首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to new reports the AAC (6')-APH (2")Ia gene is no longer the only gene encoding resistance to gentamycin in Gram-positive cocci and therefore the current method for predicting synergism aminoglycosides with bacterial cell wall active agents in this bacteria may need revision. To further our knowledge of aminoglycoside resistance mechanism in Gram-positive cocci in Gdańsk region we tested presence of AAC (6')-APH (2")Ia gene among 22 enterococcal (E. faecalis) and 41 staphylococcal (S. haemolyticus, S. aureus, S. epidermidis) gentamycin-resistant isolates. Presence of AAC (6')-APH (2")Ia gene varied from 50% (n = 6) in gentamycin-resistant S. epidermidis, 80% (n = 10) in gentamycin resistant S. haemolyticus 88% in methicillin-resistant Staphylococcus aureus (MRSA) (n = 25). In Enterococcus faecalis this gene was noticed only in 59% (n = 22) of gentamycin-resistant isolates. These results suggest that spread of resistance gene among different species is limited and AAC (6')-APH (2")Ia mediated gentamycin-resistance mechanism is more common among MRSA and Staphylococcus haemolyticus.  相似文献   

2.
The gene specifying the bifunctional 6'-aminoglycoside acetyltransferase [AAC(6')] 2"-aminoglycoside phosphotransferase [APH(2")] enzyme from the Streptococcus faecalis plasmid pIP800 was cloned in Escherichia coli. A single protein with an apparent molecular weight of 56,000 was specified by this cloned determinant as detected in minicell experiments. Nucleotide sequence analysis revealed the presence of an open reading frame capable of specifying a protein of 479 amino acids and with a molecular weight of 56,850. The deduced amino acid sequence of the bifunctional AAC(6')-APH(2") gene product possessed two regions of homology with other sequenced resistance proteins. The N-terminal region contained a sequence that was homologous to the chloramphenicol acetyltransferase of Bacillus pumilus, and the C-terminal region contained a sequence homologous to the aminoglycoside phosphotransferase of Streptomyces fradiae. Subcloning experiments were performed with the AAC(6')-APH(2") resistance determinant, and it was possible to obtain gene segments independently specifying the acetyltransferase and phosphotransferase activities. These data suggest that the gene specifying the AAC(6')-APH(2") resistance enzyme arose as a result of a gene fusion.  相似文献   

3.
Enzymatic modification of aminoglycoside antibiotics mediated by regioselective aminoglycoside N-acetyltransferases is the predominant cause of bacterial resistance to aminoglycosides. A recently discovered bifunctional aminoglycoside acetyltransferase (AAC(6')-Ib variant, AAC(6')-Ib-cr) has been shown to catalyze the acetylation of fluoroquinolones as well as aminoglycosides. We have expressed and purified AAC(6')-Ib-wt and its bifunctional variant AAC(6')-Ib-cr in Escherichia coli and characterized their kinetic and chemical mechanism. Initial velocity and dead-end inhibition studies support an ordered sequential mechanism for the enzyme(s). The three-dimensional structure of AAC(6')-Ib-wt was determined in various complexes with donor and acceptor ligands to resolutions greater than 2.2 A. Observation of the direct, and optimally positioned, interaction between the 6'-NH 2 and Asp115 suggests that Asp115 acts as a general base to accept a proton in the reaction. The structure of AAC(6')-Ib-wt permits the construction of a molecular model of the interactions of fluoroquinolones with the AAC(6')-Ib-cr variant. The model suggests that a major contribution to the fluoroquinolone acetylation activity comes from the Asp179Tyr mutation, where Tyr179 makes pi-stacking interactions with the quinolone ring facilitating quinolone binding. The model also suggests that fluoroquinolones and aminoglycosides have different binding modes. On the basis of kinetic properties, the pH dependence of the kinetic parameters, and structural information, we propose an acid/base-assisted reaction catalyzed by AAC(6')-Ib-wt and the AAC(6')-Ib-cr variant involving a ternary complex.  相似文献   

4.
BACKGROUND: The predominant mechanism of antibiotic resistance employed by pathogenic bacteria against the clinically used aminoglycosides is chemical modification of the drug. The detoxification reactions are catalyzed by enzymes that promote either the phosphorylation, adenylation or acetylation of aminoglycosides. Structural studies of these aminoglycoside-modifying enzymes may assist in the development of therapeutic agents that could circumvent antibiotic resistance. In addition, such studies may shed light on the development of antibiotic resistance and the evolution of different enzyme classes. RESULTS: The crystal structure of the aminoglycoside-modifying enzyme aminoglycoside 6'-N-acetyltransferase type li (AAC(6')-li) in complex with the cofactor acetyl coenzyme A has been determined at 2.7 A resolution. The structure establishes that this acetyltransferase belongs to the GCN5-related N-acetyltransferase superfamily, which includes such enzymes as the histone acetyltransferases GCN5 and Hat1. CONCLUSIONS: Comparison of the AAC(6')-li structure with the crystal structures of two other members of this superfamily, Serratia marcescens aminoglycoside 3-N-acetyltransferase and yeast histone acetyltransferase Hat1, reveals that of the 84 residues that are structurally similar, only three are conserved and none can be implicated as catalytic residues. Despite the negligible sequence identity, functional studies show that AAC(6')-li possesses protein acetylation activity. Thus, AAC(6')-li is both a structural and functional homolog of the GCN5-related histone acetyltransferases.  相似文献   

5.
An aminoglycoside-modifying enzyme in arbekacin-resistant methicillin-resistant Staphylococcus aureus (MRSA), exhibiting 4'-N-acetylation, was examined. Although the MRSA strain with AAC(4') had no AAC(6')-APH(2") activity, a DNA fragment of the AAC(6')-APH(2") gene was amplified by PCR and the purified N-terminal 30-amino acid sequence of this AAC(4') was identical to AAC(6')-APH(2"). Direct DNA sequencing of this 'silent' AAC(6')-APH(2") gene revealed a single point mutation leading to a substitution of Gly for Asp80, through which the secondary structure is affected. A change in protein conformation could lead to a cleavage and a change of the enzymatic activity. We propose a new aminoglycoside-resistance mediated by AAC(4') is caused by a mutation-modified AAC(6')-APH(2").  相似文献   

6.
A recently discovered bifunctional antibiotic-resistance enzyme named AAC(3)-Ib/AAC(6')-Ib', from Pseudomonas aeruginosa, catalyzes acetylation of aminoglycoside antibiotics. Since both domains are acetyltransferases, each was cloned and purified for mechanistic studies. The AAC(3)-Ib domain appears to be highly specific to fortimicin A and gentamicin as substrates, while the AAC(6')-Ib' domain exhibits a broad substrate spectrum. Initial velocity patterns indicate that both domains follow a sequential kinetic mechanism. The use of dead-end and product inhibition and solvent-isotope effect reveals that both domains catalyze their reactions by a steady-state ordered Bi-Bi kinetic mechanism, in which acetyl-CoA is the first substrate that binds to the active site, followed by binding of the aminoglycoside antibiotic. Subsequent to the transfer of the acetyl group, acetylated aminoglycoside is released prior to coenzyme A. The merger of two genes to create a bifunctional enzyme with expanded substrate profile would appear to be a recent trend in evolution of resistance to aminoglycoside antibiotics, of which four examples have been documented in the past few years.  相似文献   

7.
The most frequent determinant of aminoglycoside antibiotic resistance in Gram-positive bacterial pathogens is a bifunctional enzyme, aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2" (AAC(6')- aminoglycoside phosphotransferase-2", capable of modifying a wide selection of clinically relevant antibiotics through its acetyltransferase and kinase activities. The aminoglycoside acetyltransferase domain of the enzyme, AAC(6')-Ie, is the only member of the large AAC(6') subclass known to modify fortimicin A and catalyze O-acetylation. We have demonstrated through solvent isotope, pH, and site-directed mutagenesis effects that Asp-99 is responsible for the distinct abilities of AAC(6')-Ie. Moreover, we have demonstrated that small planar molecules such as 1-(bromomethyl)phenanthrene can inactivate the enzyme through covalent modification of this residue. Thus, Asp-99 acts as an active site base in the molecular mechanism of AAC(6')-Ie. The prominent role of this residue in aminoglycoside modification can be exploited as an anchoring site for the development of compounds capable of reversing antibiotic resistance in vivo.  相似文献   

8.
The chromosomally encoded aminoglycoside N-acetyltransferase, AAC(6')-Iy, from Salmonella enterica confers resistance toward a number of aminoglycoside antibiotics. The structural gene was cloned and expressed and the purified enzyme existed in solution as a dimer of ca. 17 000 Da monomers. Acetyl-CoA was the preferred acyl donor, and most therapeutically important aminoglycosides were substrates for acetylation. Exceptions are those aminoglycosides that possess a 6'-hydroxyl substituent (e.g., lividomycin). Thus, the enzyme exhibited regioselective and exclusive acetyltransferase activity to 6'-amine-containing aminoglycosides. The enzyme exhibited Michaelis-Menten kinetics for some aminoglycoside substrates but "substrate activation" with others. Kinetic studies supported a random kinetic mechanism for the enzyme. The enzyme was inactivated by iodoacetamide in a biphasic manner, with half of the activity being lost rapidly and the other half more slowly. Tobramycin, but not acetyl-CoA, protected against inactivation. Each of the three cysteine residues (C70, C109, C145) in the wild-type enzyme were carboxamidomethylated by iodoacetamide. Cysteine 109 in AAC(6')-Iy is conserved in 12 AAC(6') enzyme sequences of the major class I subfamily. Surprisingly, mutation of this residue to alanine neither abolished activity nor altered the biphasic inactivation by iodoacetamide. The maximum velocity and V/K values for a number of aminoglycosides were elevated in this single mutant, and the kinetic behavior of substrates exhibiting linear vs nonlinear kinetics was reversed. Cysteine 70 in AAC(6')-Iy is either a cysteine or a threonine residue in all 12 AAC(6') enzymes of the major class I subfamily. The double mutant, C109A/C70A, was not inactivated by iodoacetamide. The double mutant exhibited large increases in the K(m) values for both acetyl-CoA and aminoglycoside substrates, and all aminoglycoside substrates exhibited Michaelis-Menten kinetics. Solvent kinetic isotope effects on V/K were normal for the WT enzyme and inverse for the double mutant. We discuss a chemical mechanism and the likely rate-limiting steps for both the wild-type and mutant forms of the enzyme.  相似文献   

9.
The chromosomally encoded aminoglycoside N-acetyltransferase, AAC(2')-Ic, of Mycobacterium tuberculosis has a yet unidentified physiological function. The aac(2')-Ic gene was cloned and expressed in Escherichia coli, and AAC(2')-Ic was purified. Recombinant AAC(2')-Ic was a soluble protein of 20,000 Da and acetylated all aminoglycosides substrates tested in vitro, including therapeutically important antibiotics. Acetyl-CoA was the preferred acyl donor. The enzyme, in addition to acetylating aminoglycosides containing 2'-amino substituents, also acetylated kanamycin A and amikacin that contain a 2'-hydroxyl substituent, although with lower activity, indicating the capacity of the enzyme to perform both N-acetyl and O-acetyl transfer. The enzyme exhibited "substrate activation" with many aminoglycoside substrates while exhibiting Michaelis-Menten kinetics with others. Kinetic studies supported a random kinetic mechanism for AAC(2')-Ic. Comparison of the kinetic parameters of different aminoglycosides suggested that their hexopyranosyl residues and, to a lesser extent, the central aminocyclitol residue carry the major determinants of substrate affinity.  相似文献   

10.
M E Byrne  D A Rouch  R A Skurray 《Gene》1989,81(2):361-367
Resistance to the aminoglycosides gentamicin, tobramycin and kanamycin (GmTmKmR) in Australian clinical strains of Staphylococcus aureus is commonly carried on the composite transposon Tn4001. The resistance gene aacA-aphD of Tn4001, which encodes a bifunctional AAC(6')-APH(2") modifying enzyme, is flanked by two 1324-bp inverted repeats, IS256L and IS256R, that are identical in sequence. Analysis of the IS256 sequence revealed structural features characteristic of IS elements including 26-bp imperfect terminal inverted repeats and a single open reading frame with coding capacity for a 45.6 kDa protein. The nucleotide sequence of IS256 described here, together with the sequence of the aacA-aphD gene reported previously [Rouch et al., J. Gen. Microbiol. 133 (1987) 3039-3052], completes the entire sequence of Tn4001, which totals 4566 bp.  相似文献   

11.
Draker KA  Northrop DB  Wright GD 《Biochemistry》2003,42(21):6565-6574
The aminoglycoside 6'-N-acetyltransferase AAC(6')-Ii from Enterococcus faecium is an important microbial resistance determinant and a member of the GCN5-related N-acetyltransferase (GNAT) superfamily. We report here the further characterization of this enzyme in terms of the kinetic mechanism of acetyl transfer and identification of rate-contributing step(s) in catalysis, as well as investigations into the binding of both acetyl-CoA and aminoglycoside substrates to the AAC(6')-Ii dimer. Product and dead-end inhibition studies revealed that AAC(6')-Ii follows an ordered bi-bi ternary complex mechanism with acetyl-CoA binding first followed by antibiotic. Solvent viscosity studies demonstrated that aminoglycoside binding and product release govern the rate of acetyl transfer, as evidenced by changes in both the k(cat)/K(b) for aminoglycoside and k(cat), respectively, with increasing solvent viscosity. Solvent isotope effects were consistent with our viscosity studies that diffusion-controlled processes and not the chemical step were rate-limiting in drug modification. The patterns of partial and mixed inhibition observed during our mechanistic studies were followed up by investigating the possibility of subunit cooperativity in the AAC(6')-Ii dimer. Through the use of AAC-Trp(164) --> Ala, an active mutant which exists as a monomer in solution, the partial nature of the competitive inhibition observed in wild-type dead-end inhibition studies was alleviated. Isothermal titration calorimetry studies also indicated two nonequivalent antibiotic binding sites for the AAC(6')-Ii dimer but only one binding site for the Trp(164) --> Ala mutant. Taken together, these results demonstrate subunit cooperativity in the AAC(6')-Ii dimer, with possible relevance to other oligomeric members of the GNAT superfamily.  相似文献   

12.
5-Deoxy-5-episubstituted arbekacin derivatives have been designed and efficiently synthesized. The synthetic compounds showed potent antibacterial activity against both Staphylococcus aureus, including methicillin-resistant S. aureus, and Pseudomonas aeruginosa. In particular, these derivatives were superior to arbekacin against MRSA strains expressing the bifunctional aminoglycoside-modifying enzyme AAC(6')-APH(2'). The antibacterial activity of the 5-deoxy-5-episubstituted arbekacin derivatives against Pseudomonas aeruginosa was markedly influenced by the efflux system of MexXY/OprM. The 6'-N-methyl derivative of the 5-epi arbekacin was effective against Pseudomonas aeruginosa expressing the aminoglycoside-modifying enzyme AAC(6').  相似文献   

13.
K Radika  D B Northrop 《Biochemistry》1984,23(22):5118-5122
Antibiotic resistance caused by the presence of the plasmid pMH67 is mediated by the aminoglycoside acetyltransferase AAC(6')-4, also known as kanamycin acetyltransferase. Bacteria harboring the plasmid are resistant to the kanomycins plus a broad range of other deoxystreptamine-containing aminoglycosides but not to the gentamicins XK62-2 and C1 which are substituted at the 6'-position. Substrate specificity studies on the purified enzyme, however, now show that the enzyme acetylates an even broader range of aminoglycosides, including the gentamicins XK62-2 and C1. The enzyme also accepts several acyl-CoA esters, which differ in nucleotide as well as in acyl chain length. Application of the method of analysis of structure-activity data developed earlier for gentamicin acetyltransferase [Williams, J. W., & Northrop, D. B. (1978) J. Biol. Chem. 253, 5908-5914] to the kinetic data obtained for AAC(6')-4 shows that the turnover of the acylation reaction is limited by catalysis and not by the rate of release of either the acetylated antibiotic or CoA. Most structural changes in aminoglycosides cause changes in rates of release, and only drastic changes, near the 6'-amino group, affect catalysis. The structural requirements on aminoglycosides for enzymatic activity run parallel to the structural requirements for antibacterial activity.  相似文献   

14.
Hegde SS  Dam TK  Brewer CF  Blanchard JS 《Biochemistry》2002,41(23):7519-7527
Kinetic and mechanistic studies on the chromosomally encoded aminoglycoside 6'-N-acetyltransferase, AAC(6')-Iy, of Salmonella enterica that confers resistance toward aminoglycosides have been previously reported [Magnet et al. (2001) Biochemistry 40, 3700-3709]. In the present study, equilibrium binding and the thermodynamic parameters of binding of aminoglycosides and acyl-coenzyme A derivatives to AAC(6')-Iy and of two mutants, C109A and the C109A/C70A double mutant, have been studied using fluorescence spectroscopy and isothermal titration calorimetry (ITC). Association constants for different aminoglycosides varied greatly (4 x 10(4)-150 x 10(4)) while the association constants of several acyl-coenzyme A derivatives were similar (3.2 x 10(4)-4.5 x 10(4)). The association constants and van't Hoff enthalpy changes derived from intrinsic protein fluorescence changes were in agreement with independently measured values from isothermal titration calorimetry studies. Binding of both aminoglycosides and acyl-coenzyme A derivatives is strongly enthalpically driven and revealed opposing negative entropy changes, resulting in enthalpy-entropy compensation. The acetyltransferase exhibited a temperature-dependent binding of tobramycin with a negative heat capacity value of 410 cal mol(-1) K(-1). Isothermal titration studies of acetyl-coenzyme A and tobramycin binding to mutant forms of the enzyme indicated that completely conserved C109 does not play any direct role in the binding of either of the substrates, while C70 is directly involved in aminoglycoside binding. These results are discussed and compared with previous steady-state kinetic studies of the enzyme.  相似文献   

15.
Isolates of Staphylococcus aureus obtained from a Brazilian university hospital were characterized in relation to resistance to gentamicin and related aminoglycosides. Thirty-six isolates were susceptible to methicillin (MSSA) and 14 were resistant (MRSA). All isolates were sensitive to nucleic acid-binding compounds. All MRSA isolates and one MSSA isolate were demonstrated to be resistant to gentamicin and were coincidentally resistant to amikacin, kanamycin, neomycin and tobramycin. Among the gentamicin sensitive MSSA isolates, five isolates were found to be resistant only to kanamycin/neomycin. The resistance to gentamicin (and related aminoglycosides: kanamycin and tobramycin) must be due to AAC(6')-APH(2") activity. As these isolates also showed resistance to neomycin, they must carry an additional genetic element, probably the one responsible for APH(3')III activity, which accounts for the high level of resistance to kanamycin and to amikacin. The resistance to kanamycin/neomycin in the gentamicin sensitive isolates could not be attributed to the AAD(4')(4") activity because of the tobramycin sensitivity, and so could be ascribed to the APH(3')III activity. Curing and transfer experiments, as well as electrophoresis procedures, indicate that gentamicin resistance in Staph. aureus strains here studied has, characteristically, chromosomal localization.  相似文献   

16.
The major mechanism of resistance to aminoglycosides in clinical bacterial isolates is the covalent modification of these antibiotics by enzymes produced by the bacteria. Aminoglycoside 2'-Ib phosphotransferase [APH(2')-Ib] produces resistance to several clinically important aminoglycosides in both Gram-positive and Gram-negative bacteria. Nuclear magnetic resonance analysis of the product of kanamycin A phosphorylation revealed that modification occurs at the 2'-hydroxyl of the aminoglycoside. APH(2')-Ib phosphorylates 4,6-disubstituted aminoglycosides with kcat/Km values of 10(5)-10(7) M-1 s-1, while 4,5-disubstituted antibiotics are not substrates for the enzyme. Initial velocity studies demonstrate that APH(2')-Ib operates by a sequential mechanism. Product and dead-end inhibition patterns indicate that binding of aminoglycoside antibiotic and ATP occurs in a random manner. These data, together with the results of solvent isotope and viscosity effect studies, demonstrate that APH(2')-Ib follows the random Bi-Bi kinetic mechanism and substrate binding and/or product release could limit the rate of reaction.  相似文献   

17.
Resistance of gram-negative bacilli to aminoglycoside antibiotics differs by region and country. Previous studies have demonstrated predominance of the nucleotidyltransferase ANL(2") as the mechanism of enzymatic resistance to gentamicin in the United States and many European countries (Federal Republic of Germany, Switzerland, Greece, Turkey) whereas the acetylating enzymes AAC(6') and AAC(3) were the principal causes of resistance to aminoglycosides in Japan and Chile. In the present comparison of 18 drug resistant isolates of E. coli and Klebsiella sp. from Czechoslovakia and the United States, with aminoglycoside-inactivating enzymes, ANT(2") characterized the most strains from both countries. In a higher number of isolates from Czechoslovakia however, the aminoglycoside resistance was mediated by AAC(3). In the majority of strains a simultaneous occurrence of two gentamicin-inactivating enzymes i.e. ANT(2"), plus AAC (2'), or AAC(6') or AAC(3) was observed. In amikacin resistant E. coli strains the mechanism of resistance was represented by production of AAC(6') or AAC*--an acetyltransferase with uncommon substrate profile. In all E. coli and K. pneumoniae strains from the United States apart from ANT(2") also AAC(2') was detected. This represents a broadening of the host range of aac(2') gene, the occurrence of which has been limited only to Providencia and Proteus strains.  相似文献   

18.
Aminoglycosides are broad-spectrum antibacterials to which some bacteria have acquired resistance. The most common mode of resistance to aminoglycosides is enzymatic modification of the drug by different classes of enzymes including acetyltransferases (AACs). Thus, the modification of aminoglycosides by AAC(2′) from Mycobacterium tuberculosis and AAC(3) from Escherichia coli was studied using aminoglycoside microarrays. Results show that both enzymes modify their substrates displayed on an array surface in a manner that mimics their relative levels of modification in solution. Because aminoglycosides that are modified by resistance-causing enzymes have reduced affinities for binding their therapeutic target, the bacterial rRNA aminoacyl-tRNA site (A-site), arrays were probed for binding to a fluorescently labeled oligonucleotide mimic of the A-site after modification. A decrease in binding was observed when aminoglycosides were modified by AAC(3). In contrast, a decrease in binding of the A-site is not observed when aminoglycosides are modified by AAC(2′). Interestingly, these effects mirror the biological functions of the enzymes: the AAC(3) used in this study is known to confer aminoglycoside resistance, while the AAC(2′) is chromosomally encoded and unlikely to play a role in resistance. These studies lay a direct foundation for studying resistance to aminoglycosides and can also have more broad applications in identifying and studying non-aminoglycoside carbohydrates or proteins as substrates for acetyltransferase enzymes.  相似文献   

19.
The rise of antibiotic resistance as a public health concern has led to increased interest in studying the ways in which bacteria avoid the effects of antibiotics. Enzymatic inactivation by several families of enzymes has been observed to be the predominant mechanism of resistance to aminoglycoside antibiotics such as kanamycin and gentamicin. Despite the importance of acetyltransferases in bacterial resistance to aminoglycoside antibiotics, relatively little is known about their structure and mechanism. Here we report the three-dimensional atomic structure of the aminoglycoside acetyltransferase AAC(6')-Ii in complex with coenzyme A (CoA). This structure unambiguously identifies the physiologically relevant AAC(6')-Ii dimer species, and reveals that the enzyme structure is similar in the AcCoA and CoA bound forms. AAC(6')-Ii is a member of the GCN5-related N-acetyltransferase (GNAT) superfamily of acetyltransferases, a diverse group of enzymes that possess a conserved structural motif, despite low sequence homology. AAC(6')-Ii is also a member of a subset of enzymes in the GNAT superfamily that form multimeric complexes. The dimer arrangements within the multimeric GNAT superfamily members are compared, revealing that AAC(6')-Ii forms a dimer assembly that is different from that observed in the other multimeric GNAT superfamily members. This different assembly may provide insight into the evolutionary processes governing dimer formation.  相似文献   

20.
The gene aacA4 encoding an aminoglycoside 6'-N-acetyltransferase, AAC(6')-4, was cloned from a natural multiresistance plasmid, and its nucleotide sequence was determined. The gene was 600 base pairs (bp) long, and the AAC(6')-4 had a calculated molecular size of 22.4 kilodaltons and an isoelectric point of 5.35. The sequence of the 17 N-terminal amino acids was determined from the purified enzyme. The AAC(6')-4 gene was part of a resistance gene cluster, and its expression was under the control of the regulatory sequences of the beta-lactamase encoded by Tn3. The five N-terminal amino acids were identical to those of the signal peptide of the Tn3-encoded beta-lactamase, and the entire 5' region of aacA4, as far as it was sequenced (354 bp, including the promoter and the ribosome-binding site sequences), was identical to that of the beta-lactamase gene. This led us to presume an in vivo fusion between the beta-lactamase and the acetyltransferase genes. The latter was followed, in a polycistronic arrangement, by an aminoglycoside 3",9-adenylyltransferase gene, aadA, with an intergenic region of 68 bp. At a distance of ca. 1.3 kilobases in the 3' direction, we found remnants of a second Tn3-like element specifying an active beta-lactamase. At their 5' extremities, the two incomplete copies of Tn3, which were in tandem orientation, were interrupted within the resolvase gene. We speculate that Tn3-related sequences have played a role in the process of selection and dissemination of the AAC(6')-4 gene, which specifies resistance to amikacin and related aminoglycosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号