首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
The novel reductase NCB5OR (NADPH cytochrome b5 oxidoreductase) resides in the ER (endoplasmic reticulum) and may protect cells against ER stress. Levels of BiP (immunoglobulin heavy-chain-binding protein), CHOP (CCAAT/enhancer-binding protein homologous protein) and XBP-1 (X-box-binding protein-1) did not differ in WT (wild-type) and KO (Ncb5or-null) tissues or MEFs (mouse embryonic fibroblasts), and XBP-1 remained unspliced. MEFs treated with inducers of ER stress demonstrated no change in Ncb5or expression and expression of ER-stress-induced genes was not enhanced. Induction of ER stress in beta-cell lines did not change Ncb5or expression or promoter activity. Transfection with Ncb5or-specific siRNA (small interfering RNA) yielded similar results. Microarray analysis of mRNA from islets and liver of WT and KO animals revealed no significant changes in ER-stress-response genes. Induction of oxidative stress in betaTC3 cells did not alter Ncb5or mRNA levels or promoter activity. However, KO islets were more sensitive to streptozotocin when compared with WT islets. MEFs incubated with nitric oxide donors showed no difference in cell viability or levels of nitrite produced. No significant differences in mRNA expression of antioxidant enzymes were observed when comparing WT and KO tissues; however, microarray analysis of islets indicated slightly enhanced expression of some antioxidant enzymes in the KO islets. Short-term tBHQ (t-butylhydroquinone) treatment increased Ncb5or promoter activity, although longer incubation times yielded a dose-dependent decrease in activity. This response appears to be due to a consensus ARE (antioxidant-response element) present in the Ncb5or promoter. In summary, NCB5OR does not appear to be involved in ER stress, although it may be involved in maintaining or regulating the redox status in beta-cells.  相似文献   

5.
6.
7.
8.
9.
Murine melanoma cells B16(F10) were stably transfected with a plasmid containing GFP gene linked to rat stress-inducible hsp70.1 gene promoter. Transfected cells show in vitro variable basal levels of fluorescence depending on stress response induced at physiological temperature by growth conditions. Lack of manipulations except medium change resulted in reduction of cellular fluorescence. GFP expression in experimental murine tumors dropped to levels undetectable at physiological temperature. Heat shock induced significant fluorescence of tumor cells both in vitro and in vivo. GFP protein could be a useful marker for studies of mammalian hsp70i gene promoters.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Parkin mutations in humans produce parkinsonism whose pathogenesis is related to impaired protein degradation, increased free radicals and abnormal neurotransmitter release. In this study, we have investigated whether partial proteasomal inhibition by epoxomicin, an ubiquitin proteasomal system (UPS) irreversible inhibitor, further aggravates the cellular effects of parkin suppression in midbrain neurons and glia. We observed that parkin null (PK‐KO) midbrain neuronal cultures are resistant to epoxomicin‐induced cell death. This resistance is due to increased GSH and DJ‐1 protein levels in PK‐KO mice. The treatment with epoxomicin increases, in wild type (WT) cultures, the pro‐apoptotic Bax/Bcl‐2 ratio, the phosphorylation of tau, and the levels of chaperones heat‐shock protein 70 and C‐terminal Hsc‐interacting protein, but none of these effects took place in epoxomicin‐treated PK‐KO cultures. Poly‐ubiquitinated proteins increased more in WT than in PK‐KO‐treated neuronal cultures. Parkin accumulated in WT neuronal cultures treated with epoxomicin. Markers of autophagy, such as LC3II/I, were increased in naïve PK‐KO cultures, and further increased after treatment with epoxomicin, implying that the blockade of the proteasome in PK‐KO neurons triggers the enhancement of autophagy. The treatment with l ‐buthionine‐S,R‐sulfoximine and the inhibition of autophagy, however, reverted the increase resistance to epoxomicin of the PK‐KO cultures. We also found that PK‐KO glial cells, stressed by growth in defined medium and depleted of GSH, were more susceptible to epoxomicin induced cell death than WT glia treated similarly. This susceptibility was linked to reduced GSH levels and less heat‐shock protein 70 response, and to activation of p‐serine/threonine kinase protein signaling pathway as well as to increased poly‐ubiquitinated proteins. These data suggest that mild UPS inhibition is compensated by other mechanisms in PK‐KO midbrain neurons. However the depletion of GSH, as happens in stressed glia, suppresses the protection against UPS inhibition‐induced cell death. Furthermore, GSH inhibition regulated differentially UPS activity and in old PK‐KO mice, which have depletion of GSH, UPS activity is decreased in comparison with that of old‐WT.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号