首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
表观遗传调控,如组蛋白乙酰化修饰,是决定干细胞分化方向的重要机制。组蛋白去乙酰化酶抑制剂(HDACi)通过影响不同亚类的组蛋白去乙酰化酶(HDAC)活性,提高组蛋白乙酰化水平,调控基因表达,从而影响胚胎干细胞自我更新,以及沿神经元、心肌和造血等细胞谱系的定向分化。HDACi类小分子化合物在体细胞重编程中也有广泛的应用,可替代致癌因子c-Myc和Klf4,促进体细胞克隆。研究显示,HDACi的效应与药物剂量、细胞类型和细胞分化状态密切相关。本文主要阐述了HDACi在干细胞分化和体细胞重编程中的应用进展,并对所涉及的分子通路进行讨论,有助于揭示干细胞定向分化的关键分子机制,优化干细胞定向分化诱导策略,对干细胞诱导分化具有重要的理论和实用价值。  相似文献   

2.
In virtually all animals, males and females are morphologically, physiologically and behaviorally distinct. Using cDNA microarrays representing one-third of Drosophila genes to identify genes expressed sex-differentially in somatic tissues, we performed an expression analysis on adult males and females that: (1) were wild type; (2) lacked a germline; or (3) were mutant for sex-determination regulatory genes. Statistical analysis identified 63 genes sex-differentially expressed in the soma, 20 of which have been confirmed by RNA blots thus far. In situ hybridization experiments with 11 of these genes showed they were sex-differentially expressed only in internal genital organs. The nature of the products these genes encode provides insight into the molecular physiology of these reproductive tissues. Analysis of the regulation of these genes revealed that their adult expression patterns are specified by the sex hierarchy during development, and that doublesex probably functions in diverse ways to set their activities.  相似文献   

3.
4.
Cell differentiation in multicellular organisms has the obvious function during development of creating new cell types. However, in long-lived organisms with extensive cell turnover, cell differentiation often continues after new cell types are no longer needed or produced. Here, we address the question of why this is true. It is believed that multicellular organisms could not have arisen or been evolutionarily stable without possessing mechanisms to suppress somatic selection among cells within organisms, which would otherwise disrupt organismal integrity. Here, we propose that one such mechanism is a specific pattern of ongoing cell differentiation commonly found in metazoans with cell turnover, which we call “serial differentiation.” This pattern involves a sequence of differentiation stages, starting with self-renewing somatic stem cells and proceeding through several (non–self-renewing) transient amplifying cell stages before ending with terminally differentiated cells. To test the hypothesis that serial differentiation can suppress somatic evolution, we used an agent-based computer simulation of cell population dynamics and evolution within tissues. The results indicate that, relative to other, simpler patterns, tissues organized into serial differentiation experience lower rates of detrimental cell-level evolution. Self-renewing cell populations are susceptible to somatic evolution, while those that are not self-renewing are not. We find that a mutation disrupting differentiation can create a new self-renewing cell population that is vulnerable to somatic evolution. These results are relevant not only to understanding the evolutionary origins of multicellularity, but also the causes of pathologies such as cancer and senescence in extant metazoans, including humans.  相似文献   

5.
The somatic regenerator (reg) mutants of Volvox carteri affect the ability of the normally terminally differentiated somatic cells to establish and/or maintain the differentiated state. Thirty-nine reg mutants of four phenotypic classes have been mapped to two, unlinked genes, regA and regB. Mutants at the regA locus have one of three phenotypes: All somatic cells regenerate new spheroids, somatic cells in the spheroid posterior region regenerate while those in the anterior region differentiate as somatic cells, or regenerating and nonregenerating cells are randomly intermixed. The regB mutant has a random intermixture of regenerating and nonregenerating cells. Somatic cells regenerate new Volvox spheroids in two ways; the cells lose their characteristic shape, become immotile, enlarge and undergo cleavage similar to that of normal reproductive cells or undergo cell division without prior enlargement or loss of cell shape. Temperature shift experiments on a cold-sensitive reg mutant suggest that the gene product acts after the somatic cell initials are formed at the end of cleavage.  相似文献   

6.
We study the equilibrium properties of idiotypically interacting B cell clones in the case where only the differentiation of B cells is affected by idiotypic interactions. Furthermore, we assume that clones may recognize and be stimulated by self antigen in the same fashion as by antiantibodies. For idiotypically interacting pairs of non-autoreactive clones we observe three qualitatively different dynamical regimes. In the first regime, at small antibody production an antibody-free fixed point, the virgin state, is the only attractor of the system. For intermediate antibody production, a symmetric activated state replaces the virgin state as the only attractor of the system. For large antibody production, finally, the symmetric activated state gives way to two asymmetric activated states where one clone suppresses the other clone. If one or both clones in the pair are autoreactive there is no virgin state. However, we still observe the switch from an almost symmetric activated state to two asymmetric activated states. The two asymmetric activated states at high antibody production have profoundly different implications for a self antigen which is recognized by one of the clones of the pair. In the attractor characterized by high autoantibody concentration the self antigen is attacked vigorously by the immune system while in the opposite steady state the tiny amount of autoantibody hardly affects the self antigen. Accordingly, we call the first state the autoimmune state and the second the tolerant state. In the tolerant state the autoreactive clone is down-regulated by its anti-idiotype providing an efficient mechanism to prevent an autoimmune reaction. However, the antibody production required to achieve this anti-idiotypic control of autoantibodies is rather large.  相似文献   

7.
Germ cells and somatic cells have the identical genome. However, unlike the mortal fate of somatic cells, germ cells have the unique ability to differentiate into gametes that retain totipotency and produce an entire organism upon fertilization. The processes by which germ cells differentiate into gametes, and those by which gametes become embryos, involve dramatic cellular differentiation accompanied by drastic changes in gene expression, which are tightly regulated by genetic circuitries as well as epigenetic mechanisms. Epigenetic regulation refers to heritable changes in gene expression that are not due to changes in primary DNA sequence. The past decade has witnessed an ever-increasing understanding of epigenetic regulation in many different cell types/tissues during embryonic development and adult homeostasis. In this review, we focus on recent discoveries of epigenetic regulation of germ cell differentiation in various metazoan model organisms, including worms, flies, and mammals.  相似文献   

8.
Summary Milk secretion and mammary function in dairy animals are regulated by local mechanisms sensitive to the frequency or efficiency of milking. Acute local control of milk secretion occurs through autocrine feedback inhibition by a milk protein. Sustained changes in milking frequency and milk secretion are associated with longer-term adaptations in the degree of differentiation and, ultimately, the number of mammary epithelial cells. Differentiation of cultured mammary cells is suppressed by a milk fraction containing the inhibitor, suggesting that intra-mammary regulation of differentiation in vivo is elicited by the same autocrine regulator subsequent to its acute effect on milk secretion. The autocrine factor may affect mammary cell differentiation by modulating the number of cell surface hormone receptors for prolactin, thereby changing their sensitivity to circulating hormones.Dedicated to Professor Stuart Patton on the occasion of his 70th birthday.  相似文献   

9.
We propose the hypothesis that extracellular regulation of cell division and differentiation acts through just two communications channels. These channels consist of a series of redundant components: extracellular messenger hormones; these hormones' receptors; cytoplasmic proteins activated by the hormone-receptor complex; and trans-activating nuclear regulatory proteins. One channel, here labeled "D" ("differentiate"), includes transforming growth factor-beta as one of its hormones; the other, labeled "G" ("growth") includes epidermal growth factor. We postulate that signal reception occurs as a result of competition between different actuating proteins for equilibrium-controlled binding to critical DNA sites. Stem cells commit to mitosis when some high proportion of critical sites is occupied by actuating proteins of the G class, and to terminal differentiation when a high proportion is occupied by "D" actuators. Intermediate occupancy can either lead to division into one differentiated and one stem cell, or to maintenance of cells in the reference state, quiescence. Equilibrium control of binding implies that critical site occupancy will be proportional to the relative concentrations of "D" and "G" actuating proteins in the nuclear fluid. These concentrations depend on the external hormone concentrations, the numbers of receptors on the cell membrane, and the coefficients of the rate-determining steps between internalization of the hormone-receptor complexes and activation of the actuating proteins. All of these quantities can be affected by various factors, including endocrine hormones. This model is consistent with most reported behavior of various growth factors, interferons, etc, toward a variety of cells in culture. It predicts that under otherwise constant conditions, high relative concentrations of a D-hormone (e.g. transforming growth factor-beta) will induce commitment to terminal differentiation, while high relative concentrations of a "G" hormone (e.g. epidermal growth factor) will induce mitosis. We have seen no report of an experiment which adequately tests this prediction. The model implies that cancer causing mutations are those which increase the relative intensity of the "G" signal; this can occur via changes in components of either channel. Such mutant cells should be both more likely to divide and less likely to differentiate than normal stem cells. Conversely, mutations which increase relative sensitivity to the "D" signal during embryonal development can lead to premature differentiation, cessation of growth, and structural abnormalities (terata).  相似文献   

10.
Hormonal regulation of Sertoli cell differentiation.   总被引:2,自引:0,他引:2  
  相似文献   

11.
12.
心血管疾病是威胁人类健康的重大疾病,而心肌细胞数量逐渐减少,甚至衰竭是其核心病变。心肌细胞补偿性替代治疗是未来用于治疗这类疾病的重要手段,因此,心肌细胞的来源和有效治疗将成为关键。目前,心肌细胞构建的主要方法有多能干细胞诱导分化成心肌祖细胞或心肌细胞、心源性心肌祖细胞,以及体细胞重编程等。其中,多能干细胞向心肌细胞分化是最常用的方法;而体细胞转分化技术相较于传统的诱导多潜能干细胞衍生心肌细胞缩短了时间窗,为潜在的心血管疾病治疗提供了另一种思路。随着获取心肌细胞效率及其质量的提升,未来心血管疾病的治疗将有望获得重大突破。  相似文献   

13.
14.
Cell volume regulation in immune cell apoptosis   总被引:5,自引:0,他引:5  
The loss of cell volume is an early and fundamental feature of programmed cell death or apoptosis; however, the mechanisms responsible for cell shrinkage during apoptosis are poorly understood. The loss of cell volume is not a passive component of the apoptotic process, and a number of experimental findings from different laboratories highlight the importance of this process as an early and necessary regulatory event in the signaling of the death cascade. Additionally, the loss of intracellular ions, particularly potassium, has been shown to play a primary role in cell shrinkage, caspase activation, and nuclease activity during apoptosis. Thus, an understanding of the role that ion channels and plasma membrane transporters play in cellular signaling during apoptosis may have important physiological implications for immune cells, especially lymphocyte function. Furthermore, this knowledge may also have an impact on the design of therapeutic strategies for a variety of diseases of the immune system in which apoptosis plays a central role, such as oncogenic processes or immune system disorders. The present review summarizes our appreciation of the mechanisms underlying the early loss of cell volume during apoptosis and their association with downstream events in lymphocyte apoptosis.  相似文献   

15.
Somatic cell hybrids between multipotent mouse teratoma cells and mouse fibroblasts were established and isolated. The hybrid cells possess one chromosome set of each parental type and express major histocompatibility antigens of both strains of mice from which the parental cells were derived. Upon inoculation into F1 mice, hybrid cells produced tumors which were typical fibrosarcomas as were the tumors produced by the fibroblastic parental cell line. None of the well differentiated tissue types characteristic of the teratoma parent cell tumors were expressed in the hybrid tumors. The hybrid tumors possessed the majority of the chromosomes of the two parental cells; however, the modal numbers were slightly reduced in comparison with those of the cell populations inoculated. The possible role of ‘genic balance’ in phenotypic expression of cell hybrids is discussed.  相似文献   

16.
The topographical regulation of embryonic stem cell differentiation   总被引:2,自引:0,他引:2  
The potential use of pluripotent stem cells for tissue repair or replacement is now well recognized. While the ability of embryonic stem (ES) cells to differentiate into all cells of the body is undisputed, their use is currently restricted by our limited knowledge of the mechanisms controlling their differentiation. This review discusses recent work by ourselves and others investigating the intercellular signalling events that occur within aggregates of mouse ES cells. The work illustrates that the processes of ES cell differentiation, epithelialization and programmed cell death are dependent upon their location within the aggregates and coordinated by the extracellular matrix. Establishment of the mechanisms involved in these events is not only of use for the manipulation of ES cells themselves, but it also throws light on the ways in which differentiation is coordinated during embryogenesis.  相似文献   

17.
Stromal cell regulation of lymphoid and myeloid differentiation   总被引:3,自引:0,他引:3  
In vitro microenvironmental influences seem to be critical for both B lymphocyte and myeloid differentiation. Studies on murine Dexter cultures and Whitlock-Witte lymphocyte cultures suggest the presence of two critical stromal regulatory cells: an alkaline-phosphatase-positive epithelioid cell and a macrophage. Further data suggest that these cells are capable of producing colony stimulating factor-1, granulocyte-macrophage CSF, a myeloid synergizing activity, and probably separate B cell growth factors. Isolation of a cell line from Dexter stroma was accomplished and this line produced CSF-1, GM-CSF, a pre-B cell and myeloid synergizing activity, and an activity acting on differentiated B cells. We speculate that the Dexter and Whitlock-Witte in vitro culture systems are regulated by factors produced by the two adherent cell types. A lineage nonspecific factor capable of inducing cells into the B lineage or synergizing with interleukin-3, GM-CSF, and CSF-1 is produced, which presumably acts on early stem cells. In addition, the cell line produces GM-CSF, CSF-1, and a factor acting on differentiated B cells. We speculate that in these culture systems, these "terminal differentiating hormones" regulate the final pathway of differentiation, whereas the pre-B-synergizing activity supports early stem cells that can then respond to the other differentiating hormones.  相似文献   

18.
Normal rat liver cells (BRL-1) that respond to isoproterenol (beta+2), prostaglandin E1 (PGE+1) and adenosine (Ado+) with a rise in adenosine 3':5'-monophosphate (cAMP) content have been hybridized with rat hepatoma cells (H35) which do not respond to any of these agonists (beta-2, PGE-1 and Ado-). Both the initial hybrid line (BF5) and a subclone (BF5-1-1) expressed a beta+2, PGE+1, Ado- phenotype. However, full expression of the responsive phenotype in the BF5 line was apparent only if phosphodiesterase activity was blocked, for example, by methylisobutylxanthine (MIX). Direct measurements showed the rate of degradation of cAMP to be 7 times greater in intact BF5 cells than in the BRL-1 parent. In contrast to BF5 cells, the BF5-1-1 cells did not express maximal responsiveness to any of the agonists even in the presence of MIX. The differential accumulation of intracellular cAMP observed with BRL-1, BF5 and BF5-1-1 cells in response to isoproterenol was shown not to be as a result of differential rates of excretion of cAMP. Furthermore, no differences in the apparent affinities of the beta 2-catecholamine receptors for isoproterenol were observed. It is suggested that the increased degradative capacity of BF5 cells accounts for the difference in cAMP accumulation in these cells compared with the BRL-1 parent. The reduced responsiveness of BF5-1-1 cells, however, does not appear to be solely due to increased phosphodiesterase activity. It appears that the beta 2- phenotype may not always be dominant in hybrid crosses of this type as has been reported previously.  相似文献   

19.
20.
The orphan nuclear receptor COUP-TFI (Nr2f1) regulates many aspects of mammalian development, but little is known about its role in cochlear hair cell and Deiter's support cell development. The COUP-TFI knockout (COUP-TFI(-/-)) has a significant increase in hair cell (HC) number in the mid-to-apical turns. The total number of hair cells is not increased over wild type, perhaps because of displaced hair cells and a shortened cochlear duct. This implicates a defect of convergent-extension in the COUP-TFI(-/-) duct. In addition, excess proliferation in the COUP-TFI(-/-) sensory epithelium indicates that the origin of the extra HCs in the apex is complex. Because loss-of-function studies of Notch signaling components have similar phenotypes, we investigated Notch regulation of hair cell differentiation in COUP-TFI(-/-) mice and confirmed misregulation of Notch signaling components, including Jag1, Hes5 and in a manner consistent with reduced Notch signaling, and correlated with increases in hair cell and support cell differentiation. The disruption of Notch signaling by a gamma-secretase inhibitor in an in vitro organ culture system of wild-type cochleae resulted in a reduction in expression of the Notch target gene Hes5 and an increase in hair cell differentiation. Importantly, inhibition of Notch activity resulted in a greater increase in hair cell differentiation in COUP-TFI(-/-) cochlear cultures than in wild-type cultures, suggesting a hypersensitivity to Notch inactivation in COUP-TFI(-/-) cochlea, particularly at the apical turn. Thus, we present evidence that reduced Notch signaling contributes to increases in hair cell and support cell differentiation in COUP-TFI(-/-) mice, and suggest that COUP-TFI is required for Notch regulation of hair cell and support cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号