首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
2.
The Zymomonas mobilis gene encoding acid phosphatase, phoC, has been cloned and sequenced. The gene spans 792 base pairs and encodes an Mr 28,988 polypeptide. This protein was identified as the principal acid phosphatase activity in Z. mobilis by using zymograms and was more active with magnesium ions than with zinc ions. Its promoter region was similar to the -35 "pho box" region of the Escherichia coli pho genes as well as the regulatory sequences for Saccharomyces cerevisiae acid phosphatase (PHO5). A comparison of the gene structure of phoC with that of highly expressed Z. mobilis genes revealed that promoters for all genes were similar in degree of conservation of spacing and identity with the proposed Z. mobilis consensus sequence in the -10 region. The phoC gene contained a 5' transcribed terminus which was AT rich, a weak ribosome-binding site, and less biased codon usage than the highly expressed Z. mobilis genes.  相似文献   

3.
Phosphoglycerate mutase is an essential glycolytic enzyme for Zymomonas mobilis, catalyzing the reversible interconversion of 3-phosphoglycerate and 2-phosphoglycerate. The pgm gene encoding this enzyme was cloned on a 5.2-kbp DNA fragment and expressed in Escherichia coli. Recombinants were identified by using antibodies directed against purified Z. mobilis phosphoglycerate mutase. The pgm gene contains a canonical ribosome-binding site, a biased pattern of codon usage, a long upstream untranslated region, and four promoters which share sequence homology. Interestingly, adhA and a D-specific 2-hydroxyacid dehydrogenase were found on the same DNA fragment and appear to form a cluster of genes which function in central metabolism. The translated sequence for Z. mobilis pgm was in full agreement with the 40 N-terminal amino acid residues determined by protein sequencing. The primary structure of the translated sequence is highly conserved (52 to 60% identity with other phosphoglycerate mutases) and also shares extensive homology with bisphosphoglycerate mutases (51 to 59% identity). Since Southern blots indicated the presence of only a single copy of pgm in the Z. mobilis chromosome, it is likely that the cloned pgm gene functions to provide both activities. Z. mobilis phosphoglycerate mutase is unusual in that it lacks the flexible tail and lysines at the carboxy terminus which are present in the enzyme isolated from all other organisms examined.  相似文献   

4.
5.
The Zymomonas mobilis gene (sacA) encoding a protein with sucrase activity has been cloned in Escherichia coli and its nucleotide sequence has been determined. Potential ribosome-binding site and promoter sequences were identified in the region upstream of the gene which were homologous to E. coli and Z. mobilis consensus sequences. Extracts from E. coli cells, containing the sacA gene, displayed a sucrose-hydrolyzing activity. However, no transfructosylation activity (exchange reaction or levan formation) could be detected. This sucrase activity was different from that observed with the purified extracellular protein B46 from Z. mobilis. These two proteins showed different electrophoretic mobilities and molecular masses and shared no immunological similarity. Thus, the product of sacA (a polypeptide of 58.4-kDa molecular mass) is a new sucrase from Z. mobilis. The amino acid sequence, deduced from the nucleotide sequence of sacA, showed strong homologies with the sucrases from Bacillus subtilis, Salmonella typhimurium, and Vibrio alginolyticus.  相似文献   

6.
7.
8.
9.
10.
Pyruvate decarboxylase (EC 4.1.1.1) from Zymomonas mobilis purified to homogeneity by using dye-ligand and ion-exchange chromatography. Antibodies produced against the enzyme and the amino-terminal sequence obtained for the pure enzyme were used to select and confirm the identity of a genomic clone encoding the enzyme selected from a genomic library of Z. mobilis DNA cloned into pUC9. The genomic fragment encoding the enzyme expressed high levels of pyruvate decarboxylase in Escherichia coli. Possible RNA polymerase and ribosome-binding sites have been identified in the 5'-untranslated region of the pyruvate decarboxylase gene.  相似文献   

11.
Zymomonas mobilis ferments sugars to produce ethanol with two biochemically distinct isoenzymes of alcohol dehydrogenase. The adhA gene encoding alcohol dehydrogenase I has now been sequenced and compared with the adhB gene, which encodes the second isoenzyme. The deduced amino acid sequences for these gene products exhibited no apparent homology. Alcohol dehydrogenase I contained 337 amino acids, with a subunit molecular weight of 36,096. Based on comparisons of primary amino acid sequences, this enzyme belongs to the family of zinc alcohol dehydrogenases which have been described primarily in eucaryotes. Nearly all of the 22 strictly conserved amino acids in this group were also conserved in Z. mobilis alcohol dehydrogenase I. Alcohol dehydrogenase I is an abundant protein, although adhA lacked many of the features previously reported in four other highly expressed genes from Z. mobilis. Codon usage in adhA is not highly biased and includes many codons which were unused by pdc, adhB, gap, and pgk. The ribosomal binding region of adhA lacked the canonical Shine-Dalgarno sequence found in the other highly expressed genes from Z. mobilis. Although these features may facilitate the expression of high enzyme levels, they do not appear to be essential for the expression of Z. mobilis adhA.  相似文献   

12.
13.
14.
15.
16.
17.
The sequence of the putative endoglucanase gene ZMO1086 in the genome of Zymomonas mobilis showed a 40% similarity with known bacterial endoglucanase genes. The upstream region of this putative gene revealed the presence of characteristic promoter (-10 and -35 regions) and a Shine-Dalgarno region. The putative endoglucanase gene was poorly expressed from the native promoter of Z. mobilis and therefore the putative endoglucanase gene was cloned and expressed in Escherichia coli BL21. The overexpressed gene product CelA was purified to homogeneity and the optimal activity was observed at 30 degrees C and pH 6 respectively.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号