This microstructural transition from vesicles to complexes avoids nucleation of cholesterol crystals and is a newly discovered mechanism by which apo A-I serves as an antinucleating agent in bile. The critical value at which a microstructural transition occurs depends on binding of apo A-I and so varies with the cholesterol mole fraction of vesicles. Aggregation of small, unilamellar, egg lecithin vesicles (SUVs) with varying cholesterol composition (0-60 mol %) was monitored for a range of apo A-I concentrations (2 to 89 microg/mL). Suppression of aggregation persists so long as the DAG-to-bound-apo A-I molar ratio is less than 100. A fluorescence assay involving dansylated lecithin shows that the suppression is an indirect effect of apo A-I rather than a direct inhibition of PLC enzyme activity. The DAG-to-total apo A-I molar ratio at which suppression is lost increases with cholesterol because of differences in apo A-I binding. Above this value, a microstructural transition to DAG droplets and lecithin/cholesterol A-I complexes occurs, as evidenced by sudden increases in turbidity and size and enhancement of Forster resonance energy transfer; structures are confirmed by cryo TEM.  相似文献   

13.
We studied the effect of bacterial lipopolysaccharide (LPS)-apolipoprotein A-I (apo A-I) interaction on the structure and function of this protein. The micellization process of dimirystoil phosphatidylcholine liposomes (MLV-DMPC) by apo A-I in the presence of LPS was characterized. Apo A-I may interact with MLV-DMPC at the lipid transition temperature, forming micellar complexes. The kinetics of MLV-DMPC micellization was studied by turbidimetry. In the absence of LPS, a monoexponential decrease in turbidity is observed. Preincubation of apo A-I with LPS impairs the micellization reaction, resulting in biphasic kinetics. The amplitude of the fast phase decreases with increasing concentrations of LPS. In the absence or in the presence of low amounts of LPS (1∶0.1 protein:LPS weight ratio), two major micellization products-containing two and three apo A-I molecules per particle-were observed. However, in the presence of higher amounts of LPS (1∶1 protein:LPS weight ratio), particles mainly contained two apo A-I molecules. In contrast, a decrease in intrinsic fluorescence intensity of the protein was observed in the presence of an increasing LPS concentration. Finally, we studied the effect of LPS on the transition temperature (Tt) of MLV-DMPC without detecting changes in Tt. In conclusion, the changes found in the micellization process are likely to be mainly caused by changes in the apo A-I conformation by LPS interaction in solution.  相似文献   

14.
Benjwal S  Jayaraman S  Gursky O 《Biochemistry》2005,44(30):10218-10226
High-density lipoproteins (HDL) remove cholesterol from peripheral tissues and thereby help to prevent atherosclerosis. Nascent HDL are discoidal complexes composed of a phospholipid bilayer surrounded by protein alpha-helices that are thought to form extensive stabilizing interhelical salt bridges. Earlier we showed that HDL stability, which is necessary for HDL functions, is modulated by kinetic barriers. Here we test the role of electrostatic interactions in the kinetic stability by analyzing the effects of salt, pH, and point mutations on model discoidal HDL reconstituted from human apolipoprotein C-1 (apoC-1) and dimyristoyl phosphatidylcholine (DMPC). Circular dichroism, Trp fluorescence, and light scattering data show that molar concentrations of NaCl or Na(2)SO(4) increase the apparent melting temperature of apoC-1:DMPC complexes by up to 20 degrees C and decelerate protein unfolding. Arrhenius analysis shows that 1 M NaCl stabilizes the disks by deltaDeltaG* approximately equal 3.5 kcal/mol at 37 degrees C and increases the activation energy of their denaturation and fusion by deltaE(a) approximately equal deltaDeltaH* approximately equal 13 kcal/mol, indicating that the salt-induced stabilization is enthalpy-driven. Denaturation studies in various solvent conditions (pH 5.7-8.2, 0-40% sucrose, 0-2 M trimethylamine N-oxide) suggest that the salt-induced disk stabilization results from ionic screening of unfavorable short-range Coulombic interactions. Thus, the dominant electrostatic interactions in apoC-1:DMPC disks are destabilizing. Comparison of the salt effects on the protein:lipid complexes of various composition reveals an inverse correlation between the lipoprotein stability and the salt-induced stabilization and suggests that short-range electrostatic interactions significantly contribute to lipoprotein stability: the better-optimized these interactions are, the more stable the complex is.  相似文献   

15.
In the present study apolipoprotein-mediated free cholesterol (FC) efflux was studied in J774 macrophages having normal cholesterol levels using an experimental design in which efflux occurs in the absence of contributions from cholesteryl ester hydrolysis. The results show that cAMP induces both saturable apolipoprotein (apo) A-I-mediated FC efflux and saturable apo A-I cell-surface binding, suggesting a link between these processes. However, the EC50 for efflux was 5-7-fold lower than the Kd for binding in both control and cAMP-stimulated cells. This dissociation between apo A-I binding and FC efflux was also seen in cells treated for 1 h with probucol which completely blocked FC efflux without affecting apo A-I specific binding. Thus, cAMP-stimulated FC efflux involves probucol-sensitive processes distinct from apo A-I binding to its putative cell surface receptor. FC efflux was also dramatically stimulated in elicited mouse peritoneal macrophages, suggesting that cAMP-regulated apolipoprotein-mediated FC efflux may be important in cholesterol homeostasis in normal macrophages. The presence of a cAMP-inducible cell protein that interacts with lipid-free apo A-I was investigated by chemical cross-linking of 125I-apo A-I with J774 cell surface proteins which revealed a Mr 200 kDa component when the cells were treated with cAMP.  相似文献   

16.
Apolipoprotein A-I is a major secretory product of the human hepatoma cell line, Hep G2; approx. 70% of apolipoprotein A-I was separated from the medium as lipid-poor apolipoprotein A-I in the d greater than 1.21 g/ml fraction while 30% was associated with high-density lipoproteins (HDL) of d 1.063-1.21 g/ml. The lipid-poor apolipoprotein A-I contains 50% proapolipoprotein A-I which is similar to the isoform distribution in Hep G2 preformed HDL. We tested the ability of lipid-poor apolipoprotein A-I from Hep G2 to form complexes with dimyristoylphosphatidylcholine (DMPC) vesicles at DMPC/apolipoprotein A-I molar ratios of 100:1 and 300:1. Lipid-poor apolipoprotein A-I was recovered in complex form while at a 300:1 ratio, 68.8 +/- 6.3% was recovered. On electron microscopy, the former complexes were small discs 16.9 nm +/- 4.5 S.D. in diameter while the latter were larger discs 21.4 +/- 4.4 nm diameter. Non-denaturing gradient gel electrophoresis of complexes formed at a 100:1 ratio had a peak in the region corresponding to 9.64 +/- 0.08 nm; these particles possessed two apolipoprotein A-I molecules. At the higher ratio, 300:1, two distinct complexes were identifiable, one which banded in the 9.7 nm region and the other in the 16.9-18.7 nm region. The former particles contained two molecules of apolipoprotein A-I and the latter, three molecules. This study demonstrates that lipid-poor apolipoprotein A-I which is rich in more basic isoforms forms discrete lipoprotein complexes similar to those formed by mature apolipoprotein A-I. It is further suggested that, under the appropriate conditions, precursor or nascent HDL may be assembled extracellularly.  相似文献   

17.
Y S Bae  H Kim 《Journal of biochemistry》1989,106(6):1019-1025
The interactions of human apolipoprotein A-I (apo A-I) with dipalmitoylphosphatidylcholine (DPPC) in vesicular complexes at low protein concentrations and in micellar complexes at high protein concentrations are compared. The C-terminal segment of this protein, with a relative molecular weight (Mr) of about 11,000, is protected on trypsin treatment of apo A-I-vesicle complexes. A segment within the sequence from Leu-189 to Arg-215 of apo A-I penetrates the hydrophobic interior of the membrane, as found in a hydrophobic labeling experiment involving 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)-diazirine ([125I]TID). No appreciable stretch of apo A-I in micellar complexes was found to be protected from the tryptic digestion. This indicates that the interactions of apo A-I with lipids in the vesicular and micellar complexes are different. The binding equilibrium of apo A-I as to DPPC vesicles at low protein concentrations, as studied by hydrophobic labeling of the bilayer-penetrating segment, is reached within about 1 h, while the formation of micellar complexes at high protein concentrations takes about 24 h at 42 degrees C. Time-dependent labeling studies involving photoreactive phosphatidylcholine (PC) with high apo A-I concentrations suggested an initial interaction with the head group region of the bilayer followed by interaction with the tail ends of the acyl chains of the lipid. A possible mechanism for the micellization process is discussed.  相似文献   

18.
The preparation of discoidal, recombinant HDL (r-HDL) containing various phospholipids, apolipoproteins and a range of concentrations of unesterified cholesterol has been reported by several investigators. The present study describes the preparation of r-HDL containing both apolipoprotein (apo) A-I and apo A-II. r-HDL with 100:1 (mol:mol) egg PC.apo A-I and 0 (Series I), 5 (Series II) or 10 (Series III) mol% unesterified cholesterol were prepared by the cholate dialysis method. The resulting complexes had a Stokes' radius of 4.7 nm and contained two molecules of apo A-I per particle. When the r-HDL (2.0 mg apo A-I) were supplemented with 1.0 mg of apo A-II, one of the apo A-I molecules was replaced by two molecules of apo A-II. This modification was not accompanied by a loss of phospholipid, nor by major change in particle size. The addition of 2.5 or 4.0 mg of apo A-II resulted in the displacement of both apo A-I molecules from a proportion of the r-HDL and the formation of smaller particles (Stokes' radius 3.9 nm), which contained half the original number of egg PC molecules and three molecules of apo A-II. The amount of apo A-I displaced was dependent on the concentration of unesterified cholesterol in the r-HDL: when 2.5 mg of apo A-II was added to the Series I, II and III r-HDL, 44, 60 and 70%, respectively, of the apo A-I was displaced. Addition of 4.0 mg of apo A-II did not promote further displacement of apo A-I from any of the r-HDL. By contrast, the association of apo A-II with r-HDL was independent of the concentration of unesterified cholesterol and was a linear function of the amount of apo A-II which had been added. It is concluded that (1), the structural integrity of egg PC.unesterified cholesterol.apo A-I r-HDL, which contain two molecules of apo A-I, is not affected when one of the apo A-I molecules is replaced by two molecules of apo A-II; (2), when both apo A-I molecules are replaced by apo A-II, small particles which contain three molecules of apo A-II are formed; and (3), the displacement of apo A-I from r-HDL is facilitated by the presence of unesterified cholesterol in the particles.  相似文献   

19.
alpha-Lactalbumin (alpha-LA) associates with dimyristoylphosphatidylcholine (DMPC) or egg lecithin (EPC) liposomes. Thermal denaturation of isolated DMPC or EPC alpha-LA complexes was dependent on the metal bound state of the protein. The intrinsic fluorescence of thermally denatured DMPC-alpha-LA was sensitive to two thermal transitions: the Tc of the lipid vesicles, and the denaturation of the protein. Quenching experiments suggested that tryptophan accessibility increased upon protein-DMPC association, in contrast with earlier suggestions that the limited emission red shift upon association with the liposome was due to partial insertion of tryptophan into the apolar phase of the bilayer (Hanssens I et al., 1985, Biochim Biophys Acta 817:154-166). On the other hand, above the protein transition (70 degrees C), the spectral blue shifts and reduced accessibility to quencher suggested that tryptophan interacts significantly with the apolar phase of either DMPC and EPC. At pH 2, where the protein inserts into the bilayer rapidly, the isolated DMPC-alpha-LA complex showed a distinct fluorescence thermal transition between 40 and 60 degrees C, consistent with a partially inserted form that possesses some degree of tertiary structure and unfolds cooperatively. This result is significant in light of earlier findings of increased helicity for the acid form, i.e., molten globule state of the protein (Hanssens I et al., 1985, Biochim Biophys Acta 817:154-166). These results suggest a model where a limited expansion of conformation occurs upon association with the membrane at neutral pH and physiological temperatures, with a concomitant increase in the exposure of tryptophan to external quenchers; i.e., the current data do not support a model where an apolar, tryptophan-containing surface is covered by the lipid phase of the bilayer.  相似文献   

20.
Recombinant lipoproteins, prepared with apo A-I isolated from human high density lipoprotein (HDL) and various phospholipids (PLs), were compared with respect to their ability to remove cholesterol (Chol) from labelled erythrocyte ghost membranes. It was found that uptake of Chol was essentially complete following an 8 h incubation at 37 degrees C. Quantitation of the amount of cholesterol taken up showed that recombinants prepared from bovine brain sphingomyelin (BBSM) or dipalmitoyl phosphatidylcholine (DPPC) acquired the highest proportion of Chol (80-140 mol/mol protein), whereas shorter chain phospholipids like dimyristoyl phosphatidylcholine (DMPC) acquired little or no membrane Chol. Chemical analysis of the incubation products indicated that this latter result was due to loss of PL, presumably to the membrane, with consequent disruption of the recombinant particle. Results with DPPC:A-I recombinants of differing PL/protein ratios and sizes showed that Chol uptake was fairly constant at 0.70 mol Chol/mol PL. It is concluded that discoidal, phospholipid-rich recombinant lipoproteins can effectively take up substantial amounts of Chol from physiological membranes, provided that the PLs utilized form micellar complexes which are capable of retaining their structural integrity during the incubation with the membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号