首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exogenous plant growth regulators are known to increase the efficiency of interspecific and intergeneric crosses. In vitro floret culture provides a defined system for assessing the importance of various plant growth regulators on the determinants of haploid production efficiency (seed set, embryos per seeds, and plants per embryos) in Hordeum vulgare × Hordeum bulbosum crosses. The individual and combined effects of three plant growth regulators (2,4-D, GA3 and kinetin) on in vitro seed growth, embryo development and haploid production efficiency were tested in floret culture of the cross H. vulgare, cultivar Klages × H. bulbosum. All treatments, except kinetin alone, produced larger seeds and more embryos/100 seeds than the control (no plant growth regulator). 2,4-D alone was superior to GA3 alone in haploid production efficiency (70.6 vs. 51.5) as measured by the number of plants regenerated/100 florets pollinated. Although kinetin +2,4-D+GA3 produced the largest seeds and embryos, no advantage over 2,4-D alone was observed in haploid production efficiency. 2,4-D alone or kinetin +2,4-D are recommended for the purpose of barley haploid production in floret culture using the bulbosum method.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid  相似文献   

2.
Interspecific hybridisations between Hordeum vulgare L. (cultivated barley) and H. bulbosum L. (bulbous barley grass) have been carried out to transfer desirable traits, such as disease resistance, from the wild species into barley. In this paper we report the results of an extensive backcrossing programme of triploid hybrids (H. vulgare 2x x H. bulbosum 4x) to two cultivars of H. vulgare. Progenies were characterised cytologically and by restriction fragment length polymorphism analysis and comprised (1) haploid and diploid H. vulgare plants, (2) hybrids and aneuploids, (3) single and double monosomic substitutions of H. bulbosum chromosomes into H. vulgare and (4) chromosomal rearrangements and recombinants. Five out of the seven possible single monosomic chromosome substitutions have now been identified amongst backcross progeny and will be valuable for directed gene introgression and genome homoeology studies. The presence amongst progeny of 1 plant with an H. vulgare-H. bulbosum translocated chromosome and one recombinant indicates the value of fertile triploid hybrids for interspecific gene introgression.  相似文献   

3.
R. A. Finch 《Chromosoma》1983,88(5):386-393
Chromosome elimination was studied in squash preparations of seeds of two different Hordeum crosses between diploid parents whose karyotypes allowed identification with unusual ease for Hordeum of the parental origins of the chromosomes being eliminated in each mitosis in embryos and endosperms. In both crosses, the mean chromosome number in hybrid tissues fell during several mitoses until nuclei became haploid in embryos and diploid in endosperms. Elimination was always uniparental, i.e. all chromosomes eliminated from a given tissue in a given cross were from the same parent. In H. marinum x H. vulgare cv. Tuleen 346, elimination involved the Tuleen 346 genome in the endosperm, but the H. marinum genome in the embryo. This is a good example of alternative elimination, i.e. uniparental elimination involving different parental genomes in different tissue of the same cross. In Tuleen 346 x H. bulbosum, the H. bulbosum genome was eliminated from both embryos and endosperms. — In H. marinum x Tuleen 346 endosperms, eliminated Tuleen 346 chromosomes were individually identifiable and tended to be eliminated in non-random order: the nucleolar chromosomes, T3-7 and T6-2 first, followed by chromosomes T5-1, T7-3, T2-6 and 4, with chromosome T1-5 last. — The nucleolar constrictions were expressed in eliminated satellite chromosomes from Tuleen 346, but not in those from H. marinum or H. bulbosum. Eliminated chromosomes differed from retained ones in having smaller centromeres and tending before, during and after elimination to occupy more peripheral regions of mitoses. Elimination may result primarily from specific suppression of genes involved in centromere function, perhaps by DNA methylation.  相似文献   

4.
Summary Interspecific crosses of Hordeum parodii (2n = 42) with H. bulbosum (2n = 14 or 28) and H. vulgare (2n = 14;, and of H. proaerum (2n = 42) with H. bulboswn, H. vulgare and H. parodii were made. Crosses between parodii and diploid bulbosum resulted in haploids (2n = 21) of parodii, whilst the crosses of parodii by tetraploid bulbosum or diploid vulgare gave hybrid progeny. The procerum by diploid bulbosum cross invariably produced haploids (2n = 21) of procerum, whereas procerum by tetraploid bulbosum or diploid vulgare crosses resulted in both hybrids and haploids of procerum. The cross between procerum and parodii gave hybrid progeny which did not reach maturity.Cytological observations on two-week-old embryos obtained from reciprocal crosses revealed chromosome variability (not less than 21 in any cell) in haploid producing crosses. This shows that chromosome elimination leads to haploid formation irrespective of which species was used as female parent.The results indicate that the ratio of the parental genomes in the zygote determines whether predominantly haploids or hybrids will be produced in any cross combination. Furthermore, procerum appears to be not only more efficient in eliminating bulbosum chromosomes in comparison with parodii, but also capable of eliminating vulgare chromosomes. The possibility of stability factors in overcoming chromosome elimination, a hierarchy of chromosome elimination and the general existence of genome balance for chromosome stability in interspecific crosses, are discussed.  相似文献   

5.
M. W. Humphreys 《Chromosoma》1978,65(4):301-307
Chromosome number in Hordeum vulgare x H. bulbosum hybrids ranged between the haploid and diploid number but with peaks in frequency occurring at the 14 and 7 chromosome level. This was reflected in a gradual change from hybrid morphology to that of haploid H. vulgare. The rate of chromosome elimination differed significantly between hybrids, while within each hybrid, differences in mean chromosome number were recorded between and within individual tillers. An increase in temperature from 25–30° C caused a significant increase in the rate of elimination of H. bulbosum chromosomes.  相似文献   

6.
Summary Diploid hybrids between Hordeum chilense and three other species, namely H. vulgare, H. bulbosum and Secale cereale, are described together with the amphidiploid of H. chilensexH. vulgare. Both the diploid hybrid and the amphidiploid of H. chilensexH. vulgare were chromosomally unstable, H. chilensexH. bulbosum was less so, while H. chilensexS. cereale was stable. Differential amphiplasty was found in all combinations. No homoeologous pairing was found in the Hordeum hybrids but in H. chilensexS. cereale there was chromosome pairing both within the two genomes and between the genomes.  相似文献   

7.
Uniparental elimination of chromosomes, which occurs in interspecific crosses between Hordeum vulgare (cultivated barley) and H. bulbosum (bulbous barley grass), is a process which can be used to produce doubled-haploid barley plants in breeding programs. We review the procedure of haploid production and the mechanism underlying selective elimination of one of the genomes during the early development of species hybrid embryos.  相似文献   

8.
Ho KM  Kasha KJ 《Genetics》1975,81(2):263-275
Genetic control over chromosome stability in the interspecific hybrid embryos of Hordeum vulgare and H. bulbosum has been hypothesized to reside on specific chromosomes. In this study, crosses between the primary trisomic lines for the seven different H. vulgare chromosomes and tetraploid H. bulbosum revealed that both chromosomes 2 and 3 of H. vulgare were involved in the control of chromosome elimination. Subsequent crosses using the available monotelotrisomics for chromosomes 2 and 3 led to the conclusion that both arms of chromosome 2 and the short arm of chromosome 3 most likely contain major genetic factors.—From the results of this study and the genome balance observed in the interspecific crosses between H. vulgare and H. bulbosum at the diploid and tetraploid cytotypes, it appears that the factors causing the elimination of the bulbosum chromosomes are located on the H. vulgare chromosome. These factors are offset or balanced by factors on the H. bulbosum chromosomes which, when present in sufficient dosage, either neutralize the effects of the vulgare factors or are able to "protect" the bulbosum chromosomes.  相似文献   

9.
Interrelationships between H. vulgare (2x=14) and H. bulbosum (2x=14; 4x=28) were estimated on the basis of the karyotypes and the pairing behaviour of the chromosomes in diploid, triploid and tetraploid hybrids obtained with the aid of embryo culture. — A comparison of the karyotypes of the two species revealed similarities as well as differences. It was concluded that at least 4 or more of the chromosomes were similar in morphology and probably closely related. — Diploid and tetraploid hybrids are rarely obtained and their chromosome numbers tend to be unstable whereas triploid hybrids (1 vulgare + 2 bulbosum genomes) were stable and relatively easy to produce. In the diploid hybrid only 40% of the meiotic cells contained 14 chromosomes while the numbers ranged from 7 to 16 in other cells. All hybrids exhibited pairing between the chromosomes of the two species. Diploid hybrids had a mean of 5.0 and a maximum of 7 bivalents per cell in those cells having 14 chromosomes. Triploid hybrids from crosses between 2x H. vulgare and 4x H. bulbosum exhibited a mean of 1.5 and a maximum of 5 trivalents per cell. In a hexaploid sector found following colchicine treatment of a triploid the mean frequencies of chromosome associations per cell were: 5.5I+8.0II+0.7III+3.7IV+0.3V+0.4VI. One unstable 27 chromosome hybrid obtained from crosses between the autotetraploid forms had a mean of 1.1 and a maximum of 4 quadrivalents per cell. The chromosome associations observed in these hybrids are consistent and are taken as evidence of homoeologous pairing between the chromosomes of the two species. Interspecific hybridization between these two species also reveals that chromosome stable hybrids are only obtained when the genomes are present in a ratio of 1 vulgare2 bulbosum. Based upon the results obtained, the possibility of transferring genetic characters from H. bulbosum into cultivated barley is discussed.  相似文献   

10.
Summary Interspecific crosses of Hordeum brachyantherum (2n = 28) and H. depressum (2n = 28) with H. bulbosum (2n = 14 or 28) and H. vulgare (2n = 14 or 28) were made. Crosses between brachyantherum and diploid bulbosum resulted in dihaploids (2n = 14) of brachyantherum and hybrids (2n = 21), whilst the crosses of brachyantherum by tetraploid bulbosum or vulgare gave hybrid progeny. Similarly, crosses between H. depressum and diploid bulbosum resulted in dihaploids (2n = 14) of depressum and hybrids (2n = 21), whereas depressum by tetraploid bulbosum or vulgare invariably produced hybrids.Cytological observations on 12 day old embryos obtained from these crosses revealed chromosome variability down to 14 in crosses with diploid bulbosum indicating thereby that chromosome elimination leads to haploid formation. Embryonic cells from the brachyantherum by diploid vulgare cross also exhibited a certain degree of chromosomal instability as micronuclei.The results indicate that the ratio of parental genomes in the zygote determines whether haploids or hybrids will be produced in crosses of brachyantherum or depressum with bulbosum. Furthermore, brachyantherum appears to be more efficient in eliminating bulbosum chromosomes in comparison with depressum.  相似文献   

11.
Summary One of the aims of the interspecific crossing programme between Hordeum vulgare L. and H. bulbosum L. has been to introgress desirable genes into barley from the wild species. However, despite their close taxonomic relationship there have been few reports of achieving this objective using amphidiploid hybrids. In order to broaden the range of available hybrids, partially fertile triploids between H. vulgare (2n = 2x = 14) and H. bulbosum (2n = 4x = 28) were developed and crossed with H. vulgare as female parent. From 580 progeny which were screened, eight putative single monosomic chromosome substitution lines and one double monosomic substitution were identified by cytological analysis. These involved the substitution of H. vulgare chromosome 1 (two lines), 6 (four lines), 6L (one line), 7 (one line) and 1 + 4 (one line) by their respective H. bulbosum homoeologues. The H. bulbosum chromosome was frequently eliminated during plant development, but it was observed regularly in pollen mother cells of two lines. However, pairing between the H. bulbosum chromosome and its H. vulgare homoeologue was low. Several of the lines were more resistant than their H. vulgare parents to powdery mildew (Erysiphe graminis DC. f.sp. hordei Em. Marchai), net blotch (Drechslera teres Sacc.) and scald (Rhynchosporium secalis (Oudem.) Davis). Apart from their use in studying genome relationships, their value to plant breeders will depend on the ease of inducing translocations between the parental chromosomes.  相似文献   

12.
Summary Hordeum arizonicum (2n=42) and H. lechleri (2n=42) were crossed with both H. bulbosum (2n=14 or 28) and H. vulgare (2n=14 or 28) and progeny plants were obtained through embryoculture. Crosses of arizonicum with diploid bulbosum invariably resulted in haploids (2n=21) of arizonicum, whereas arizonicum by tetraploid bulbosum or diploid vulgare crosses produced both hybrids and haploids of arizonicum. The lechleri by diploid bulbosum or diploid vulgare crosses resulted in haploids of lechleri, while lechleri by tetraploid bulbosum resulted in well differentiated embryos which failed to germinate.Hybrid embryos derived from the haploid producing crosses exhibit chromosome variability, suggesting that chromosome elimination leads to haploid formation.The results also indicate that the ratio of the parental genomes in the zygote is a critical factor which determines the chromosome elimination or stability in any cross combination. Furthermore, both arizonicum and lechleri appear to be of similar genetic strength in eliminating bulbosum and vulgare chromosomes. The possibility of stability factors in overcoming elimination and manipulation towards elimination are discussed.  相似文献   

13.
Ten different tetraploid wheat (Triticum turgidum) genotypes were pollinated with maize (Zea mays). Fertilization was achieved in all ten genotypes and no significant difference in fertilization frequency between the tetraploid wheat genotypes was detected. A mean of 41.1% of pollinated ovaries contained an embryo. All these crosses were characterized by the elimination of the maize chromosomes, and the resulting embryos were haploids. Six of the tetraploid wheat genotypes were also pollinated with Hordeum bulbosum. Fertilization frequencies with H. bulbosum were much lower (mean=13.4%), and significant differences between the tetraploid wheat genotypes were detected. Observation of pollen tube growth revealed that part of the incompatibility reaction between tetraploid wheats and H. bulbosum was due to an effect similar to that of the Kr genes, namely pollen tube growth inhibition. These results indicate that pollinations with maize may have potential as a broad spectrum haploid production system for tetraploid wheats. Present address: Agriculture Canada, Research Branch, Central Experimental Farm, Bldg 50, Ohawa, Ontario, Canada K1A OC6  相似文献   

14.
The existence of hybrid dwarfs from intraspecific crosses in wheat (Triticum aestivum) was described 100 years ago, and the genetics underlying hybrid dwarfness are well understood. In this study, we report a dwarf phenotype in interspecific hybrids between wheat and rye (Secale cereale). We identified two rye lines that produce hybrid dwarfs with wheat and have none of the hitherto known hybrid dwarfing genes. Genetic analyses revealed that both rye lines carry a single allelic gene responsible for the dwarf phenotype. This gene was designated Hdw‐R1 (Hybrid dwarf‐R1). Application of gibberellic acid (GA3) to both intraspecific (wheat–wheat) and interspecific (wheat–rye) hybrids showed that hybrid dwarfness cannot be overcome by treatment with this phytohormone. Histological analysis of shoot apices showed that wheat–rye hybrids with the dwarf phenotype at 21 and 45 days after germination failed to develop further. Shoot apices of dwarf plants did not elongate, did not form new primordia and had a dome‐shaped appearance in the seed. The possible relationship between hybrid dwarfness and the genes responsible for the transition from vegetative to generative growth stage is discussed.  相似文献   

15.
Hordeum bulbosum L. is a source of disease resistance genes that would be worthwhile transferring to barley (H. vulgare L.). To achieve this objective, selfed seed from a tetraploid H. vulgare x H. bulbosum hybrid was irradiated. Subsequently, a powdery mildew-resistant selection of barley phenotype (81882/83) was identified among field-grown progeny. Using molecular analyses, we have established that the H. bulbosum DNA containing the powdery mildew resistance gene had been introgressed into 81882/83 and is located on chromosome 2 (2I). Resistant plants have been backcrossed to barley to remove the adverse effects of a linked factor conditioning triploid seed formation, but there remains an association between powdery mildew resistance and non-pathogenic necrotic leaf blotching. The dominant resistance gene is allelic to a gene transferred from H. bulbosum by co-workers in Germany, but non-allelic to all other known powdery mildew resistance genes in barley. We propose Mlhb as a gene symbol for this resistance.  相似文献   

16.
This paper describes the first extensive genetic map of Hordeum bulbosum, the closest wild relative of cultivated barley. H. bulbosum is valuable for haploid production in barley breeding, and because of desirable agronomic characteristics, it also has potential for trait introgression into barley. A H. bulbosum map will assist introgression and provide a basis for the identification of QTLs for crossability with barley and other potentially useful genes. The present study used a population of 111 individuals from a PB1×PB11 cross to develop a genetic linkage map of diploid H. bulbosum (2n=2x=14) based on barley, wheat and other ”anchor” cereal RFLP markers previously mapped in other species. Because of the cross-pollinating and highly polymorphic nature of H. bulbosum, up to four alleles showed segregation at any one locus, and five different segregation types were found. This enabled maps to be developed for the PB1 and PB11 parents, as well as a combined map. In total, 136 RFLP loci were mapped with a marker coverage of 621 cM. The markers were generally colinear with barley but H. bulbosum had less recombination in the centromeric regions and similar or more in the distal regions. Cytological studies on pollen mother cells at metaphase-I showed marked distal localization of chiasmata and a frequency consistent with the genetic map length. This study showed that H. bulbosum was highly polymorphic, making it suitable for trait analysis and supplementing maps of barley. Received: 20 November 2000 / Accepted: 5 January 2001  相似文献   

17.
Summary Seeds formed in crosses Hordeum lechleri (6x) x H. vulgare (2x and 4x), H. arizonicum (6x) x H. v. (2x), H. parodii (6x) x H. v. (2x), and H. tetraploidum (4x) x H. v. (2x) produced plants at high or rather high frequencies through embryo rescue. Giemsa C-banding patterns were used to analyze chromosomal constitutions and chromosomal locations on the methaphase plate. Among 100 plants obtained from H. vulgare (2x) crosses, 32 plants were aneuploid with 2n=29 (1), 28 (3), 27 (13), 26 (5), 25 (4), 24 (4), or 22 (2); 50 were euploid (12 analyzed), and 18 were polyhaploid (5 analyzed). Four plants had two sectors differing in chromosome number. Two of four hybrids with H. vulgare (4x) were euploid and two were aneuploid. Parental genomes were concentrically arranged with that of H. vulgare always found closest to the metaphase centre. Many plants showed a certain level of intraplant variation in chromosome numbers. Except for one H. vulgare (4x) hybrids, this variation was restricted to peripherally located non-H. vulgare genomes. This may reflect a less firm attachment of the chromosomes from these genomes to the spindle. Interplant variation in chromosome numbers was due to the permanent elimination or, far less common, duplication of the centrally located H. vulgare chromosomes in all 34 aneuploids, and in a few also to loss/gain of non-H, vulgare chromosomes. This selective elimination of chromosomes of the centrally located genome contrasts conditions found in diploid interspecific hybrids, which eliminate the peripherally located genome. The difference is attributed to changed genomic ratios. Derivatives of various H. vulgare lines were differently distributed among euploid hybrids, aneuploids, and polyhaploids. Chromosomal constitutions of hypoploid hybrids revealed a preferential elimination of H. vulgare chromosomes 1, 5, 6, and 7, but did not support the idea that H. vulgare chromosomes should be lost in a specific order. H. vulgare SAT-chromosomes 6 and 7 showed nucleolar dominance. Aneuploidy is ascribed to the same chromosome elimination mechanism that produces haploids in cross-combinations with H. vulgare (2x). The findings have implications for the utilization of interspecific Hordeum hybrids.  相似文献   

18.
Haploids (monoploids) can be produced in cultivated barley (Hordeum vulgare) by pollination with Hordeum bulbosum and the subsequent elimination of H. bulbosum chromosomes [13]. Pollen of H. bulbosum was gamma-irradiated at doses of 1 to 8 kR to determine if it would lead to a more rapid chromosome elimination and subsequently a higher frequency of haploid barley seedlings. Early embryo development was slower following low dosages of irradiation than at higher dosages and there was no significant improvement in haploid production. At higher dosages, the frequencies of seed set, embryos and haploid seedlings declined. Double fertilization is an apparent pre-requisite of haploid formation and the “intrinsic vigour” of the bulbosum nucleus after fertilization appears to be an important factor in this system of haploid formation.  相似文献   

19.
The effect of rye chromosomes on polyembryony was studied for reciprocal hybrid combinations between (Hordeum vulgare L.)-Triticum aestivum L. alloplasmic recombinant lines and five wheat T. aestivum L. (cultivar Saratovskaya 29)-rye Secale cereale L. (cultivar Onokhosikaya) substitution lines: 1R(1D), 2R(2D), 3R(3B), 5R(5A), and 6R(6A), and for direct hybrid combinations between the [H. marinum ssp. gussoneanum (H. geniculatum All.)]-T. aestivum alloplasmic recombinant line and the wheat-rye substitution lines 1R(1A), 1R(1D), and 3R(3B). Chromosomes 1R and 3R of rye cultivar Onokhoiskaya proved to affect the expression of polyembryony in the hybrid combinations that involved the alloplasmic recombinant lines of common wheat as maternal genotypes. Based on this finding, polyembryony was regarded as a phenotypic expression of nuclear-cytoplasmic interactions where an important role is played by rye chromosomes 1R and 3R and the H. vulgare cytoplasm. Consideration is given to the association between the effect of rye chromosomes 1R and 3R on polyembryony in the [(Hordeum)-T. aestivum × wheat-rye substitution lines] hybrid combinations and their stimulating effect on the development on androgenic embryoids in isolated anther cultures of the wheat-rye substitution lines. Original Russian Text ? L.A. Pershina, T.S. Rakovtseva, L.I. Belova, E.P. Devyatkina, O.G. Silkova, L.A. Kravisova, A.I. Shchapova, 2007, published in Genetika, 2007, Vol. 43, No. 7, pp. 955–962.  相似文献   

20.
A crossing programme including 30 species and 40 cytotypes within the genusHordeum was undertaken. Viable hybrids were obtained in 302 combinations, 15 of which were intraspecific. Differences in seed set and in germination were observed in crosses between different groups of species. Obtaining crosses between different taxonomic groups was generally more difficult when diploid material was used. Some species, e.g.,H. lechleri, H. jubatum, andH. brachyantherum showed a higher crossability than others. The chromosome numbers of the hybrids were usually those expected from the parental numbers but aneuploid series around the expected numbers were rather frequent. Three cases of unreduced gametes were found. Selective chromosome elimination was restricted to combinations including eitherH. vulgare orH. bulbosum.—Despite a very diverse morphology, all South American diploid species together with the two North American diploidsH. intercedens andH. pusillum appear to be closely related. The hexaploid American speciesH. procerum, H. lechleri, andH. arizonicum are also related. The two North American tetraploid speciesH. jubatum andH. brachyantherum sometimes form semifertile hybrids. The Asiatic speciesH. roshevitzii appears to be related to both North and South American taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号