首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TGF-β is the primary inducer of extracellular matrix proteins in scleroderma (systemic sclerosis, SSc). Previous studies indicate that in a subset of SSc fibroblasts TGF-β signaling is activated via elevated levels of activin receptor-like kinase (ALK) 1 and phosphorylated Smad1 (pSmad1). The goal of this study was to determine the role of endoglin/ALK1 in TGF-β/Smad1 signaling in SSc fibroblasts. In SSc fibroblasts, increased levels of endoglin correlated with high levels of pSmad1, collagen, and connective tissue growth factor (CCN2). Endoglin depletion via siRNA in SSc fibroblasts inhibited pSmad1 but did not affect pSmad2/3. Following endoglin depletion mRNA and protein levels of collagen and CCN2 were significantly decreased in SSc fibroblasts but remained unchanged in normal fibroblasts. ALK1 was expressed at similar levels in SSc and normal fibroblasts. Depletion of ALK1 resulted in inhibition of pSmad1 and a moderate but significant reduction of mRNA and protein levels of collagen and CCN2 in SSc fibroblasts. Furthermore, constitutively high levels of endoglin were found in complexes with ALK1 in SSc fibroblasts. Overexpression of constitutively active ALK1 (caALK1) in normal and SSc fibroblasts led to a moderate increase of collagen and CCN2. However, caALK1 potently induced endothelin 1 (ET-1) mRNA and protein levels in SSc fibroblasts. Additional experiments demonstrated that endoglin and ALK1 mediate TGF-β induction of ET-1 in SSc and normal fibroblasts. In conclusion, this study has revealed an important profibrotic role of endoglin in SSc fibroblasts. The endoglin/ALK1/Smad1 pathway could be a therapeutic target in patients with SSc if appropriately blocked.  相似文献   

2.
The fibrogenic differentiation of resident mesenchymal cells is a key parameter in the pathogenesis of radiation fibrosis and is triggered by the profibrotic growth factors transforming growth factor (TGF)-beta1 and CCN2. TGF-beta1 is considered the primary inducer of fibrogenic differentiation and is thought to control its long-term maintenance, whereas CCN2 is considered secondary effector of TGF-beta1. Yet, in long-term established fibrosis like that associated with delayed radiation enteropathy, in situ TGF-beta1 deposition is low, whereas CCN2 expression is high. To explore this apparent paradox, cell response to increasing doses of TGF-beta1 was investigated in cells modeling initiation and maintenance of fibrosis, i.e., normal and fibrosis-derived smooth muscle cells, respectively. Activation of cell-specific signaling pathways by low TGF-beta1 doses was demonstrated with a main activation of the Rho/ROCK pathway in fibrosis-derived cells, whereas the Smad pathway was mainly activated in normal cells. This leads to subsequent and cell-specific regulation of the CCN2 gene. These results suggested a specific profibrotic role of CCN2 in fibrosis-initiated cells. Furthermore, the modulation of CCN2 expression by itself and the combination of TGF-beta1 and CCN2 was investigated in fibrosis-derived cells. In fibrosis-initiated cells CCN2 triggered its autoinduction; furthermore, low concentration of TGF-beta1-potentiated CCN2 autoinduction. Our findings showed a differential requirement and action of TGF-beta1 in the fibrogenic response of normal vs. fibrosis-derived cells. This study defines a novel Rho/ROCK but Smad3-independent mode of TGF-beta signaling that may operate during the chronic stages of fibrosis and provides evidence of both specific and combinatorial roles of low TGF-beta1 dose and CCN2.  相似文献   

3.
4.
The matricellular protein connective tissue growth factor (CCN2) is considered a faithful marker of fibroblast activation in wound healing and in fibrosis. CCN2 is induced during activation of hepatic stellate cells (HSC). Here, we investigate the molecular basis of CCN2 gene expression in HSC. Fluoroscence activated cell sorting was used to investigate CCN2 expression in HSC in vivo in mice treated with CCl(4). CCN2 and TGF-beta mRNA expression were assessed by polymerase chain reaction as a function of culture-induced activation of HSC. CCN2 promoter/reporter constructs were used to map cis-acting elements required for basal and TGFbeta-induced CCN2 promoter activity. Real-time polymerase chain reaction analysis was used to further clarify signaling pathways required for CCN2 expression in HSC. CCl(4) administration in vivo increased CCN2 production by HSC. In vitro, expression of CCN2 and TGF-beta mRNA were concommitantly increased in mouse HSC between days 0 and 14 of culture. TGFbeta-induced CCN2 promoter activity required the Smad and Ets-1 elements in the CCN2 promoter and was reduced by TGFbeta type I receptor (ALK4/5/7) inhibition. CCN2 overexpression in activated HSC was ALK4/5/7-dependent. As CCN2 overexpression is a faithful marker of fibrogenesis, our data are consistent with the notion that signaling through TGFbeta type I receptors such as ALK5 contributes to the activation of HSC and hence ALK4/5/7 inhibition would be expected to be an appropriate treatment for liver fibrosis.  相似文献   

5.
Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1+/+ and ALK1+/− mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.  相似文献   

6.
Connective tissue growth factor (CCN2) is a multifunctional matricellular protein, which is frequently overexpressed during organ fibrosis. CCN2 is a mediator of the pro-fibrotic effects of TGF-β in cultured cells, but the specific function of CCN2 in the fibrotic process has not been elucidated. In this study we characterized the CCN2-dependent signaling pathways that are required for the TGF-β induced fibrogenic response. By depleting endogenous CCN2 we show that CCN2 is indispensable for the TGF-β-induced phosphorylation of Smad1 and Erk1/2, but it is unnecessary for the activation of Smad3. TGF-β stimulation triggered formation of the CCN2/β(3) integrin protein complexes and activation of Src signaling. Furthermore, we demonstrated that signaling through the α(v)β(3) integrin receptor and Src was required for the TGF-β induced Smad1 phosphorylation. Recombinant CCN2 activated Src and Erk1/2 signaling, and induced phosphorylation of Fli1, but was unable to stimulate Smad1 or Smad3 phosphorylation. Additional experiments were performed to investigate the role of CCN2 in collagen production. Consistent with the previous studies, blockade of CCN2 abrogated TGF-β-induced collagen mRNA and protein levels. Recombinant CCN2 potently stimulated collagen mRNA levels and upregulated activity of the COL1A2 promoter, however CCN2 was a weak inducer of collagen protein levels. CCN2 stimulation of collagen was dose-dependent with the lower doses (<50 ng/ml) having a stimulatory effect and higher doses having an inhibitory effect on collagen gene expression. In conclusion, our study defines a novel CCN2/α(v)β(3) integrin/Src/Smad1 axis that contributes to the pro-fibrotic TGF-β signaling and suggests that blockade of this pathway may be beneficial for the treatment of fibrosis.  相似文献   

7.
8.
We have recently shown that induction of biglycan (BGN) expression by transforming growth factor-beta1 (TGF-beta1) required sequential activation of both Smad and p38 mitogen-activated protein kinase signaling (Ungefroren, H., Lenschow, W., Chen, W.-B., and Kalthoff, H. (2003) J. Biol. Chem. 278, 11041-11049). Here, we have analyzed the receptors through which TGF-beta1 controls expression of BGN and GADD45beta, the latter of which is postulated to link early Smad signaling to delayed activation of p38. Ectopic expression of a dominant-negative mutant of the TGF-beta type II receptor in PANC-1 cells abrogated TGF-beta-induced BGN up-regulation. Similarly, inhibition of the TGF-beta type I receptor/ALK5 with either SB431542 or by enforced stable expression of a kinase-dead mutant greatly attenuated the TGF-beta effect on both BGN and GADD45beta expression in PANC-1 and MG-63 cells. The enhancing effect of ALK5 on TGF-beta-mediated GADD45beta and BGN expression and on GADD45beta promoter activity was also dependent on its ability to activate Smad signaling, because an ALK5 mutant defective in Smad activation (TbetaRImL45) but with an otherwise functional kinase domain failed to mediate these responses. The TGF-beta/ALK5 effect on p38 activation and BGN expression was mimicked by overexpression of GADD45beta alone (in the absence of TGF-beta stimulation) and suppressed upon antisense inhibition of GADD45beta expression. These results show that TGF-beta induces BGN expression through (the Smad-activating function of) ALK5 and GADD45beta and suggest that the sensitivity of MyD118 to activation by TGF-beta, which varies between tissues, ultimately determines the strength of the TGF-beta effect on BGN.  相似文献   

9.
A CC chemokine CCL18 stimulates collagen production in pulmonary fibroblasts through an unknown signaling mechanism. In this study, involvement of Sp1 and Smad3 in CCL18 signaling in primary human pulmonary fibroblast cultures was investigated. Phosphorylation of Sp1, DNA-binding by Sp1, and the activity of an Sp1-dependent reporter were all increased in response to CCL18 stimulation. CCL18 did not stimulate a detectable increase in Smad3 phosphorylation or Smad3/4 DNA-binding activity, although some basal phosphorylation and DNA binding by Smad3/4 were noted. Transient overexpression of dominant negative mutants of Sp1 and Smad3 abrogated CCL18-dependent upregulation as well as basal production of collagen. These observations suggested that CCL18 activates collagen production in pulmonary fibroblasts through an Sp1-dependent pathway that also requires basal Smad3 activity. Possible involvement of autocrine TGF-beta in CCL18 signaling was considered. CCL18 stimulated increases in collagen mRNA and protein production without detectable changes in TGF-beta1, -beta2, and -beta3 mRNA or protein levels. Neutralizing anti-TGF-beta antibodies, latency-associated peptide, ALK5-specific inhibitor SD431542, and an inhibitor of the protease-dependent TGF-beta activation aprotinin, each failed to block CCL18-stimulated collagen production. These observations suggest that both CCL18 signaling in pulmonary fibroblasts and basal Smad3 activity are independent of autocrine TGF-beta.  相似文献   

10.
11.
Transforming growth factor-beta (TGF-beta) is an important regulator of physiological connective tissue biosynthesis and plays a central role in pathological tissue fibrosis. Previous studies have established that a biologically active lipid mediator, sphingosine 1-phosphate (S1P), mimics some of the profibrotic functions of TGF-beta through cross-activation of Smad signaling. Here we report that another product of sphingosine kinase, dihydrosphingosine 1-phosphate (dhS1P), has an opposite role in the regulation of TGF-beta signaling. In contrast to S1P, dhS1P inhibits TGF-beta-induced Smad2/3 phosphorylation and up-regulation of collagen synthesis. The effects of dhS1P require a lipid phosphatase, PTEN, a key modulator of cell growth and survival. dhS1P stimulates phosphorylation of the C-terminal domain of PTEN and its subsequent translocation into the nucleus. We demonstrate a novel function of nuclear PTEN as a co-factor of the Smad2/3 phosphatase, PPM1A. Complex formation of PTEN with PPM1A does not require the lipid phosphatase activity but depends on phosphorylation of the serine/threonine residues located in the C-terminal domain of PTEN. Upon complex formation with PTEN, PPM1A is protected from degradation induced by the TGF-beta signaling. Consequently, overexpression of PTEN abrogates TGF-beta-induced Smad2/3 phosphorylation. This study establishes a novel role for nuclear PTEN in the stabilization of PPM1A. PTEN-mediated cross-talk between the sphingolipid and TGF-beta signaling pathways may play an important role in physiological and pathological TGF-beta signaling.  相似文献   

12.
This study determines that vascular smooth muscle cell (VSMC) signaling through extracellular signal-regulated kinase (ERK) 1/2-mitogen-activated protein (MAP) kinase, alphavbeta(3)-integrin, and transforming growth factor (TGF)-beta1 dictates collagen type I network induction in mesenteric resistance arteries (MRA) from type 1 diabetic (streptozotocin) or hypertensive (HT; ANG II) mice. Isolated MRA were subjected to a pressure-passive-diameter relationship. To delineate cell types and mechanisms, cultured VSMC were prepared from MRA and stimulated with ANG II (100 nM) and high glucose (HG, 22 mM). Pressure-passive-diameter relationship reduction was associated with increased collagen type I deposition in MRA from HT and diabetic mice compared with control. Treatment of HT and diabetic mice with neutralizing TGF-beta1 antibody reduced MRA stiffness and collagen type I deposition. Cultured VSMC stimulated with HG or ANG II for 5 min increased ERK1/2-MAP kinase phosphorylation, whereas a 48-h stimulation induced latent TGF-beta1, alphavbeta(3)-integrin, and collagen type 1 release in the conditioned media. TGF-beta1 bioactivity and Smad2 phosphorylation were alphavbeta(3)-integrin-dependent, since beta(3)-integrin antibody and alphavbeta(3)-integrin inhibitor (SB-223245, 10 microM) significantly prevented TGF-beta1 bioactivity and Smad2 phosphorylation. Pretreatment of VSMC with ERK1/2-MAP kinase inhibitor (U-0126, 1 microM) reduced alphavbeta(3)-integrin, TGF-beta1, and collagen type 1 content. Additionally, alphavbeta(3)-integrin antibody, SB-223245, TGF-beta1-small-intefering RNA (siRNA), and Smad2-siRNA (40 nM) prevented collagen type I network formation in response to ANG II and HG. Together, these data provide evidence that resistance artery fibrosis in type 1 diabetes and hypertension is a consequence of abnormal collagen type I release by VSMC and involves ERK1/2, alphavbeta(3)-integrin, and TGF-beta1 signaling. This pathway could be a potential target for overcoming small artery complications in diabetes and hypertension.  相似文献   

13.
Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor that plays a critical role in tissue repair and fibrosis. Sphingolipid signaling has been shown to regulate a variety of cellular processes and has been implicated in collagen gene regulation. The present study was undertaken to determine whether endogenous sphingolipids are involved in the TGF-beta signaling pathway. TGF-beta treatment induced endogenous ceramide levels in a time-dependent manner within 5-15 min of cell stimulation. Using human fibroblasts transfected with a alpha2(I) collagen promoter/reporter gene construct (COL1A2), C(6)-ceramide (10 microm) exerted a stimulatory effect on basal and TGF-beta-induced activity of this promoter. Next, to define the effects of endogenous sphingolipids on TGF-beta signaling we employed ectopic expression of enzymes involved in sphingolipid metabolism. Sphingosine 1-phosphate phosphatase (YSR2) stimulated basal COL1A2 promoter activity and cooperated with TGF-beta in activation of this promoter. Furthermore, overexpression of YSR2 resulted in the pronounced increase of COL1A1 and COL1A2 mRNA levels. Conversely, overexpression of sphingosine kinase (SPHK1) inhibited basal and TGF-beta-stimulated COL1A2 promoter activity. These results suggest that endogenous ceramide, but not sphingosine or sphingosine 1-phosphate, is a positive regulator of collagen gene expression. Mechanistically, we demonstrate that Smad3 is a target of YSR2. TGF-beta-induced Smad3 phosphorylation was elevated in the presence of YSR2. Cotransfection of YSR2 with wild-type Smad3, but not with the phosphorylation-deficient mutant of Smad3 (Smad3A), resulted in a dramatic increase of COL1A2 promoter activity. In conclusion, this study demonstrates a direct role for the endogenous sphingolipid mediators in regulating the TGF-beta signaling pathway.  相似文献   

14.
15.
Transforming growth factor-beta1 is essential to maintain T cell homeostasis, as illustrated by multiorgan inflammation in mice deficient in TGF-beta1 signaling. Despite the physiological importance, the mechanisms that TGF-beta1 uses to regulate T cell expansion remain poorly understood. TGF-beta1 signals through transmembrane receptor serine/threonine kinases to activate multiple intracellular effector molecules, including the cytosolic signaling transducers of the Smad protein family. We used Smad3(-/-) mice to investigate a role for Smad3 in IL-2 production and proliferation in T cells. Targeted disruption of Smad3 abrogated TGF-beta1-mediated inhibition of anti-CD3 plus anti-CD28-induced steady state IL-2 mRNA and IL-2 protein production. CFSE labeling demonstrated that TGF-beta1 inhibited entry of wild-type anti-CD3 plus anti-CD28-stimulated cells into cycle cell, and this inhibition was greatly attenuated in Smad3(-/-) T cells. In contrast, disruption of Smad3 did not affect TGF-beta1-mediated inhibition of IL-2-induced proliferation. These results demonstrate that TGF-beta1 signals through Smad3-dependent and -independent pathways to inhibit T cell proliferation. The inability of TGF-beta1 to inhibit TCR-induced proliferation of Smad3(-/-) T cells suggests that IL-2 is not the primary stimulus driving expansion of anti-CD3 plus anti-CD28-stimulated T cells. Thus, we establish that TGF-beta1 signals through multiple pathways to suppress T cell proliferation.  相似文献   

16.
Previous studies have shown that the transforming growth factor (TGF)β/Alk1/Smad1 signaling pathway is constitutively activated in a subset of systemic sclerosis (SSc) fibroblasts and this pathway is a critical regulator of CCN2 gene expression. Caveolin-1 (cav-1), an integral membrane protein and the main component of caveolae, has also been implicated in SSc pathogenesis. This study was undertaken to evaluate the role of caveolin-1 in Smad1 signaling and CCN2 expression in healthy and SSc dermal fibroblasts. We show that a significant subset of SSc dermal fibroblasts has up-regulated cav-1 expression in vitro, and that cav-1 up-regulation correlates with constitutive Smad1 phosphorylation. In addition, basal levels of phospho-Smad1 were down-regulated after inhibition of cav-1 in SSc dermal fibroblasts. Caveolin-1 formed a protein complex with Alk1 in dermal fibroblasts, and this association was enhanced by TGFβ. By using siRNA against cav-1 and adenoviral cav-1 overexpression we demonstrate that activation of Smad1 in response to TGFβ requires cav-1 and that cav-1 is sufficient for Smad-1 phosphorylation. We also show that cav-1 is a positive regulator of CCN2 gene expression, and that it is required for the basal and TGFβ-induced CCN2 levels. In conclusion, this study has revealed an important role of cav-1 in mediating TGFβ/Smad1 signaling and CCN2 gene expression in healthy and SSc dermal fibroblasts.  相似文献   

17.
Transforming growth factor-beta1 (TGF-beta1) mediates expression of collagen 1A2 (Col 1A2) gene via a synergistic cooperation between Smad2/Smad3 and Sp1, both act on the Col 1A2 gene promoter. In our previous study, we reported that a retinoic acid derivative obtained from Phellinus linteus (designated PL) antagonizes TGF-beta-induced liver fibrosis through regulation of ROS and calcium influx. In this continuing study we seek further the effect of PL on the Smad signaling pathway. We used a Col 1A2 promoter-luciferase construct to study the action of PL on Smad through TGF-beta. We found that PL decreases the promoter activity of Col 1A2, hinders the translocalization of phosphorylated Smad2/3-Smad 4 complex from cytosol into nucleus and inhibits Sp1 binding activity. These results suggest that PL inhibits TGF-beta1-induced Col 1A2 promoter activity through blocking ROS and calcium influx as well as impeding Sp1 binding and translocalization of pSmad 2/3-Smad4 complex into nucleus.  相似文献   

18.
19.
20.
Lung fibrosis is characterized by increased deposition of ECM, especially collagens, and enhanced proliferation of fibroblasts. l-arginine is a key precursor of nitric oxide, asymmetric dimethylarginine, and proline, an amino acid enriched in collagen. We hypothesized that l-arginine metabolism is altered in pulmonary fibrosis, ultimately affecting collagen synthesis. Expression analysis of key enzymes in the arginine pathway, protein arginine methyltransferases (Prmt), arginine transporters, and arginases by quantitative (q) RT-PCR and Western blot revealed significant upregulation of arginase-1 and -2, but not Prmt or arginine transporters, during bleomycin-induced pulmonary fibrosis in mice. HPLC revealed a concomitant, time-dependent decrease in pulmonary l-arginine levels. Arginase-1 and -2 mRNA and protein expression was increased in primary fibroblasts isolated from bleomycin-treated mice, compared with controls, and assessed by qRT-PCR and Western blot analysis. TGF-beta1, a key profibrotic mediator, induced arginase-1 and -2 mRNA expression in primary and NIH/3T3 fibroblasts. Treatment of fibroblasts with the arginase inhibitor, NG-hydroxy-l-arginine, attenuated TGF-beta1-stimulated collagen deposition, but not collagen mRNA expression or Smad signaling, in fibroblasts. In human lungs derived from patients with idiopathic pulmonary fibrosis, arginase activity was unchanged, but arginase-1 expression significantly decreased when compared with donor lungs. Our results thus demonstrate that arginase-1 is expressed and functionally important for collagen deposition in lung fibroblasts. TGF-beta1-induced upregulation of arginase-1 suggests an interplay between profibrotic agents and l-arginine metabolism during the course of lung fibrosis in the mouse, whereas species-specific regulatory mechanisms may account for the differences observed in mouse and human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号