首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The in vitro incorporation of [3H]leucine into immunoprecipitable follicle-stimulating hormone (FSH) and luteinizing hormone (LH) was assessed for pituitaries from pony mares treated with testosterone propionate (TP) or oil (controls). Mares were treated every other day with TP (n = 4) at 350 micrograms/kg of body weight or with an equivalent volume of oil (n = 4). One day following the sixth injection of TP, each mare received an intravenous injection of gonadotropin releasing hormone (GnRH) at 1.0 micrograms/kg body weight and was bled frequently for 4 h. Treatment of mares with TP reduced FSH (P less than 0.05) and LH (P less than 0.01) concentrations in daily blood samples and increased (P less than 0.01) the amount of FSH secreted in response to GnRH compared with control mares. Incorporation of [3H]leucine into immunoprecipitable FSH was also greater (P less than 0.01) in pituitaries from TP-treated mares compared with control mares on both a per mg tissue and per anterior pituitary basis. The amount of LH secreted after GnRH, the amount left in the pituitary and the incorporation of [3H]leucine into LH were not affected by treatment. These results confirm earlier conclusions drawn from indirect evidence that androgens increase the production of FSH in the mare.  相似文献   

2.
Sixteen intact cyclic mares were treated on the fourth day of estrus and then every other day for a total of six injections with 1) testosterone propionate, 2) dihydrotestosterone (DHT) benzoate, 3) estradiol (E2) benzoate or 4) safflower oil. Mares were given gonadotropin releasing hormone (GnRH) on Day 3 of estrus (pretreatment) and again 24 h after the last steroid or oil injection. Treatment with testosterone propionate resulted in a greater (P less than 0.05) follicle-stimulating hormone (FSH) response to the second injection of GnRH compared with all other treatments. Treatment with DHT benzoate also resulted in greater (P less than 0.05) FSH response to GnRH compared with control and E2 benzoate-treated mares. Testosterone propionate and E2 benzoate administration suppressed (P less than 0.05) the normal diestrous rise in FSH concentrations exhibited by the control and DHT benzoate-treated mares. Steroid treatment did not affect the luteinizing hormone (LH) response to GnRH, although testosterone propionate treatment did suppress concentrations of LH in daily blood samples during Days 3 to 6 of treatment. It is concluded that testosterone's effect on FSH after GnRH treatment observed in this and previous experiments can be attributed to two different properties of the hormone or its metabolites acting simultaneously. That is, testosterone increased the secretion of FSH in response to GnRH as did DHT (an androgenic effect). At the same time, testosterone suppressed FSH concentrations in daily blood samples in a manner identical to that of E2 benzoate (an estrogenic effect).  相似文献   

3.
Five lighthorse mares were actively immunized against gonadotropin releasing hormone (GnRH) to determine the relative importance of this hypothalamic hormone in the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Five mares immunized against the conjugation protein served as controls. Mares were initially immunized in November and received secondary immunizations 4 wk later, and then at 6-wk intervals until ovariectomy in June. All mares immunized against GnRH exhibited an increase (p less than 0.01) in the binding of tritiated GnRH by plasma, an indication that antibodies against this hormone had been elicited. Concentrations of LH, FSH and progesterone in weekly blood samples were lower (p less than 0.05) in GnRH-immunized mares than in controls after approximately 4 mo of immunization. However, the LH concentrations were affected to a greater degree than were FSH concentrations. All five control mares exhibited normal cycles of estrus and diestrus in spring, whereas no GnRH-immunized mare exhibited cyclic displays of estrus up to ovariectomy. All mares were injected intravenously with a GnRH analog (which cross-reacted less than 0.1% with the anti-GnRH antibodies) in May, after all control mares had displayed normal estrous cycles, to characterize the response of LH and FSH in these mares; two days later, the mares were injected with GnRH. The LH response to the analog, which was assessed by net area under the curve, was lower (p less than 0.01) by approximately 99% in mares immunized against GnRH than in control mares. In contrast, the FSH response to the analog was similar for both groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
These experiments tested the hypothesis that administration of steroid hormones to ovariectomized (OVX) mares during the vernal transition to the breeding season would influence LH and FSH secretion. Circulating gonadotropin concentrations, response to exogenous GnRH, and pituitary gonadotropin content were monitored. Experiments 1 and 2 were conducted, beginning 10 March, and 3 February, respectively, utilizing a total of 30 long-term OVX pony mares. In experiment 1, mares were administered vehicle (n = 5) or estradiol-17 beta (E2, n = 5, 5 mg/3 ml sesame oil), twice daily for 16 days. Blood samples were collected daily for assessment of circulating LH and FSH concentrations. On Day 10 of treatment, 400 micrograms GnRH were administered to all mares. LH increased significantly over days of treatment in the estradiol-treated group, but pituitary response to GnRH tended to be less than in control mares. Circulating FSH tended to decline over days of treatment in estradiol-treated mares, and the pituitary response to GnRH was significantly reduced. Pituitary LH, but not FSH, was increased on Day 16 of treatment with estradiol. In experiment 2, 20 OVX mares received, twice daily, vehicle (n = 5), E2, n = 5; 5 mg), progesterone (P4, n = 5; 100 mg), or progesterone plus estradiol (P4/E2, n = 5; 100 + 5 mg). Treatment continued for 14 days. GnRH (100 micrograms) challenges were administered on Days 6 and 13 of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Before castration, the mean plasma concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) did not differ between FF and ++ Booroola rams. After castration, mean LH and FSH concentrations increased after 8 h, and for the next 14 days the rate of increase in FSH, but not LH, secretion was significantly faster in FF than in ++ rams (P less than 0.05). Mean FSH concentrations over this period were significantly higher in FF than in ++ rams (P less than 0.05). In both genotypes, the ranked FSH values did not significantly change their order over time, i.e. a significant within-ram effect was noted (P less than 0.05). Repeated-measures analysis of variance indicated a significant effect of genotype on mean FSH secretion (P less than 0.05) and a significant effect of sire in the FF (P less than 0.05), but not the ++ (P = 0.76), genotype. From Day 28 to Day 58 after castration, FSH and LH concentrations were variable and no overall increases in concentrations were observed. The mean concentrations of both hormones over this period were not related to genotype. There were no gene-specific differences in pulsatile LH secretion 14 weeks after castration. However, the mean LH, but not FSH, response to a bolus injection of 25 micrograms of gonadotrophin-releasing hormone (GnRH) was significantly higher in FF than in ++ rams (P less than 0.05) and this was not significantly affected by sire. These studies support the hypothesis that the F gene is expressed in adult rams, in terms of pituitary responsiveness to an injection of GnRH and to the removal of the testes, but it is not clear from this study whether the influence of sire is related to or independent of the apparent gene-specific differences.  相似文献   

6.
A study was conducted to evaluate the effectiveness of gonadotropin-releasing hormone (GnRH) pulse infusion to stimulate follicular development and induce ovulation in seasonally anestrous standardbred mares. Seventeen mares were selected for use in this experiment, on the basis of a previous normal reproductive history, and were housed under a photoperiod of 8L:16D beginning one week prior to the start of the experiment (second week in January). Mares were infused with 20 micrograms (n = 7) or 2 micrograms (n = 6) GnRH/h, or were subjected to photoperiod treatment only (controls, n = 4). Serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and progesterone did not vary, and neither significant follicular development nor ovulation was observed in any control mare throughout the experimental period (greater than 60 days). By contrast, both groups of GnRH-treated mares showed elevated serum concentrations of LH and FSH within one day after the start of infusion. Mares infused with 20 micrograms GnRH/h had at least one follicle greater than or equal to 25 mm in 7.4 +/- 1.3 (mean +/- SEM) days following the start of infusion, and ovulated in 12.0 +/- 0.7 days. In the 2-microgram-GnRH/h treatment group, a 25-mm follicle was detected in 5.7 +/- 0.7 days, and ovulation occurred after 10.0 +/- 0.3 days of infusion. Ovulation in every instance was followed by a functional luteal phase, as indicated by the profiles of progesterone secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We wish to use a gonadotrophin-releasing hormone (GnRH) antagonist in the mare as a tool for investigating the control of the oestrous cycle. The aim of this study was to test the effectiveness of the antagonist cetrorelix by testing both in vitro, using perifused equine anterior pituitary cells, and in vivo in seasonally acyclic mares. Pituitary cells were prepared and after 3-4 days incubation, loaded onto columns and given four pulses of GnRH (at 0, 30, 60 and 90 min; dose-response study). After the second GnRH pulse, infusion of cetrorelix began (0, 100, 1000 and 2000 pmol/l) and continued until the end of the experiment. To mimic luteal phase conditions, cells were pre-incubated and perifused with progesterone (25 nmol/l) and GnRH pulses given at 0, 90, 180 and 270 min. Cetrorelix (0 or 1000 pmol/l) began after the second GnRH pulse. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations were measured in 5 min fractions. Both FSH and LH response areas (above baseline) after GnRH were inhibited by 1000 pmol/l cetrorelix (P < 0.01, P < 0.01, respectively) but not by 100 pmol/l cetrorelix. Similarly, in the presence of progesterone, cetrorelix inhibited the FSH (P < 0.001) and LH (P = 0.0002) response area. Seasonally acyclic mares, pre-treated for 3 days with progesterone (150 mg i.m. per day) were given cetrorelix as (i) a loading dose of 1 microg/kg then infusion at 2.2 ng/(kg min) for 90 min, (ii) a s.c. injection at 20 microg/kg, (iii) infusion at 2.2 ng/(kg min) for 48 h, and (iv) no cetrorelix (control mares). At 90 min, 6, 24 and 48 h after cetrorelix was first administered, mares were given a bolus injection of GnRH (22.2 ng/kg i.v.) and the FSH and LH responses measured. All doses of cetrorelix inhibited the FSH response at 90 min. The response was no longer suppressed at 6 h in the 90 min infusion group, showing a rapid recovery from inhibition. At 24 h, the FSH responses in the injected and 48 h infusion group were suppressed. The LH concentrations were low and showed no significant changes. This study has defined the time course and dose of cetrorelix with respect to its effect on FSH in the horse. It is concluded that cetrorelix could be used to elucidate the role of FSH in follicular development in cyclic mares.  相似文献   

8.
Standard bred mares that were cycling normally were treated beginning on Days 9 or 10 of the oestrous cycle with repeated pulses of GnRH (20 micrograms/h) and/or a single injection of prostaglandin (PG)F-2 alpha (alfaprostol, 3 mg), and were subsequently bled and palpated daily until the next ovulation. GnRH treatment increased serum concentrations of LH and progesterone at 4 days after the start of treatment compared to controls. The combination of PGF-2 alpha + GnRH treatment resulted in an immediate decline in serum progesterone values, and subsequently decreased the interval to next ovulation by 4.5 days compared to controls. Mean serum concentrations of FSH were not different among treatment groups 4 days after the start of treatment, and there was a consistent trend among all treatment groups for decreasing concentrations of FSH within the 6 days before ovulation. We conclude that, under our experimental conditions, pulsatile administration of GnRH provides a short-term luteotrophic stimulus, probably by the elevation in serum LH, but that this stimulus cannot indefinitely prevent the luteolytic effects of exogenously administered PGF-2 alpha. Although GnRH treatment combined with PGF-2 alpha injection hastened the impending ovulation, this regimen was no more effective than PGF-2 alpha treatment alone.  相似文献   

9.
Cycling standardbred mares were infused with saline or 20 micrograms gonadotropin-releasing hormone (GnRH) in a pulsatile pattern (one 5-sec pulse/h, 2 h or 4 h) beginning on Day 16 of the estrous cycle. Although serum concentrations of luteinizing hormone (LH) increased significantly earlier in all three GnRH-treated groups (within one day of the initiation of infusion) compared to saline-infused controls, there were no differences in peak periovulatory LH concentrations among treatments (overall mean +/- SEM, 8.98 +/- 0.55 ng/ml). The number of days from the start of treatment to ovulation was significantly less in mares infused with 20 micrograms GnRH/h (mean +/- SEM, 2.9 +/- 0.6 days after the initiation of treatment, or 18.9 days from the previous ovulation; N = 7) compared to mares treated with saline (5.9 +/- 0.3 days, or 21.9 days from previous ovulation; N = 7) or 20 micrograms GnRH per 4 h (5.4 +/- 0.9 days or 21.4 days from previous ovulation; N = 5). Although mares infused with 20 micrograms GnRH/2 h ovulated after 4.3 +/- 0.7 days of treatment (Day 20.3; N = 7), this was not significantly different from either the control or 20 micrograms GnRH/h treatment groups. Neither the duration of the resulting luteal phase nor the length of the estrous cycle was different between any of the treatment groups (combined means, 14.7 +/- 0.2 days and 21.3 +/- 0.4 days, respectively). We conclude that pulsatile infusion of GnRH is effective in advancing the time of ovulation in cycling mares, but that the frequency of pulse infusion is a critical variable.  相似文献   

10.
In Study 1, semen was collected using a standardized electroejaculation procedure. Males (N = 8) produced ejaculates with a high incidence of sperm abnormalities (77 +/- 3.3%). After electroejaculation under anaesthesia, serum cortisol concentrations increased (P less than 0.05), while testosterone concentrations decreased (P less than 0.05) and LH and FSH concentrations were unchanged (P less than 0.05) over a 2-h bleeding period. In Study 2, male and female leopards were bled at 5-min intervals for 3 h and given (i.v.): (1) saline (N = 2/sex); (2) GnRH (1 microgram/kg body weight) 30 min after the onset of sampling (N = 5/sex); or (3) ACTH (250 micrograms) at 30 min followed by GnRH 1 h later (N = 5/sex). Basal concentrations of serum LH, FSH and cortisol were comparable (P greater than 0.05) between male and female leopards. After GnRH, peak LH concentrations were 2-fold greater (P less than 0.05) in males than females while FSH responses were similar. In males, testosterone concentrations increased 2-3-fold following GnRH. After ACTH, serum cortisol concentrations doubled within 15 min in both sexes. Administration of ACTH 1 h before GnRH did not affect GnRH-induced LH or FSH release (P greater than 0.05); however, testosterone secretion was only 30% of that observed after GnRH alone (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The response of serum luteinizing hormone (LH) to naloxone, an opiate antagonist, and gonadotropin-releasing hormone (GnRH) was measured in cows in late pregnancy to assess opioid inhibition of LH. Blood samples were collected at 15-min intervals for 7 h. In a Latin Square arrangement, each cow (n = 6) received naloxone (0, 0.5, and 1.0 mg/kg BW, i.v.; 2 cows each) at Hour 2 on 3 consecutive days (9 +/- 2 days prepartum). GnRH (7 ng/kg body weight, i.v.) was administered at Hour 5 to all cows on each day. Mean serum LH concentrations (x +/- SE) before naloxone injection were similar (0.4 +/- 0.1 ng/ml), with no serum LH pulses observed during the experiment. Mean serum LH concentrations post-naloxone were similar (0.4 +/- 0.1 ng/ml) to concentrations pre-naloxone. Mean serum LH concentrations increased (p less than 0.05) following GnRH administration (7 ng/kg) and did not differ among cows receiving different dosages of naloxone (0 mg/kg, 1.44 +/- 0.20; 0.5 mg/kg, 1.0 +/- 0.1; 1.0 mg/kg, 0.9 +/- 0.1 ng/ml). In Experiment 2, LH response to naloxone and GnRH was measured in 12 ovariectomized cows on Day 19 of estrogen and progesterone treatment (5 micrograms/kg BW estrogen: 0.2 mg/kg BW progesterone) and on Days 7 and 14 after steroid treatment. On Day 19, naloxone failed to increase serum LH concentrations (Pre: 0.4 +/- 0.1; Post: 0.4 +/- 0.1 ng/ml) after 0, 0.5, or 1.0 mg/kg BW.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
To assess the changing responsiveness of pituitary gonadotropes to gonadotropin releasing hormone (GnRH) during development, 5 male and 5 female rhesus monkeys were studied. Three monkeys of each sex were tested periodically with a subcutaneous injection of 500 micrograms of GnRH dissolved in 50% polyvinylpyrrolidone (PVP) beginning at 2 to 4 weeks of age and continuing into young adulthood. The remaining 4 monkeys received injections of the vehicle (PVP) alone and served as controls. Serum concentrations of bioactive luteinizing hormone (LH) were determined by an interstitial cell testosterone bioassay, and follicle-stimulating hormone (FSH) levels were measured by radioimmunoassay. Baseline FSH levels in the 5 female neonatal monkeys were higher than those of the 5 male neonatal monkeys during the first 2 months of life. In both sexes, FSH concentrations decreased with age, and FSH was barely detectable by 6 months. Baseline LH values in the 5 female monkeys declined during the first 6 months of the study and were undetectable (less than 0.5 micrograms/ml) at 6 months of age. Baseline LH levels in 4 of the 5 neonatal males also declined to undetectable concentrations by 6 months of age. During the first 3 months of life, there was a striking increase in the serum concentrations of both LH and FSH following GnRH. Although the LH responses to GnRH (delta LH) were similar in males and females of comparable ages, the FSH responses (delta FSH) were considerably greater in the female monkeys. In the males, the delta LH exceeded the delta FSH, whereas in the females, the delta FSH were greater than the delta FSH. In both sexes, the delta LH and delta FSH generally were greatest in the youngest monkeys and decreased gradually with increasing age. By 6 months, the gonadotropin responses to GnRH either were undetectable (males) or very small (females). After 6 months there was no longer an increase in serum gonadotropins after GnRH in either sex until 1.5-4 years (females) or 3 years (males) of age. The delta LH in response to GnRH in the male monkeys 3-5 years of age were comparable to the responses during the first month after birth. Serum concentrations of FSH in the adult males, however, did not increase after GnRH. In the female monkeys, serum levels of LH and FSH increased after GnRH at 1.5 years (1 monkey) and 4 years (2 monkeys) of age. The delta LH were similar to those of the 1- to 2-month-old female monkeys. The delta FSH, however, were variable and were approximately 20% of the neonatal response. In these young adult female monkeys the delta LH exceeded the delta FSH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Male (N = 8) and female (N = 8) pigs were assigned to receive saline or a potent GnRH antagonist ([Ac-D2Nal1,D4-Cl-Phe2,D-Trp3,D-Arg6, D-Ala10]- GnRH*HOAc; 1 mg/kg body weight) at 14 days of age. The GnRH antagonist caused LH to decline (P less than 0.01) from 1.7 ng/ml at 0 h to less than 0.5 ng/ml during 4-32 h in males and females. Concentrations of FSH in gilts declined slowly from 75 +/- 8 to 56 +/- 5 ng/ml (P less than 0.05) at 32 h. In males FSH was low (5.7 +/- 0.5 ng/ml) at 0 h and did not change significantly. To observe the effect of long-term treatment with GnRH antagonist, 10 male and 10 female pigs, 3 days of age, were treated with saline or 1 mg GnRH antagonist per kg body weight every 36 h for 21 days. Concentrations of LH were reduced (P less than 0.01) to 0.2-0.4 ng/ml throughout the experimental period in male and female piglets treated with GnRH antagonist. Plasma FSH increased in control females, but remained suppressed (P less than 0.001) in females treated with GnRH antagonist. Treatment with the GnRH antagonist suppressed FSH levels in males on Days 8 and 16 (P less than 0.05), but not on Day 24. Treatment of females with the GnRH antagonist did not influence (P greater than 0.10) oestradiol-17 beta concentrations. Administration of GnRH antagonist to males suppressed testosterone and oestradiol-17 beta values (P less than 0.01) and reduced testicular weight (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Four groups of mares, representing anestrus (AN; n = 8), early transition (ET; n = 7), late transition (LT; n = 8) and estrus (EST; n = 12) were used to examine changes in the hypothalamus and anterior pituitary during the period of transition from winter anestrus into the breeding season. Mares were of mixed breeding, between the ages of 3 and 20 years, and had shown normal patterns of estrous behavior and ovulation during the breeding season previous to this experiment. Hypothalamic content of gonadotropin-releasing hormone (GnRH) and anterior pituitary content of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were determined by radioimmunoassay. The number of receptors for GnRH in anterior pituitary tissue was also determined. There was no effect of stage of transition into the breeding season on receptors for GnRH or content of FSH (p greater than 0.05). Likewise, content of GnRH in the hypothalamus did not differ between the four groups (p greater than 0.05). However, pituitary content of LH increased progressively from anestrus to the breeding season (p less than 0.05). Means for the AN, ET, LT and EST groups were 1.1 +/- 0.2, 2.2 +/- 0.3, 6.3 +/- 1.4 and 15.2 +/- 1.8 micrograms LH/mg pituitary, respectively. In addition, serum concentrations of LH associated with the first ovulation of the year for 5 of the EST mares were significantly lower (p less than 0.01) than those associated with the second ovulation of the year.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Effects of season, postpartum interval and short-term weaning were investigated on luteinizing hormone (LH) secretion in ewes. Blood samples were collected at 10-min intervals for 4 h (basal period). Then gonadotropin-releasing hormone (GnRH) was administered and 10 more blood samples were collected over an additional 4 h period. The effects of day post partum (5, 20 or 40) and short-term weaning (weaned Day 37, tested Day 40 post partum) on basal and GnRH-induced LH secretion were tested. Mean basal concentrations of LH for ewes on Day 5, 20 or 40 post partum ranged from 1.6 to 4.6 ng/ml and did not differ. Mean concentrations of LH during the post-GnRH sampling interval were greater (P<0.01) for ewes bled on Day 20 or 40 post partum (12.3 and 11.8 ng/ml, respectively) than for ewes bled on Day 5 or for unbred control ewes (6.7 and 5.8 ng/ml, respectively). Weaning on Day 37 depressed GnRH-induced LH secretion on Day 40 post partum (8.18 ng/ml; P<0.05). Seasonal changes in LH secretion on Day 20 or 40 post partum in January, March or June lambing ewes were also tested. There was no difference in basal or GnRH-induced LH secretion between Day 20 or 40 post partum among groups in January or March.. In June, ewes had lower (P<0.01) basal and GnRH-induced LH secretion on Day 20 post partum than ewes did on Day 40 post partum. Across month of the year, on Day 20 post partum, ewes lambing in March released more LH in response to GnRH than ewes lambing in January (P=0.07) or June (P<0.05). Response to GnRH on Day 20 post partum was similar for ewes lambing in January or June (P>0.1). Ewes lambing in January released less (P<0.01) LH on Day 40 post partum than ewes lambing in March or June; however, no difference was detected between the latter two groups (P>0.1). Thus, seasonal modifications of the releasable pool of LH may mask or modify the effect of the postpartum interval upon this endocrine response.  相似文献   

16.
Two experiments were conducted with prepuberal gilts at 60, 120 and 160 days of age to a) determine the effect of 6-methoxybenzoxazolinone 6-MBOA) on reproductive plasma hormone concentrations and organ development, and b) determine how plasma follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations before and after injection of gonadotropin-releasing hormone (GnRH) or 6-MBOA varied in relation to ovarian development. In Exp. 1, 12 gilts were used in a 4×4 Latin square design. Four gilts/age group were injected once with: 1) vehicle, 2.5% propylene glycol in 50% ethanol, 2) 2 μg of GnRH/kg body weight (BW), 3) 0.2 mg of 6-MBOA/kg BW, and 4) 2 mg of 6-MBOA/kg BW on four successive days in random order. Blood was collected via indwelling vena cava catheters. Injection of GnRH into gilts increased plasma FSH and LH at each age compared with vehicle (P<0.05). Hormone profiles for FSH and LH differed among age groups (P<0.01), but area under curves did not differ significantly among age groups. Injection of 6-MBOA did not significantly affect plasma FSH and LH. Plasma FSH and LH before the GnRH injection or on days when GnRH was not injected were greater at 60 than at 120 and 160 days (FSH, 128 vs 54 and 42 ng/ml; LH, 0.38 vs 0.16 and 0.13 ng/ml for 60, 120 and 160 days, respectively (P<0.05). In Exp. 2, vehicle, 0.2 or 2 mg of 6-MBOA/kg BW were injected once daily for 7 days in 19 gilts. Injections of 6-MBOA had no detectable effects on gonadotropin secretion, ovarian development or uterine weight. Between 60 and 120 days of age, vesicular follicles developed, ovarian weight increased 20-fold, and uterine weight increased 10-fold (P<0.05); basal concentrations of plasma FSH and LH decreased three- and twofold, respectively.  相似文献   

17.
Changes in the frequency of GnRH and LH pulses have been shown to occur between the luteal and preovulatory periods in the ovine estrous cycle. We examined the effect of these different frequencies of GnRH pulses on pituitary concentrations of LH and FSH subunit mRNAs. Eighteen ovariectomized ewes were implanted with progesterone to eliminate endogenous GnRH release during the nonbreeding season. These animals then received 3 ng/kg body weight GnRH in frequencies of once every 4, 1, or 0.5 h for 4 days. These frequencies represent those observed during the luteal and follicular phases, and the preovulatory LH and FSH surge of the ovine estrous cycle, respectively. On day 4, the ewes were killed and their anterior pituitary glands were removed for measurements of pituitary LH, FSH, and their subunit mRNAs. Pituitary content of LH and FSH, as assessed by RIA, did not change (P greater than 0.10) in response to the three different GnRH pulse frequencies. However, subunit mRNA concentrations, assessed by solution hybridization assays and expressed as femtomoles per mg total RNA, did change as a result of different GnRH frequencies. alpha mRNA concentrations were higher (P less than 0.05) when the GnRH pulse frequency was 1/0.5 h and 1 h, whereas LH beta and FSH beta mRNA concentrations were maximal (P less than 0.05) only at a pulse frequency of 1/h. Additionally, pituitary LH and FSH secretory response to GnRH on day 4 was maximal (P = 0.05) when the pulse infusion was 1/h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The GnRH antagonist cetrorelix was given during the early (Days 1-5), mid (Days 6-10 or 5-12) or for the entire (Days 1-16) luteal phase of mares to inhibit the secretion of FSH and LH (Day 0=ovulation). Frequent blood sampling from Day 6 to Day 14 was used to determine the precise time-course of the suppression (cetrorelix given Days 6-10). Cetrorelix treatment caused a decrease in FSH and LH concentrations by 8 and 16 h, respectively, and an obliteration of the response to exogenous GnRH given 24h after treatment onset. Treatment never suppressed gonadotropin concentrations to undetectable levels; e.g. frequent sampling showed that the nadirs reached in FSH and LH were 46.2±6% and 33.1±11%, respectively, of pre-treatment concentrations. Daily FSH concentrations were decreased in all treatment groups but daily LH concentrations were lower only when treatment commenced at the beginning of the luteal phase; progesterone concentrations depended on the time of cetrorelix administration, but the changes suggested a role for LH in corpus luteum function. The inter-ovulatory interval was longer than controls when cetrorelix was given in the mid- or for the entire luteal phase, but was unaffected by treatment in the early phase. Nevertheless, in all groups, FSH concentrations were higher (P<0.05 when compared to Day 0, subsequent ovulation) approximately 6-10 days before this next ovulation. This consistent relationship suggests a stringent requirement for a GnRH-induced elevation of FSH above a threshold at, but only at, this time; i.e. approximately 6-10 days before ovulation.  相似文献   

19.
Puberty was studied using 15 fillies of Quarter Horse phenotype. Fillies were from dams treated daily from Days 20 to 325 of gestation with: (1) 2 ml neobee oil per 50 kg body weight (controls); or (2) 2 ml altrenogest (2.2 mg/ml) per 50 kg body weight. The clitoris was measured at birth and approximately every 12 weeks until 84 weeks of age. Blood samples were collected from 9 fillies (5 treated, 4 controls) every 4 days over a 28-day period at 8-week intervals from 4 to 68 weeks of age; sampling continued every 4 days after 72 weeks of age until first oestrus. Blood samples were collected daily during oestrus (greater than or equal to 35 mm follicle) and on Days 4, 6, 10, and 14 after ovulation for the first 2 oestrous cycles. GnRH challenges (5 micrograms/kg) were administered every 8 weeks from 32 to 96 weeks of age. Puberty was defined as the first oestrus with ovulation. Beginning 1 February 1987, fillies were teased daily and their ovaries were examined by ultrasonography every 3 days (daily during oestrus). Fillies were inseminated with 500 x 10(6) motile spermatozoa from one stallion. Pregnancy was diagnosed by ultrasonography on Days 11, 12, 15 and every 5 days until Day 50 after ovulation. Prenatal altrenogest treatment caused clitoral enlargement (P less than 0.05) and increased serum concentrations of LH from 1 to 7 months of age. The amount of LH released in response to exogenous GnRH was greater (P less than 0.05) in treated fillies at 32, 64, and 72 weeks of age. Treated fillies had higher serum concentrations of FSH from 1 to 4 months (P less than 0.05), but FSH was lower (P less than 0.05) in treated fillies before and during first oestrus. Serum concentrations of LH and FSH peaked transiently at 10 months and LH was depressed from 64 to 88 weeks and began to rise 14 days before first oestrus. Concentrations of FSH began to decline 14 days before first oestrus. The median age at puberty was 90 weeks. Durations of oestrus, dioestrus, and the oestrous cycle were not different between groups and were similar to those for adult mares. First cycle pregnancy rates and overall rates were 100 and 82% and 100 and 91.7% for control and treated fillies, respectively (P greater than 0.05). Maternal treatment with altrenogest did alter gonadotrophin secretion before puberty, but had no effect on functional reproductive performance in fillies.  相似文献   

20.
Selective elevations of plasma follicle-stimulating hormone (FSH) levels are characteristic of some physiological conditions, such as the early stages of human puberty, and in some disorders of testicular function, such as idiopathic oligospermia. We tested the hypotheses that a slow gonadotropin-releasing hormone (GnRH) pulse frequency favors a selective elevation of plasma FSH and that this is influenced by the circulating steroidal milieu. We administered exogenous GnRH at frequencies of once every 90 min (q 90 min) and once every 240 min (q 240 min) to castrated prepubertal male monkeys who had received either empty (sham) or testosterone (T)-filled Silastic capsules at the time of castration. At the end of each experimental frequency period, mean plasma levels of luteinizing hormone (LH) and FSH were measured. Plasma T levels were also measured. Animals with T implants had plasma levels of this hormone that were in the adult range (approximately equal to 8 ng/ml), whereas those with sham implants had plasma T levels in the prepubertal range (less than or equal to 4 ng/ml). In animals with sham implants, mean plasma FSH levels were markedly elevated at the slower GnRH pulse frequency (39.5 +/- 3.6 ng/ml following GnRH q 240 min compared with 23.7 +/- 2.8 ng/ml following GnRH q 90 min). This selective FSH elevation was not apparent in animals with T implants. Mean plasma LH levels were similar (approximately equal to 8 micrograms/ml) at the two GnRH pulse frequencies, in both T-treated and sham-implanted animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号