首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Bacterial diversity in sediments obtained along the Chilean margin from areas containing methane seeps, and a hydrate mound were explored by cloning and sequencing and multitag pyrosequencing (MTPS). These libraries were statistically compared to determine the robustness of taxonomic assignment derived from multiplexed pyrosequencing strategies targeting variable regions V1 and V2 of the small subunit rRNA gene for environmental studies. There was no statistical difference in the composition of the libraries, thus, MTPS was utilized to describe diversity in three geochemical zones in these environments. Unidentified Cyanobacteria isolates were abundant in the sulfate reduction zone (SRZ), Deltaproteobacteria were concentrated at the sulfate methane transition zone (SMTZ) and Chloroflexi/GNS dominated methanogenesis zone (MGZ). Although there was variation among specific groups, communities in the SRZ and MGZ did not differ significantly. However, the community dominated by Deltaproteobacteria differentiates the SMTZ from the other zones. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental file.  相似文献   

2.
Biofouling communities contribute significantly to aquatic ecosystem productivity and biogeochemical cycling. Our knowledge of the distribution, composition, and activities of these microbially dominated communities is limited compared to other components of estuarine ecosystems. This study investigated the temporal stability and change of the dominant phylogenetic groups of the domain Bacteria in estuarine biofilm communities. Glass slides were deployed monthly over 1 year for 7-day incubations during peak tidal periods in East Sabine Bay, Fla. Community profiling was achieved by using 16S rRNA genes and terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes in combination with ribotyping, cloning, and sequencing to evaluate diversity and to identify dominant microorganisms. Bacterial community profiles from biofilms grown near the benthos showed distinct periods of constancy within winter and summer sampling periods. Similar periods of stability were also seen in T-RFLP patterns from floating biofilms. Alternating dominance of phylogenetic groups between seasons appeared to be associated with seasonal changes in temperature, nutrient availability, and light. The community structure appeared to be stable during these periods despite changes in salinity and in dissolved oxygen.  相似文献   

3.
Current standards for evaluation of the public health safety of recreational and shellfish-harvesting waters are based upon bacteriological analysis, but do not include an evaluation of the number of viruses. The objective of this study was to determine the occurrence of enteric viruses in estuarine sediments and to find a relationship, if any, between the presence of viruses in seawater or sediment or both and various biological and physicochemical characteristics of the environment. Viruses were found in greater numbers in sediment than in overlying seawater on a volume basis. Several types of enteroviruses were isolated: coxsackievirus types A16, B1, and B5, echovirus type 1, and poliovirus type 2. On several occasions, viruses were isolated from sediments when overlying seawaters met bacteriological water quality standards for recreational use. Statistical analysis of the relationship between viruses in seawater or in sediment and other variables measured yielded only one significant association: the number of viruses in sediment was found to be positively correlated with the number of fecal coliforms in sediment. No other physical, chemical, or biological characteristic of seawater or sediment that was measured showed statistically significant association with viral numbers. No correlation was found between bacterial indicators and virus in the overlying waters. The data indicated that evaluation of the presence of bacteria and viruses in sediment may provide additional insight into long-term water quality conditions and that indicator bacteria in water are not reflective of the concentration of enteric viruses in marine waters.  相似文献   

4.
We analyzed PCR-amplified 16S rRNA genes from native and Fe(III)-enriched surface sediments of a major tidal channel in the Tijuana River Estuary, California, USA. Clones from native sediments were most closely affiliated with photosynthetic taxa (Cyanobacteria, Chloroflexi, and Halochromatium) and microorganisms known to reduce (Desulfatibacillus, Desulfobacterium, and Desulfuromusa) or oxidize (Microcoleus, Phormidium, and Halochromatium) various sulfur species, reflective of the fluctuating redox conditions in the tidal zone. Fe(III) was rapidly reduced in anaerobic microcosms amended with 2-line ferrihydrite, with or without the sulfate reduction inhibitor sodium molybdate. The addition of ferrihydrite without molybdate caused a major shift in community structure to a dominance of the Fe(III)-reducing genus Shewanella, while at the same time the sulfate-reducing and sulfide-oxidizing populations were replaced by taxa known to cycle elemental sulfur. Sediments amended with both ferrihydrite and molybdate were again populated by Shewanella clones, but also numerically important were clones most similar to Marinobacterium, Pseudomonas, and Bacillus, suggesting a role for these taxa in Fe(III) reduction in marine habitats.  相似文献   

5.
The spatial distribution of communities was examined in estuarine mud flat sediments by the biochemical analysis of the lipids and lipid components extracted from the sediments. Total phospholipid was used as a measure of total biomass, and fatty acids were used as indicators of community composition. Comparisons were made among 2- by 2-m (location) and 0.2- by 0.2-m (cluster) sampling plots by using a nested analysis of variance to design an optimal sampling strategy to define the microbial content of a large, relatively homogenous area. At two of the three stations, a 2- by 2-m plot was representative of the station, but 0.2- by 0.2-m areas were in no case representative of the station. The biomass measured by the extractable phospholipid and the total lipid palmitic acid showed excellent correlation with the fatty acid “signatures” characteristic of bacteria, but showed a lower correlation with the long-chain polyenoic fatty acids characteristic of the microfauna.  相似文献   

6.
Factors Influencing Bacterial Production in a Shallow Estuarine System   总被引:1,自引:0,他引:1  
The bacterioplankton of the marine and brackish water zones of the complex system Ria de Aveiro was characterized as profiles of bacterial abundance and biomass productivity. During the warm season, total bacteria ranged from 0.2 to 8.5 x 109 cells L-1 and active bacteria number from 0.1 to 3.1 x 109 cells L-1. Total and active bacterial numbers were, on average, three times higher in brackish than in marine water. Bacterial productivity on different dates and different tides in the marine zone varied from 0.05 to 4.5 mg C L-1 h-1. Here the average productivity (1.1 mg C L-1 h-1) was 3.5 times less than in brackish water (average 3.8 mg C L-1 h-1; range 0.7-14.2 mg C L-1 h-1). Specific productivity varied from 0.05 to 2.61 fg C cell-1 h-1, a range that was similar throughout the ecosystem. However, specific productivity per active cell was 19% higher in brackish water. Bacterial production variation was best explained by the number of active bacteria, which, in turn, was highly associated with total bacterial number, temperature, and particulate organic carbon. In the marine zone, bacterial production was also influenced by depth and salinity. In the brackish zone, the set of independent variables explained a smaller percentage of bacterial production variation than in marine zone, suggesting greater importance of other variables. In the marine zone, and mainly near low tide, productivity was significantly higher (average 3.3 times) at the surface (down to 0.5 m) than in the deeper layers of the water column. This stratification of bacterial productivity was linked to the increased specific productivity per active cell, as no modification in the proportion of active cells in the population could be detected. The vertical profile of bacterial production in the deeper zone of this estuarine ecosystem, in which no clear salinity or thermal stratification occurs throughout the tidal cycle, seemed to reflect a biochemical stratification generated by increased phytoplankton exudation and/or by photochemical transformation of semilabile or recalcitrant organic compounds. Shallower water masses tend to blur this surface effect. The relative importance of photochemical transformation in the pattern of estuarine bacterial production will therefore tend to vary with the bathymetry of the system.  相似文献   

7.
The geochemical partitioning of trace metals in sediments is of great importance in risk assessment and remedial investigation. Selected factors that may control the partitioning behavior of Cu, Pb and Zn in non-sulfidic, estuarine sediments were examined with the use of combined sorption curve—sequential extraction analysis. This approach, which has not been previously used to examine estuarine sediments, allowed determination of sorption parameters for Cu, Pb and Zn partitioning to individual geochemical fractions. Partitioning behavior in sulfidic sediments was also determined by sequentially extracting Cu, Pb, and Zn from synthetic sulfide minerals and from natural sediment and pure quartz sand after spiking with acid-volatile sulfide (AVS). Trace metal sorption to the “carbonate” fraction (pH 5, NaOAc extraction) increased with metal loading due to saturation of sorption sites associated with the “Fe-oxide” (NH2OH·HCl extraction) and “organic” (H2O2 extraction) fractions in non-sulfidic sediments. Freundlich parameters describing sorption to the “Fe-oxide” and “organic” fractions were controlled by the sediment Fe-oxide and organic carbon content, respectively. Sequential extraction of Cu from pure CuS, AVS-spiked sediment and AVS-spiked quartz sand showed that AVS-bound Cu was quantitatively recovered in association with the “organic” fraction. However, some AVS-bound Pb and Zn were recovered by the NH2OH·HCl step (which has been previously interpreted as “Fe-oxide” bound metals) in the sequential extraction procedure used in this study. This indicates that the sequential extraction of Pb and Zn in sulfidic sediments may lead to AVS-bound metals being mistaken as Fe-oxide bound species. Caution should therefore be exercised when interpreting sequential extraction results for Pb and Zn in anoxic sediments.  相似文献   

8.

Background

Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea.

Methodology/Principal Findings

Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea.

Conclusions

This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.  相似文献   

9.
Bacterial community composition (BCC) has been extensively related to specific environmental conditions. Tropical coastal lagoons present great temporal and spatial variation in their limnological conditions, which, in turn, should influence the BCC. Here, we sought for the limnological factors that influence, in space and time, the BCC in tropical coastal lagoons (Rio de Janeiro State, Brazil). The Visgueiro lagoon was sampled monthly for 1 year and eight lagoons were sampled once for temporal and spatial analysis, respectively. BCC was evaluated by bacteria-specific PCR-DGGE methods. Great variations were observed in limnological conditions and BCC on both temporal and spatial scales. Changes in the BCC of Visgueiro lagoon throughout the year were best related to salinity and concentrations of NO 3 ? , dissolved phosphorus and chlorophyll-a, while changes in BCC between lagoons were best related to salinity and dissolved phosphorus concentration. Salinity has a direct impact on the integrity of the bacterial cell, and it was previously observed that phosphorus is the main limiting nutrient to bacterial growth in these lagoons. Therefore, we conclude that great variations in limnological conditions of coastal lagoons throughout time and space resulted in different BCCs and salinity and nutrient concentration, particularly dissolved phosphorus, are the main limnological factors influencing BCC in these tropical coastal lagoons.  相似文献   

10.
Accurate enumeration of viruses within environmental samples is critical for investigations of the ecological role of viruses and viral infection within microbial communities. This report evaluates differences in viral and bacterial direct counts between estuarine sediment samples which were either immediately processed onboard ship or frozen at −20°C and later processed. Viral and bacterial abundances were recorded at three stations spanning the length of the Chesapeake Bay in April and June 2003 within three sediment fractions: pore water (PW), whole sediment (WS), and sediment after pore water removal (AP). No significant difference in viral abundance was apparent between extracts from fresh or frozen sediments. In contrast, bacterial abundance was significantly lower in the samples subjected to freezing. Both bacterial and viral abundance showed significant differences between sediment fractions (PW, WS, or AP) regardless of the fresh or frozen status. Although pore water viral abundance has been used in the past as a measurement of viral abundance in sediments, this fraction accounted for only ca. 5% of the total sediment viral abundance across all samples. The effect of refrigerated storage of sediment viral extracts was also examined and showed that, within the first 2 h, viral abundance decreased ca. 30% in formalin-fixed extracts and 66% in unfixed extracts. Finally, the reliability of direct viral enumeration via epifluorescence microscopy was tested by using DNase treatment of WS extractions. These tests indicated that a large fraction (>86%) of the small SYBR gold fluorescing particles are likely viruses.  相似文献   

11.
Inorganic tin (SnCl4·H2O) is toxic to microbial populations obtained from estuarine sediments plated on nutrient medium solidified with either agar or purified agar. The use of gelatin as a gelling agent decreased the apparent toxicity of tin, and toxicity was markedly reduced in medium solidified with silica gel. There was no evidence that toxic agar-tin complexes were involved. Cd, Cu, Pb, Ni, and Zn exhibited similar toxicity patterns; therefore, toxicity levels determined in the laboratory should be extrapolated to the environment with caution. The addition of cysteine to the medium had no effect on tin toxicity. Serine or 3-hydroxyflavone enhanced toxicity, while humic acids or gelatin inhibited toxicity. Replacement of SO42− with NO3 did not alter tin toxicity, but replacement of Cl with NO3 decreased tin toxicity. Thus, the toxic effect(s) of tin depend as much on the chemical speciation of the metal as on the total concentration of the metal in the medium.  相似文献   

12.
Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities.  相似文献   

13.
14.
In anaerobic coastal sediments, hydrolytic and/or fermentative bacteria degrade polymeric material and produce labile intermediates, which are used by terminal metabolizers to complete the conversion of organic material to CO2. We used molecular approaches to evaluate the response of two bacterial terminal metabolizer groups from a coastal tidal creek sediments, sulfate reducers and methanogens, to controlled changes in carbon resource supply. Tidal creek sediment bioreactors were established in April and August 2004. For each date, intact sediment sections were continuously supplied with flowthrough seawater that was either unamended or amended with the high-molecular-weight polysaccharide dextran. Biogeochemical data indicate that the activity of fermenting bacteria and the terminal metabolizers was limited by organic carbon supply during both experiments, with a significant increase in net volatile fatty acid (VFA) production and rates of sulfate reduction and methanogenesis following dextran addition. Community composition (measured by using terminal restriction fragment length polymorphism analysis, and functional gene [dsrA, mcrA] clone libraries) changed from April to August. However, community composition was not different between amended and unamended cores within each month, despite the change in resource level. Moreover, there was no relationship between community richness and evenness with resource level. This lack of variation in community composition with C addition could be attributed to the dynamic environment these sediment communities experience in situ. Fluctuations in VFA concentrations are most likely very high, so that the dominant bacterial species must be able to outcompete other species at both high and low resource levels.  相似文献   

15.
The microbial community composition of Wadden Sea sediments of the German North Sea coast was investigated by in situ hybridization with group-specific fluorescently labeled, rRNA-targeted oligonucleotides. A large fraction (up to 73%) of the DAPI (4′,6-diamidino-2-phenylindole)-stained cells hybridized with the bacterial probes. Nearly 45% of the total cells could be further identified as belonging to known phyla. Members of the Cytophaga-Flavobacterium cluster were most abundant in all layers, followed by the sulfate-reducing bacteria.  相似文献   

16.
Phospholipid-derived fatty acids (PLFA) and respiratory quinones (RQ) are microbial compounds that have been utilized as biomarkers to quantify bacterial biomass and to characterize microbial community structure in sediments, waters, and soils. While PLFAs have been widely used as quantitative bacterial biomarkers in marine sediments, applications of quinone analysis in marine sediments are very limited. In this study, we investigated the relation between both groups of bacterial biomarkers in a broad range of marine sediments from the intertidal zone to the deep sea. We found a good log-log correlation between concentrations of bacterial PLFA and RQ over several orders of magnitude. This relationship is probably due to metabolic variation in quinone concentrations in bacterial cells in different environments, whereas PLFA concentrations are relatively stable under different conditions. We also found a good agreement in the community structure classifications based on the bacterial PLFAs and RQs. These results strengthen the application of both compounds as quantitative bacterial biomarkers. Moreover, the bacterial PLFA- and RQ profiles revealed a comparable dissimilarity pattern of the sampled sediments, but with a higher level of dissimilarity for the RQs. This means that the quinone method has a higher resolution for resolving differences in bacterial community composition. Combining PLFA and quinone analysis as a complementary method is a good strategy to yield higher resolving power in bacterial community structure.  相似文献   

17.
Various methods were tested for preserving estuarine sediments in the field before biochemical analysis of the microbiota. Total microbial biomass was determined as lipid phosphate (LP), and the fatty acids of the microbial lipids were used as indicators of community structure. Control samples were sieved to remove macroinvertebrates and plant materials and were extracted immediately in the field. Other samples were preserved both before and after sieving and stored for 5 days before analysis. Freezing resulted in a 50% decline in LP and significant decreases in many fatty acids. Refrigeration resulted in a 19% decrease in LP but no change in the fatty acids. Samples preserved with Formalin before sieving exhibited no significant change in LP but substantial increases in many fatty acids, which were probably derived from the macroinvertebrates. Sieved samples preserved with Formalin showed a 17 to 18% decline in LP but no change in the fatty acids. Ideally, samples should be sieved and extracted immediately in the field. However, short-term refrigeration and longer-term preservation of sieved samples with Formalin may be acceptable compromises.  相似文献   

18.
In sectors like healthcare and hospitality, it has been realized that fabrics play a pivotal role in transfer of nosocomial infections. However, there is a major gap in drawing correlation between different fibre types and their interaction with microorganisms. Such information is important to formulate guidelines for textile materials for use in these sectors. In the current study, the adherence of four important bacteria, Staphylococcus aureus, Acinetobacter calcoaceticus, Escherichia coli, and Pseudomonas aeruginosa was studied on six different fibre types namely polyester, wool, polypropylene, viscose, silk and cotton. Among these fibres, viscose showed maximum adherence while silk fibres showed the least attachment of bacterial strains. Bacterial adhesion was correlated with the surface characteristics (surface charge, hydrophobicity etc.) of bacteria, and nanoroughness of fibres. Adhesion of these bacteria was tested on five hydrocarbons of different hydrophobicities. E. coli, the weakest biofilm producer, and with the highest surface energy and lowest hydrophobicity amongst the bacteria compared in the study, had the lowest load on all fibres. Scanning electron microscopy revealed non-uniform binding of gram-negative and gram-positive bacteria. Nanoroughness of fibres favored bacterial adhesion. The study showed correlation between surface properties and adherence of bacteria on fibres, with the results being of direct significance to medical and hospitality sectors.Electronic supplementary materialThe online version of this article (10.1007/s12088-020-00903-5) contains supplementary material, which is available to authorized users.  相似文献   

19.
Denitrifying microbial communities and denitrification in salt marsh sediments may be affected by many factors, including environmental conditions, nutrient availability, and levels of pollutants. The objective of this study was to examine how microbial community composition and denitrification enzyme activities (DEA) at a California salt marsh with high nutrient loading vary with such factors. Sediments were sampled from three elevations, each with different inundation and vegetation patterns, across 12 stations representing various salinity and nutrient conditions. Analyses included determination of cell abundance, total and denitrifier community compositions (by terminal restriction fragment length polymorphism), DEA, nutrients, and eluted metals. Total bacterial (16S rRNA) and denitrifier (nirS) community compositions and DEA were analyzed for their relationships to environmental variables and metal concentrations via multivariate direct gradient and regression analyses, respectively. Community composition and DEA were highly variable within the dynamic salt marsh system, but each was strongly affected by elevation (i.e., degree of inundation) and carbon content as well as by selected metals. Carbon content was highly related to elevation, and the relationships between DEA and carbon content were found to be elevation specific when evaluated across the entire marsh. There were also lateral gradients in the marsh, as evidenced by an even stronger association between community composition and elevation for a marsh subsystem. Lastly, though correlated with similar environmental factors and selected metals, denitrifier community composition and function appeared uncoupled in the marsh.  相似文献   

20.
Streams are highly heterogeneous ecosystems, in terms of both geomorphology and hydrodynamics. While flow is recognized to shape the physical architecture of benthic biofilms, we do not yet understand what drives community assembly and biodiversity of benthic biofilms in the heterogeneous flow landscapes of streams. Within a metacommunity ecology framework, we experimented with streambed landscapes constructed from bedforms in large-scale flumes to illuminate the role of spatial flow heterogeneity in biofilm community composition and biodiversity in streams. Our results show that the spatial variation of hydrodynamics explained a remarkable percentage (up to 47%) of the variation in community composition along bedforms. This suggests species sorting as a model of metacommunity dynamics in stream biofilms, though natural biofilm communities will clearly not conform to a single model offered by metacommunity ecology. The spatial variation induced by the hydrodynamics along the bedforms resulted in a gradient of bacterial beta diversity, measured by a range of diversity and similarity indices, that increased with bedform height and hence with spatial flow heterogeneity at the flume level. Our results underscore the necessity to maintain small-scale physical heterogeneity for community composition and biodiversity of biofilms in stream ecosystems.Biofilms (attached and matrix-enclosed microbial communities) are an important form of microbial life in streams and rivers, where they can greatly contribute to ecosystem functions and even large-scale carbon fluxes (1, 3). Streams are inherently heterogeneous and are characterized by a largely unidirectional downstream flow of water that controls the dispersal of suspended microorganisms (21), biofilm community composition (7), architecture (2), and metabolism (13), for instance. However, we do not understand how diverse microorganisms assemble into biofilm communities based on flow heterogeneity and related dispersal in these ecosystems.Dispersal, as the propagation and immigration of biota, can have important consequences for biodiversity and ecosystem functioning in heterogeneous landscapes (18, 25). Landscape topography and turbulent transport affect dispersal, a relationship that is well studied in the dispersal of plant seeds (31) but not in the microbial world. Only recently have microbial ecologists begun to understand the role of dispersal in large-scale biogeographic patterns (29) and metacommunity ecology (24, 44). This growing body of research on microbial dispersal and its consequences for spatial patterns of community assembly and composition rests entirely on free-living bacteria, while no comparable data exist for microbial biofilms. The confirmation of detachment as an intrinsic behavior in many biofilms has led to the appreciation of dispersal as an insurance policy for these microbial communities to seed new habitats during resource limitation or aging of the parental biofilm (4). However, microbial ecology lacks conceptual models to predict postemigration processes, such as cell propagation, immigration, and community assembly during colonization of new surfaces. The perception of biofilms as microbial landscapes and, at the same time, as integrated parts of the landscape they inhabit offers the possibility to test models for habitat selection by dispersal cells (4). In this study, we focused on the assembly of biofilm communities by dispersal cells in spatially variable-flow environments; we did not measure dispersal as the emigration of cells from established biofilms. We adopted metacommunity ecology as a framework that encapsulates environmental heterogeneity and dispersal (18) to illuminate the mechanisms underlying community assembly.If the effects of microbial diversity on ecosystem functions are to be understood, we need to address the proper spatial resolution at which microorganisms assemble into communities and at which their functioning becomes manifest. In streams, this is typically at the level of habitats and microhabitats ranging from meters to centimeters, where characteristic geomorphological features (e.g., bedforms) and induced hydrodynamic fields develop and where spatial variations in biofilm metabolism become apparent (13). The ensemble of these small-scale variations translates into the landscape heterogeneity of the streambed.The aim of this study was to test whether spatial flow heterogeneity generating diverse microhabitats induces spatial species turnover and increases the biodiversity of microbial biofilms. Microbial metacommunity ecology predicts mass effects rather than species sorting to drive community composition in ecosystems with low residence time, such as streams (14, 18, 24). To test this prediction, we constructed six streambed landscapes from bedforms of defined dimensions differing in height; the mean flow (at flume scale) was kept constant, whereas the spatial heterogeneity of flow increased across the gradient of the six landscapes. The inoculum (i.e., the stream water and naturally contained microorganisms) and water chemistry were equal in all flumes. This allowed us to isolate flow heterogeneity as a potential driver of biofilm community composition in a high-energy ecosystem. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA gene sequences from winter and summer communities and related bacterial community composition and microbial biomass to the hydrodynamics in representative microhabitats using causal modeling and forward selection of explanatory variables (9, 23).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号