首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Elastin and collagen are the principal scleroproteins of the aortic wall, and they largely determine its physical and mechanical properties. During perinatal development of the aorta, elastin and collagen accumulate rapidly, being present as inverse gradients by the time of birth. Elastin is most prevalent in the thoracic aorta, decreasing distally, while collagen shows the opposite trend. The present studies have determined the relative and absolute rates of collagen and elastin synthesis in the porcine aorta between 60 days of fetal development (mid-gestation) and 110 days after birth. Although there was measurable elastin synthesis in the upper thoracic aorta at the earliest time evaluated, there was a fourfold increase in relative elastin synthesis (from 4 to 16% of total protein synthesis) between 60 fetal days and birth. Elastin synthesis was maximal in successively distal segments between 1 and 3 weeks after birth. Relative collagen synthesis progressively increased in distal aortic regions between 90 fetal days and 60 days postpartum. Greater than twofold increases over thoracic levels were measured. Both elastin and collagen synthesis largely subsided by 110 days of development. When expressed as absolute rates of protein synthesis, these scleroproteins were maximally expressed in the first 3 postnatal weeks. Elastin mRNA levels were determined with a cloned sheep gene fragment by molecular hybridization. Gradients of elastin message were present at 60 fetal days and at 4 and 14 days after birth, elastin mRNA levels being maximal in the upper thoracic aorta at 14 days after birth. The differentiation of the aortic wall thus follows discrete patterns of phenotypic change which may be coupled to the rheologic stresses accompanying development of the circulatory system.  相似文献   

3.
The physical and chemical properties of the mammalian aorta are known to vary as a function of distance from the heart. These properties are highly dependent collagen and elastic fibers. In order to evaluate the mechanisms which regulate the accumulation of these two connective tissue proteins, gene expression was evaluated at both the biosynthetic and messenger RNA levels. Short-term (3 h) explant cultures of the medial portion of four segments of the descending aorta in newborn pigs were incubated in the presence of [3H] proline. Collagen production was quantified by collagenase digestion and elastin production was determined by immunoprecipitation. Between the conus arteriosus and the bifurcation of the iliac arteries, relative collagen synthesis increased 2-fold (from 5.8 to 12.0% of total protein synthesis), while relative elastin synthesis declined 10-fold (from 16.4 to 1.6% of total protein synthesis). Similarly, collagen production increased more than 7-fold (from 6.7 to 49.8 X 10(3) molecules/cell/h) while elastin production was reduced more than 3-fold (from 71.8 to 21.0 X 10(3) molecules/cell/h) along this developmental gradient. Elastin synthesis appeared to be controlled to a significant extent by the availability of elastin mRNA, since both cell-free translation and molecular hybridization to a cloned elastin gene probe showed gradients of elastin gene expression. Similarly, collagen synthesis was apparently regulated, at least in part, by an inverse gradient of collagen mRNA, as measured with a cloned cDNA for the pro-alpha 1(I) collagen gene. Marked changes in the amount of non-elastin protein synthesis accompanied differentiation and accounted for larger changes in relative synthesis. These results suggest that the phenotype of the cells of the porcine artery wall is distinct in different regions of this organ at this developmental stage.  相似文献   

4.
Extracellular matrix fibronectin fibrils serve as passive structural supports for the organization of cells into tissues, yet can also actively stimulate a variety of cell and tissue functions, including cell proliferation. Factors that control and coordinate the functional activities of fibronectin fibrils are not known. Here, we compared effects of cell adhesion to vitronectin versus type I collagen on the assembly of and response to, extracellular matrix fibronectin fibrils. The amount of insoluble fibronectin matrix fibrils assembled by fibronectin-null mouse embryonic fibroblasts adherent to collagen- or vitronectin-coated substrates was not significantly different 20 h after fibronectin addition. However, the fibronectin matrix produced by vitronectin-adherent cells was ~ 10-fold less effective at enhancing cell proliferation than that of collagen-adherent cells. Increasing insoluble fibronectin levels with the fibronectin fragment, anastellin did not increase cell proliferation. Rather, native fibronectin fibrils polymerized by collagen- and vitronectin-adherent cells exhibited conformational differences in the growth-promoting, III-1 region of fibronectin, with collagen-adherent cells producing fibronectin fibrils in a more extended conformation. Fibronectin matrix assembly on either substrate was mediated by α5β1 integrins. However, on vitronectin-adherent cells, α5β1 integrins functioned in a lower activation state, characterized by reduced 9EG7 binding and decreased talin association. The inhibitory effect of vitronectin on fibronectin-mediated cell proliferation was localized to the cell-binding domain, but was not a general property of αvβ3 integrin-binding substrates. These data suggest that adhesion to vitronectin allows for the uncoupling of fibronectin fibril formation from downstream signaling events by reducing α5β1 integrin activation and fibronectin fibril extension.  相似文献   

5.
This report describes an investigation of the effects of developing hypertension on the synthesis and accumulation of insoluble elastin in the thoracic aorta of young rats. Uninephrectomized male rats were made hypertensive by administration of deoxycorticosterone acetate and addition of 1% NaCl to their drinking water. Divergence of systolic blood pressures between treated and control animals and hypertrophy of the vessel began after about 2 weeks of treatment. Coincident with the appearance of hypertrophy, there was an increased accumulation of insoluble elastin in the aorta and a large increase in the capacity of the aortic tissue to synthesize elastin. However, in spite of continued increases in blood pressure and vessel hypertrophy, this effect on elastin synthesis and accumulation was transient. The results of this study suggest that synthesis of elastin in aortic tissue of young rats is highly sensitive to alterations in blood pressure.  相似文献   

6.
The synthesis and extracellular deposition of elastin by cultured neonatal rat aorta smooth muscle cells has been followed. The addition of beta-aminopropionitrile to the culture medium promotes accumulation of soluble precursors of elastin. Under such conditions, a protein possessing characteristics of a soluble elastin precursor with an apparent molecular weight of 77,000 was detected and partially purified. Pulse-chase studies suggested that this 77-kDa protein undergoes an extracellular, enzymatically catalyzed process to a 71-kDa protein. This 71-kDa protein is strikingly similar to tropoelastins isolated from other tissue systems, in which no evidence for higher molecular weight soluble precursors is at present available. Data presented in this communication suggest that the 77-kDa protein, which we have designated protropoelastin, represents a precursor to the tropoelastin moiety produced in the neonatal rat smooth muscle cell culture.  相似文献   

7.
8.
Collagen and elastin synthesis in the developing chick aorta   总被引:3,自引:0,他引:3  
Thoracic aortas from 8- to 18-day embryonic chicks were incubated in vitro for 30 min with [3H]glycine and the newly synthesized, labeled proteins were subjected to polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The gels were fractionated and the incorporation of label into procollagen (125,000 Mr) and tropoelastin (70,000 Mr) was estimated by summation of the radioactivity found in the appropriate regions of the gel. The analyses showed that at Day 8 approximately 14% of the incorporated [3H]glycine was found in procollagen and 22% in tropoelastin. In the following 6 days of development, there was a significant decline in the relative incorporation into procollagen and an increase into tropoelastin so that at Days 14–18 less than 10% of the label was found in collagen and 40% was now found in tropoelastin. Since glucocorticoids have been shown to alter the rate of synthesis of other proteins in the developing chick, 150 μg of hydrocortisone was injected into 8-day eggs and 24 h later the aortas were incubated and treated as described above. The pattern of protein synthesis exhibited by the hormone-treated aortas resembled that of 14- to 18-day embryos. Furthermore, incubation of 8-day aortas with 10?8m hydrocortisone for 24 h produced a significant increase in the rate of elastin synthesis relative to that of other proteins. These results demonstrate that collagen and elastin synthesis vary during development of the chick aorta and they suggest that glucocorticoids may be involved in the control of their synthesis.  相似文献   

9.
10.
The determination of collagen and elastin in tissues   总被引:32,自引:0,他引:32  
  相似文献   

11.
This study was undertaken to understand elastin's role in the mechanical homeostasis of the arterial wall. The mechanical properties of elastin vary along the aorta, and we hypothesized this maintained a uniform mechanical environment for the elastin, despite regional variation in loading. Elastin's physiological loading was determined by comparing the inflation response of intact and autoclave purified elastin aortas from the proximal and distal thoracic aorta. Elastin's stretch and stress depend on collagen recruitment. Collagen recruitment started in the proximal aorta at systolic pressures (13.3 to 14.6 kPa) and in the distal at sub-diastolic pressures (9.3 to 10.6 kPa). In the proximal aorta collagen did not contribute significantly to the stress or stiffness, indicating that elastin determined the vessel properties. In the distal aorta, the circumferential incremental modulus was 70% higher than in the proximal aorta, half of which (37%) was due to a stiffening of the elastin. Compared to the elastin tissue in the proximal aorta, the distal elastin suffered higher physiological circumferential stretch (29%, P=0.03), circumferential stress (39%, P=0.02), and circumferential stiffness (37%, P=0.006). Elastin's physiological axial stresses were also higher (67%, P=0.003). These findings do not support the hypothesis that the loading on elastin is constant along the aorta as we expected from homeostasis.  相似文献   

12.
The aorta possesses a micro-architecture that imparts and supports a high degree of compliance and mechanical strength. Alteration of the quantity and/or arrangement of the main load-bearing components of this micro-architecture – the elastin and collagen fibers – leads to mechanical, and hence functional, changes associated with aortic disease and aging. Therefore, in the future, the ability to rigorously characterize the wall fiber micro-architecture could provide insight into the complicated mechanisms of aortic wall remodeling in aging and disease. Elastin and collagen fibers can be observed using state-of-the-art multi-photon microscopy. Image-analysis algorithms have been effective at characterizing fibrous constructs using various microscopy modalities. The objective of this study was to develop a custom MATLAB-language automated image-based analysis tool to describe multiple parameters of elastin and collagen micro-architecture in human soft fibrous tissue samples using multi-photon microscopy images. Human aortic tissue samples were used to develop the code. The tool smooths, cleans and equalizes fiber intensities in the image before segmenting the fibers into a binary image. The binary image is cleaned and thinned to a fiber skeleton representation of the image. The developed software analyzes the fiber skeleton to obtain intersections, fiber orientation, concentration, porosity, diameter distribution, segment length and tortuosity. In the future, the developed custom image-based analysis tool can be used to describe the micro-architecture of aortic wall samples in a variety of conditions. While this work targeted the aorta, the software has the potential to describe the architecture of other fibrous materials, tube-like networks and connective tissues.  相似文献   

13.
Spatial distribution of collagen and elastin fibers in the lungs   总被引:3,自引:0,他引:3  
Surface tension forces acting on the thin-wall alveolar septa and the collagen-elastin fiber network are major factors in lung parenchymal micromechanics. Quantitative serial section analysis and morphometric evaluations of planar sections were used to determine the spatial location of collagen and elastin fibers in Sprague-Dawley rat and normal human lung samples. A large concentration of connective tissue fibers was located in the alveolar duct wall in both species. For rats, the tissue densities of collagen and elastin fibers located within 10 microns of an alveolar duct were 13 and 9%, respectively. In human lung samples, the tissue densities of collagen and elastin fibers within 20 microns of an alveolar duct were 18 and 16%, respectively. In both species, bands of elastin fibers formed a continuous ring around each alveolar mouth. In human lungs, elastin fibers were found to penetrate significantly deeper into alveolar septal walls than they did in rat lungs. The concentration of connective tissue elements in the alveolar duct walls of both species is consistent with their proposed roles as the principal load-bearing elements of the lung parenchyma.  相似文献   

14.
15.
16.
The number of patients with adrenal aldosterone-producing adenomas (APAs) has gradually increased. However, even after adenoma resection, some patients still suffer from high systolic blood pressure (SBP), which is possibly due to great arterial remodeling. Moreover, mineralocorticoid receptors (MRs) were found to be expressed in vascular smooth muscle cells (VSMCs). This study aims to determine whether MR antagonism protects the aorta from aldosterone-induced aortic remolding. Male rats were subcutaneously implanted with an osmotic minipumps and randomly divided into four groups: control; aldosterone (1 μg/h); aldosterone plus a specific MR antagonist, eplerenone (100 mg/kg/day); and aldosterone plus a vasodilator, hydralazine (25 mg/kg/day). After 8 weeks of infusion, aortic smooth muscle cell proliferation and collagen deposition, as well as the MDM2 and TGF-β1 expression levels in the aorta, were examined. Model rats with APAs were successfully constructed. Compared with the control rats, the model rats exhibited (1) marked SBP elevation, (2) no significant alteration in aortic morphology, (3) increased VSMC proliferation and MDM2 expression in the aorta, and (4) enhanced total collagen and collagen III depositions in the aorta, accompanied with up-regulated expression of TGF-β1. These effects were significantly inhibited by co-administration with eplerenone but not with hydralazine. These findings suggested that specific MR antagonism protects the aorta from aldosterone-induced VSMC proliferation and collagen deposition.  相似文献   

17.
Summary Type IV collagen is a major basement membrane component that has been implicated in the regulation of angiogenesis. The purpose of this study was to evaluate the effect of type IV collagen on the angiogenic response of native endothelial cells in three-dimensional vascular organ culture. Rings of rat aorta were cultured under serum-free conditions in gels of type I collagen with or without type IV collagen. In the absence of type IV collagen, aortic rings generated neovessels, which proliferated until day 9 and gradually regressed during the second and third weeks of culture. Type IV collagen promoted neovessel elongation and survival in a dose-dependent manner. Microvascular length increased by 43, 57, and 119% over control values in cultures treated with 3, 30, and 300 μg/ml type IV collagen, respectively. When used at high concentrations (300 μg/ml) type IV collagen stabilized the neovascular outgrowths and prevented vascular regression. Type IV collagen also promoted the formation of neovessels, but significant stimulatory effects were observed only at an intermediate concentration (30 μg/ml) and were no longer significant at the high concentration (300 μg/ml). The observation that type IV collagen has dose-dependent effects on vascular elongation, proliferation, and stabilization, supports the concept that the developing basement membrane of neovessles acts as a solid-phase regulator of angiogenesis, whose function varies depending on the concentration of its molecular components.  相似文献   

18.
19.
Insoluble elastin accumulation, elastin mRNA translational efficiencies, and elastin mRNA levels were evaluated in cultures of neonatal rat aortic smooth muscle cells grown for several days in consecutive passages. When the products of in vitro translation were immunoprecipitated with an anti-alpha-elastin antibody, a single 79,000-Da protein was obtained. Northern blot analysis also indicated an elastin mRNA species corresponding to approximately 4.2 kilobases. Insoluble elastin accumulation increased in cells cultured for 7-21 days in first through fourth passages, while with one exception, relative levels and translational activity of elastin mRNA decreased with time in culture. The data indicated that a simple relationship between elastin accumulation and elastin mRNA levels was not evident.  相似文献   

20.
Aortic aneurysm is an important clinical condition characterized by common structural changes such as the degradation of elastin, loss of smooth muscle cells, and increased deposition of fibrillary collagen. With the goal of investigating the relationship between the mechanical behavior and the structural/biochemical composition of an artery, this study used a simple chemical degradation model of aneurysm and investigated the progressive changes in mechanical properties. Porcine thoracic aortas were digested in a mild solution of purified elastase (5 U/mL) for 6, 12, 24, 48, and 96 h. Initial size measurements show that disruption of the elastin structure leads to increased artery dilation in the absence of periodic loading. The mechanical properties of the digested arteries, measured with a biaxial tensile testing device, progress through four distinct stages termed (1) initial-softening, (2) elastomer-like, (3) extensible-but-stiff, and (4) collagen-scaffold-like. While stages 1, 3, and 4 are expected as a result of elastin degradation, the S-shaped stress versus strain behavior of the aorta resulting from enzyme digestion has not been reported previously. Our results suggest that gradual changes in the structure of elastin in the artery can lead to a progression through different mechanical properties and thus reveal the potential existence of an important transition stage that could contribute to artery dilation during aneurysm formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号