首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine if a living cell is necessary for the incorporation of actin, alpha-actinin, and tropomyosin into the cytoskeleton, we have exposed cell models to fluorescently labeled contractile proteins. In this in vitro system, lissamine rhodamine-labeled actin bound to attachment plaques, ruffles, cleavage furrows and stress fibers, and the binding could not be blocked by prior exposure to unlabeled actin. Fluorescently labeled alpha-actinin also bound to ruffles, attachment plaques, cleavage furrows, and stress fibers. The periodicity of fluorescent alpha-actinin along stress fibers was wider in gerbil fibroma cells than it was in PtK2 cells. The fluorescent alpha-actinin binding in cell models could not be blocked by the prior addition of unlabeled alpha-actinin suggesting that alpha-actinin was binding to itself. While there was only slight binding of fluorescent tropomyosin to the cytoskeleton of interphase cells, there was stronger binding in furrow regions of models of dividing cells. The binding of fluorescently labeled tropomyosin could be blocked by prior exposure of the cell models to unlabeled tropomyosin. If unlabeled actin was permitted to polymerize in the stress fibers in cell models, fluorescently labeled tropomyosin stained the fibers. In contrast to the labeled contractile proteins, fluorescently labeled ovalbumin and BSA did not stain any elements of the cytoskeleton. Our results are discussed in terms of the structure and assembly of stress fibers and cleavage furrows.  相似文献   

2.
A fluorometric binding assay for lectin and yeast cells using the avidin-biotin system was previously reported (Y. Oda, M. Kinoshita, and K. Kakehi, Anal. Biochem. 254, 41-48, 1997). However, the true amount of bound lectin could not be determined by this method due to difficulty in determination of the number of bound biotin molecules. In the present study, we have developed a method for assaying the binding reaction between fluorescent lectin and cells using a flow injection technique, which allows estimation of the amount of lectin bound to cells. An aliquot of the cell suspension was directly analyzed by injection into a flow injection system after the binding between the fluorescently labeled lectin and cells. The labeled lectins showed good linearity, at least over a range of 20-1000 ng as the injected amount. The intrinsic fluorescence of the labeled lectins did not change upon the binding. The binding reaction of the hydroxycoumarin-labeled lectins with yeast cells was rapid and reached an equilibrium state within 10 min. Scatchard analysis showed that Saccharomyces cerevisiae cells contained approximately 1. 3-1.6 x 10(8) binding sites per cell for Concanavalin A, Lycoris radiata agglutinin, and Tulipa gesneriana lectin with affinity constants of 3.2-4.7 x 10(6) M-1. The present method was applied to the study of binding between lectins and bacteria and mouse spleen cells. The assay method described here is highly sensitive and will be an alternative to assays using lectins labeled with radioisotopes. The procedure is quite simple and can be completed within 1 h.  相似文献   

3.
The possibility that estrogen receptors may exist in uterine plasma membranes was investigated by covalent labeling of estrogen receptors in mouse uterine cells with [3H]tamoxifen aziridine (TA). Isolated epithelial and stromal cells of immature mice were incubated with [3H]TA in the presence or absence of unlabeled tamoxifen, homogenized and separated into nuclear, cytosolic and microsomal fractions by differential centrifugation. These fractions were subjected to SDS-polyacrylamide gel electrophoresis and the proteins labeled covalently with TA were visualized by autoradiography. Proteins labeled specifically with [3H]TA were observed almost exclusively in the nuclear fraction of both epithelial and stromal cells. In contrast, very little labeled protein was detected in the cytosolic or microsomal fraction. Although these data do not preclude the possibility that estrogen binding sites are present in plasma membranes of uterine cells, this cellular fraction is definitely not labeled to a significant extent by [3H]TA. Thus, if membrane estrogen binding sites exist, their structural conformations may be different from that of nuclear estrogen receptors.  相似文献   

4.
Although lectins have previously been used to identify specific cell types in the kidney and various other tissues, the proteins labeled were not identified. We hypothesized that fluorescently labeled lectins could provide a useful tool for direct labeling of membrane-associated glycoproteins. Protein fractions from Madin-Darby canine kidney (MDCK) cells were exposed to a panel of 16 fluorescently labeled lectins to identify suitable lectin-protein pairs. Peanut agglutinin (PNA) selectively bound a 220-240 kDa O-linked glycoprotein with a slightly acidic isoelectric point, while Sambucus nigra agglutinin (SNA) labeled a 130 kDa glycoprotein with a highly acidic isoelectric point. Both proteins were readily labeled by lectins applied to the apical surface of living confluent cells. The proteins were isolated by lectin affinity columns and identified by mass spectrometry. Peptides from the PNA-binding protein shared molecular weight and amino acid composition with fibronectin. Fragments of the SNA-binding protein showed amino-acid identity with peptides from beta1 integrin. The identities of these proteins were validated by Western blotting. Binding of PNA to a 220 kDa protein was inhibited by an anti-fibronectin antibody, and binding of a 130 kDa protein by SNA was diminished by an anti-beta1 integrin antibody. We conclude that PNA and SNA can be used as specific markers for fibronectin and beta1 integrin, respectively, in MDCK cells.  相似文献   

5.
BackgroundIn-cell NMR is a powerful technique to investigate proteins in living human cells at atomic resolution. Ideally, when studying functional processes involving protein–protein interactions by NMR, only one partner should be isotopically labeled. Here we show that constitutive and transient protein expression can be combined with protein silencing to obtain selective protein labeling in human cells.MethodsWe established a human cell line stably overexpressing the copper binding protein HAH1. A second protein (human superoxide dismutase 1, SOD1) was overexpressed by transient transfection and isotopically labeled. A silencing vector containing shRNA sequences against the HAH1 gene was used to decrease the rate of HAH1 synthesis during the expression of SOD1. The levels of HAH1 mRNA and protein were measured as a function of time following transfection by RT-PCR and Western Blot, and the final cell samples were analyzed by in-cell NMR.ResultsSOD1 was ectopically expressed and labeled in a time window during which HAH1 biosynthesis was strongly decreased by shRNA, thus preventing its labeling. In-cell NMR spectra confirmed that, while both proteins were present, only SOD1 was selectively labeled and could be detected by 1H–15N heteronuclear NMR.Conclusions and general significanceWe showed that controlling protein expression by specifically silencing a stably expressed protein is a useful strategy to obtain selective isotope labeling of only one protein. This approach relies on established techniques thus permitting the investigation of protein–protein interactions by NMR in human cells.  相似文献   

6.
The reactivity of a monoclonal antibody BuGR1, raised against glucocorticoid receptors of rat liver, with glucocorticoid and mineralocorticoid receptors of mammalian (rabbit) and amphibian (A6 cells) origin was examined. The glucocorticoid receptors of rabbit kidney and liver and of A6 cells were labeled with tritiated dexamethasone. The mineralocorticoid receptors were labeled with tritiated aldosterone in the presence or absence of RU26988, depending on whether aldosterone was bound to glucocorticoid receptors (A6 cells) or not (rabbit kidney), in addition to its binding to mineralocorticoid receptors. BuGR1 did not recognize mineralocorticoid receptors of A6 cells and rabbit kidney. BuGR1 cross-reacted with glucocorticoid receptors of rabbit liver and kidney but not of A6 cells, suggesting that the domain of glucocorticoid receptors recognized by BuRG1 could be present only in the mammalian species. The findings indicate that BuGR1 shows species differences as well as receptor class specificity.  相似文献   

7.
Fluorescence labeling of proteins has become increasingly important since fluorescent techniques like FRET and fluorescence polarization are now commonly used in protein binding studies, proteomics, and for high-throughput screening in drug discovery. In our efforts to study the binding of the beta(')-subunit from Escherichia coli RNA polymerase (RNAP) to sigma70, we synthesized a fluorescent-labeled beta(')-fragment (residues 100-309) in a very convenient way, that could be used as a general protocol for hexahistidine-tagged proteins. By performing all the following steps, purification, reduction, derivatization with IC5-maleimide, and free dye removal while the protein was bound to the column, we were able to reduce the procedure time significantly and at the same time achieve better labeling efficiency and quality. The beta(')-fragment with a N-terminal His(6)-tag was purified from inclusion bodies and could be refolded prior to or after binding to a Ni-NTA affinity column. Reduction prior to labeling was achieved with TCEP that does not interfere with Ni-NTA chemistry. The labeled beta(')-fragment was tested with sigma70 that was labeled with an europium-based fluorophore for binding in a electrophoretic mobility-shift assay. The sigma-to-core protein interaction in bacterial RNA polymerase offers a potentially specific target for drug discovery, since it is highly conserved among the eubacteria, but differs significantly from eukaryotes.  相似文献   

8.
The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of “Shield-1” prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94 since the CYP activity was significantly enhanced with co-expressed POR.  相似文献   

9.
We have evaluated the possibility that a major, abundant cellular substrate for protein kinase C might be a calmodulin-binding protein. We have recently labeled this protein, which migrates on sodium dodecyl sulfate-gel electrophoresis with an apparent Mr of 60,000 from chicken and 80,000-87,000 from bovine cells and tissues, the myristoylated alanine-rich C kinase substrate (MARCKS). The MARCKS proteins from both species could be cross-linked to 125I-calmodulin in a Ca2+-dependent manner. Phosphorylation of either protein by protein kinase C prevented 125I-calmodulin binding and cross-linking, suggesting that the calmodulin-binding domain might be located at or near the sites of protein kinase C phosphorylation. Both bovine and chicken MARCKS proteins contain an identical 25-amino acid domain that contains all 4 of the serine residues phosphorylated by protein kinase C in vitro. In addition, this domain is similar in sequence and structure to previously described calmodulin-binding domains. A synthetic peptide corresponding to this domain inhibited calmodulin binding to the MARCKS protein and also could be cross-linked to 125I-calmodulin in a calcium-dependent manner. In addition, protein kinase C-dependent phosphorylation of the synthetic peptide inhibited its binding and cross-linking to 125I-calmodulin. The peptide bound to fluorescently labeled 5-dimethylaminonaphthalene-1-sulfonyl-calmodulin with a dissociation constant of 2.8 nM, and inhibited the calmodulin-dependent activation of cyclic nucleotide phosphodiesterase with an IC50 of 4.8 nM. Thus, the peptide mimics the calmodulin-binding properties of the MARCKS protein and probably represents its calmodulin-binding domain. Phosphorylation of these abundant, high affinity calmodulin-binding proteins by protein kinase C in intact cells could cause displacement of bound calmodulin, perhaps leading to activation of Ca2+-calmodulin-dependent processes.  相似文献   

10.
We have examined the ability of various forms of activin and inhibin, which are structurally related to transforming growth factor-beta (TGF-beta), to interact with various types of cell surface TGF-beta binding sites. Activin AB, inhibin A, and inhibin B were unable to compete with 125I-TGF-beta 1 for binding to the TGF-beta receptor types I, II, or III that coexist in human skin fibroblasts, rat liver epithelial cells, and mink lung epithelial cells. In contrast, activins and inhibins effectively competed for TGF-beta 1 binding to GH3 rat pituitary tumor cells. Binding of TGF-beta 1 to GH3 cells was mediated by about 2700 sites/cell with a Kd = 90 pM. Affinity labeling of these GH3 binding sites by cross-linking to 125I-TGF-beta 1 yielded 70-74-kDa labeled complexes distinct from previously identified TGF-beta binding components. Labeling of these 70-74-kDa components with 125I-TGF-beta 1 was inhibited by TGF-beta 1, TGF-beta 2, activin AB, and inhibin B at concentrations in the high picomolar to low nanomolar range, but it was not significantly affected by other polypeptide hormones and growth factors tested. The 70-74-kDa labeled GH3 components represent a novel type of cell surface TGF-beta binding protein that is unique in its ability to recognize various other members of the TGF-beta family of bioactive polypeptides.  相似文献   

11.
N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, was found to bind specifically to a crude membrane preparation from sugar beet seedling leaf cell suspension cultures. The dissociation constant (Kd) and binding protein concentration were found to be 1.71 mol dm–3 and 220 pmol g–1(membrane protein), respectively. The amount of specific 3H-NPA binding was significantly increased by adding Mg2+ATP to the binding assay solution. Treatment of membrane preparations with acid phosphatase, prior to the NPA binding assay, resulted in lower specific binding. ATP activation and phosphatase inactivation were culture stage dependent. Although a considerable effect could be detected when using cells from day 8 (representing the linear phase), the same treatment did not alter the binding if cells from day 1 (representing lag phase) or day 14 (representing the stationary phase) were used. These observations have strongly highlighted the possible involvement of a phosphorylation and dephosphorylation mechanism in vivo in the regulation of the activity of the NPA binding protein. High phosphatase activity was found in the supernatant, but not in the membrane pellet) after 50 000 g centrifugation. Our present study has indicated that receptor activity could be regulated by a phosphorylation and dephosphorylation mechanism in plants.  相似文献   

12.
Lactobacillus casei cells have been shown previously to utilize two separate binding proteins for the transport of folate and thiamine. Folate transport, however, was found to be strongly inhibited by thiamine in spite of the fact that the folate-binding protein has no measurable affinity for thiamine. This inhibition, which did not fluctuate with intracellular adenosine triphosphate levels, occurred only in cells containing functional transport systems for both vitamins and was noncompetitive with folate but competitive with respect to the level of folate-binding protein. Folate uptake in cells containing optimally induced transport systems for both vitamins was inhibited by thiamine (1 to 10 muM) to a maximum of 45%; the latter value increased to 77% in cells that contained a progressively diminished folate transport system and a normal thiamine system. Cells preloaded with thiamine could transport folate at a normal rate, indicating that the inhibition resulted from the entry of thiamine rather than from its presence in the cell. In a similar fashion, folate (1 to 10 muM) did not interfere with the binding of thiamine to its transport protein, but inhibited thiamine transport (to a maximum of 25%). Competition also extended to biotin, whose transport was strongly inhibited (58% and 73%, respectively) by the simultaneous uptake of either folate or thiamine; biotin, however, had only a minimal effect on either folate or thiamine transport. The nicotinate transport system was unaffected by co-transport with folate, thiamine, or biotin. These results are consistent with the hypothesis that the folate, thiamine, and biotin transport systems of L. casei each function via a specific binding protein, and that they require, in addition, a common component present in limiting amounts per cell. The latter may be a protein required for the coupling of energy to these transport processes.  相似文献   

13.
Experiments were conducted to determine if nuclear proteins are preferentially synthesized in the vicinity of the nucleus, a factor which could facilitate nucleocytoplasmic exchange. Using Xenopus oocytes, animal and vegetal hemispheres were separated by bisecting the cells in paraffin oil. It was initially established that protein synthesis is not affected by the bisecting procedure. To determine if nuclear protein synthesis is restricted to the animal hemisphere (which contains the nucleus), vegetal halves and enucleated animal halves were injected with [3H]leucine and incubated in oil for 90 min. The labeled cell halves were then fused with unlabeled, nucleated animal hemispheres that had been previously injected with puromycin in amounts sufficient to prevent further protein synthesis. Thus, labeled polypeptides which subsequently entered the nuclei were synthesized before fusion. Three hours after fusion, the nuclei were isolated, run on two-dimensional gels, and fluorographed. Approximately 200 labeled nuclear polypeptides were compared, and only 2 were synthesized in significantly different amounts in the animal and vegetal hemispheres. The results indicate that nuclear protein synthesis is not restricted to the cytoplasm adjacent to the nucleus.  相似文献   

14.
Previous studies from our laboratories demonstrated that cells from a human endometrial adenocarcinoma cell line (Ishikawa) responded to estradiol whereas cells from another endometrial cancer line (HEC-50) did not. In an attempt to identify factors responsible for the observed estrogen insensitivity we compared the characteristics of the estradiol receptor (ER) systems in Ishikawa and HEC-50 cells. Saturation analyses of cytosolic estrogen binders were performed over a 0.1-70 nM range of [3H]estradiol concentrations. Equilibrium dissociation constants and number of binding sites were determined by graphic analysis of Scatchard plots or computed by applying Fourier-derived affinity spectrum analysis (FASA) of the binding data. No significant differences were noted in the dissociation constants (Kd approx. 0.6 nM) or number of binding sites (approx. 6-10 fmol/mg protein) for the single binder that could be evaluated by the graphic method in cytosol from the two cell lines. However, 2 binders in Ishikawa cells (Kd approx. 0.2 and 6 nM) could be detected by the FASA method; the higher affinity binder in HEC-50 cells could not be clearly demonstrated. Structural differences in the specific estrogen binders which might distinguish HEC-50 from Ishikawa cells or normal endometrial tissue were investigated by using the anti-ER monoclonal antibody JS 34/32. Interaction of the antibody with [3H]estradiol binders of estrogen-responsive cells and tissue was evident from the formation of labeled complexes that were shown to sediment faster in glycerol density gradients and could be immunoprecipitated with Protein A attached to Sepharose beads. In contrast, the antibody did not recognize labeled specific binders in the HEC-50 cells. Furthermore, [3H]estradiol receptors in Ishikawa cells could be transformed into a species that exhibited increased hydrophilicity, evident from its binding to DNA-cellulose, whereas binders from HEC-50 could not. These results indicate that the lack of responsiveness of HEC-50 cells to estrogens might be due to structural or functional alterations in the ER protein resulting in a loss of its capability to undergo estrogen-directed conformational changes required for biological activity.  相似文献   

15.
An N-hydroxysuccinimide ester of [3H]methotrexate has been employed to covalently label a specific binding protein that resides in the plasma membrane of L1210 cells. Incorporation of radioactivity into this protein accounted for 55% of total cellular labeling, was half-maximal at a reagent concentration of 27 nM, and was blocked either by prior exposure to unlabeled reagent or by the addition of excess methotrexate. A role for this protein in methotrexate transport was supported by the observations that: (a) similar concentrations of reagent were required for both labeling of the binding protein and irreversible inhibition of transport; (b) the amount of labeled binding protein was comparable to observed levels of transport protein; (c) protection against labeling was afforded by thiamin pyrophosphate, a potent competitive inhibitor of methotrexate transport; and (d) labeling of the binding protein was not observed in a subline of L1210 cells that has a defect in the ability to transport methotrexate. The binding protein could be solubilized from the membrane by various ionic and non-ionic detergents and the covalent bond between the incorporated [3H]methotrexate and the protein was stable to a variety of conditions, including high concentrations of mercaptoethanol and hydroxylamine and extremes of pH. The labeled protein fractionated as a nearly symmetrical peak on Sephacryl S-300 and it appeared as a single band (Mr = 36,000) after electrophoresis in polyacrylamide gel containing sodium dodecyl sulfate.  相似文献   

16.
The B1 subunit of Escherichia coli ribonucleotide reductase is coded for by the nrdA gene, of determined structure. Protein B1 contains two types of allosteric binding sites. One type (h-sites) determines the substrate specificity while the other type (l sites) governs the overall activity. The effectors dGTP and dTTP bind only to the h-sites while dATP and ATP bind to both the h- and the l-sites. Protein B1 has been photoaffinity-labeled with radioactive dTTP and dATP using direct UV irradiation. Following tryptic digestion of labeled protein B1 only one peptide labeled with dTTP was found, while several peptides were labeled with dATP. One of the dATP-labeled peptides had chromatographic properties very similar to that labeled with dTTP and this peptide most likely forms part of the h-site of protein B1. Labeling of the l-site could not be conclusively shown since substantial non-specific labeling occurred with dATP. CNBr fragments of dTTP-labeled protein B1 were used to localize the region of nucleotide binding in the deduced primary structure of the nrdA gene. The dTTP label was further localized to a tryptic octapeptide with the sequence Ser-X-Ser-Gln-Gly-Gly-Val-Arg. The labeled amino acid was found at position 2, but the residue itself could not be directly identified. Unexpectedly, this sequence was not found in the earlier reported primary structure of the nrdA gene. However, a recent revised structure of the gene identifies the labeled residue as Cys-289 and fully confirms the rest of the peptide sequence. Thus the present result clearly defines one of the allosteric binding sites in ribonucleotide reductase.  相似文献   

17.
The presence of HOCl-modified epitopes inside and outside monocytes/macrophages and the presence of HOCl-modified apolipoprotein B in atherosclerotic lesions has initiated the present study to identify scavenger receptors that bind and internalize HOCl-low density lipoprotein (LDL). The uptake of HOCl-LDL by THP-1 macrophages was not saturable and led to cholesterol/cholesteryl ester accumulation. HOCl-LDL is not aggregated in culture medium, as measured by dynamic light scattering experiments, but internalization of HOCl-LDL could be inhibited in part by cytochalasin D, a microfilament disrupting agent. This indicates that HOCl-LDL is partially internalized by a pathway resembling phagocytosis-like internalization (in part by fluid-phase endocytosis) as measured with [14C]sucrose uptake. In contrast to uptake studies, binding of HOCl-LDL to THP-1 cells at 4 degrees C was specific and saturable, indicating that binding proteins and/or receptors are involved. Competition studies on THP-1 macrophages showed that HOCl-LDL does not compete for the uptake of acetylated LDL (a ligand to scavenger receptor class A) but strongly inhibits the uptake of copper-oxidized LDL (a ligand to CD36 and SR-BI). The binding specificity of HOCl-LDL to class B scavenger receptors could be demonstrated by Chinese hamster ovary cells overexpressing CD36 and SR-BI and specific blocking antibodies. The lipid moiety isolated from the HOCl-LDL particle did not compete for cell association of labeled HOCl-LDL to CD36 or SR-BI, suggesting that the protein moiety of HOCl-LDL is responsible for receptor recognition. Experiments with Chinese hamster ovary cells overexpressing scavenger receptor class A, type I, confirmed that LDL modified at physiologically relevant HOCl concentrations is not recognized by this receptor.  相似文献   

18.
We previously demonstrated that a high-molecular-weight glycoprotein could be immunoprecipitated from metabolically labeled U-2 OS cells with platelet-derived growth factor (PDGF) antiserum and that it appears to be derived from a different precursor than is the 30 kD PDGF-like mitogen produced by these cells. These findings were unexpected, since the molecular weight of this glycoprotein is too large to be encoded by the PDGF structural genes. From experiments with metabolically labeled U-2 OS human osteosarcoma, fibroblasts, and NRK cells, we report here that a 185 kD protein immunoprecipitated with PDGF antiserum has the following characteristics. 1) It is a PDGF binding protein that is unrelated to alpha 2-macroglobulin. 2) It is phosphorylated in response to PDGF stimulation. 3) It is immunoprecipitated by phosphotyrosine antibodies. 4) It is not a substrate of epidermal growth factor-induced tyrosine kinase activity. These studies indicate that high-molecular-weight proteins immunoprecipitated by antiserum to PDGF represent a complex between PDGF and a binding protein capable of being phosphorylated by a PDGF-induced tyrosine kinase. These characteristics are identical to those of the PDGF receptor.  相似文献   

19.
Paraoxonase 1 (PON1), an HDL-associated esterase, is known to possess anti-oxidant and anti-atherogenic properties. PON1 was shown to protect macrophages from oxidative stress, to inhibit macrophage cholesterol biosynthesis, and to stimulate HDL-mediated cholesterol efflux from the cells. The aim of the present study was to characterize macrophage PON1 binding sites which could be responsible for the above anti-atherogenic activities.Incubation of FITC-labeled recombinant PON1 with J774 A.1 macrophage-like cell line at 37 °C, resulted in cellular binding and internalization of PON1, leading to PON1 localization in the cell’s cytoplasm compartment. In order to determine whether PON1 uptake is mediated via a specific binding to the macrophage, FITC-labeled recombinant PON1 was incubated with macrophages at 4 °C, followed by cell membranes separation. Macrophage membrane fluorescence was shown to be directly and dose-dependently related to the labeled PON1 concentration. Furthermore, binding assays performed at 4 and at 37 °C, using labeled and non-labeled recombinant PON1 (for competitive inhibition), demonstrated a dose-dependent significant 30% decrement in labeled PON1 binding to the macrophages, by the non-labeled PON1. Similarly, binding assays, using labeled PON1 and non-labeled HDL (the natural carrier of PON1 in the circulation) indicated that HDL decreased the binding of labeled PON1 to macrophages by 25%. Unlike HDL, LDL had no effect on labeled PON1 binding to macrophages. Finally, HDL were pre incubated without or with PON1 or apolipoprotein AI (apoAI) antibodies, in order to block PON1 or apoAI ability to bind to the cells. HDL incubation with antibody to PON1 or to apoAI significantly decreased HDL ability to inhibit macrophages-mediated LDL oxidation (by 32% or by 25%, respectively). A similar trend was also observed for HDL-mediated cholesterol efflux from macrophages, with an inhibitory effect of 35% or 19%, respectively. These results suggest that blocking HDL binding to macrophages through its apo A-I, and more so, via its PON1, results in the attenuation of HDL-PON1 biological activities.In conclusion, PON1 specifically binds to macrophage binding sites, leading to anti-atherogenic effects. Macrophage PON1 binding sites may thus be a target for future cardio protection therapy.  相似文献   

20.
Two substances possessing the ability to bind to diphtheria toxin (DT) were found to be present in a membrane fraction from DT-sensitive Vero cells. One of these substances was found on the basis of its ability to bind DT and inhibit its cytotoxic effect. This inhibitory substance competitively inhibited the binding of DT to Vero cells. However this inhibitor could not bind to CRM197, the product of a missense mutation in the DT gene, and did not inhibit the binding of CRM197 to Vero cells. Moreover, similar levels of the inhibitory activity were observed in membrane fractions from DT-insensitive mouse cells, suggesting the inhibitor is not the DT receptor which is specifically present in DT-sensitive cells. The second DT-binding substance was found in the same Vero cell membrane preparation by assaying the binding of 125I-labeled CRM197. Such DT-binding activity could not be observed in membrane preparation from mouse L cells. From competition studies using labeled DT and CRM proteins, we conclude that this binding activity is due to the surface receptor for DT. Treatment of these substances with several enzymes revealed that the inhibitor was sensitive to certain RNases but resistant to proteases, whereas the DT receptor was resistant to RNase but sensitive to proteases. The receptor was solubilized and partially purified by chromatography on CM-Sepharose column. Immunoprecipitation and Western blotting analysis of the partially purified receptor revealed that a 14.5-kD protein is the DT receptor, or at least a component of it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号