首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functions of delta antigens (HDAgs) in the morphogenesis of hepatitis delta virus (HDV) have been studied previously. The C terminus of large HDAg has been shown to complex with the small surface antigen (HBsAg) of helper hepatitis B virus, whereas the assembly of small HDAg requires interaction with the N terminus of large HDAg (M.-F. Chang, C.-J. Chen, and S. C. Chang, J. Virol. 68:646-653, 1994). To further examine the molecular mechanisms by which HDAgs are involved in the assembly of HDV RNA, we have cotransfected Huh-7 cells with plasmids representing a longer than unit-length HDV and the small HBsAg cDNAs. We found that HDAg mRNA could be generated from an endogenous promoter within the HDV cDNA that was translated into large HDAg. Large HDAg is capable of complexing with monomeric HDV genomic RNA to form ribonucleoprotein particles (RNPs) and is capable of forming enveloped HDV-like particles in the presence of small HBsAg without undergoing HDV replication. In addition, the middle region from amino acid residues 89 to 145 of large HDAg is required for assembly of the RNPs but is dispensable for assembly of the enveloped particles. RNA assembly is also demonstrated with small HDAg when it is cotransfected with a packaging-defective large HDAg mutant and small HBsAg. Leu-115 within the putative helix-loop-helix structure of the small HDAg is important for the replication of HDV but is not essential for RNA assembly, suggesting that conformational requirements of small HDAg for replication and assembly of viral RNA may be different. Further studies indicate that a 312-nucleotide linear HDV RNA from one end of the HDV and structure is sufficient to form RNP complexes competent for assembly of virus-like particles with large HDAg and small HBsAg.  相似文献   

2.
C Sureau  B Guerra    H Lee 《Journal of virology》1994,68(6):4063-4066
The hepatitis delta virus (HDV) envelope contains the large (L), middle (M), and small (S) surface proteins encoded by coinfecting hepatitis B virus. Although HDV-like particles can be assembled with only the S protein in the envelope, the L protein is essential for infectivity in vitro (C. Sureau, B. Guerra, and R. Lanford, J. Virol. 67:366-372, 1993). Here, we demonstrate that the M protein, previously described as carrying a site for binding to polymerized human albumin, is not necessary for infectivity. HDV-like particles coated with the S plus L or the S plus M plus L proteins are infectious in primary cultures of chimpanzee hepatocytes. We conclude that the S and L proteins serve two essential functions in the HDV replication cycle; the S protein ensures the export of the HDV genome from an infected cell by forming a particle, and the L protein ensures its import into a human hepatocyte.  相似文献   

3.
Jenna S  Sureau C 《Journal of virology》1999,73(4):3351-3358
The carboxyl-terminal domain of the small (S) envelope protein of hepatitis B virus was subjected to mutagenesis to identify sequences important for the envelopment of the nucleocapsid during morphogenesis of hepatitis delta virus (HDV) virions. The mutations consisted of carboxyl-terminal truncations of 4 to 64 amino acid residues and small combined deletions and insertions spanning the entire hydrophobic domain between residues 163 and 224. Truncation of as few as 14 residues partially inhibited glycosylation and secretion of S and prevented assembly or stability of HDV virions. Short internal combined deletions and insertions were tolerated for secretion of subviral particles with the exceptions of those affecting residues 164 to 173 and 219 to 223. However, mutants competent for subviral particle secretion had a reduced capacity for HDV assembly compared to that of the wild type. One exception was a mutant carrying a deletion of residues 214 to 218, which exhibited a twofold increase in HDV assembly (or stability), whereas deletions of residues 179 to 183, 194 to 198, and 199 to 203 were the most inhibitory. Substitutions of single amino acids between residues 194 and 198 demonstrated that HDV assembly deficiency could be assigned to the replacement of the tryptophan residue at position 196. We concluded that assembly of stable HDV particles requires a specific function of the carboxyl terminus of S which is mediated at least in part by Trp-196.  相似文献   

4.
The hepatitis delta virus (HDV) is coated with large (L), middle (M), and small (S) envelope proteins encoded by coinfecting hepatitis B virus (HBV). To study the role of the HBV envelope proteins in the assembly and infectivity of HDV, we produced three types of recombinant particles in Huh7 cells by transfection with HBV DNA and HDV cDNA: (i) particles with an envelope containing the S HBV envelope protein only, (ii) particles with an envelope containing S and M proteins, and (iii) particles with an envelope containing S, M, and L proteins. Although the resulting S-, SM-, and SML-HDV particles contained both hepatitis delta antigen and HDV RNA, only particles coated with all three envelope proteins (SML) showed evidence of infectivity in an in vitro culture system susceptible to HDV infection. We concluded that the L HBV envelope protein, and more specifically the pre-S1 domain, is important for infectivity of HDV particles and that the M protein, which has been reported to bear a site for binding to polymerized albumin in the pre-S2 domain, is not sufficient for infectivity. Our data also show that the helper HBV is not required for initiation of HDV infection. The mechanism by which the L protein may affect HDV infectivity is discussed herein.  相似文献   

5.
The small hepatitis B virus surface antigen (S-HBsAg) is capable of driving the assembly and secretion of hepatitis delta virus (HDV) particles by interacting with the HDV ribonucleoprotein (RNP). Previously, a specific domain of the S-HBsAg protein carboxyl terminus, including a tryptophan residue at position 196 (W196), was proven essential for HDV maturation (S. Jenna and C. Sureau, J. Virol. 73: 3351-3358, 1999). Mutation of W196 to phenylalanine (W196F) was permissive for HBV subviral particle (SVP) secretion but deleterious to HDV virion assembly. Here, the W196F S-HBsAg deficiency was assigned to a loss of its ability for interaction with the large HDV antigen (L-HDAg), a major component of the RNP. Because the overall S-HBsAg carboxyl terminus is particularly rich in tryptophan, an amino acid frequently involved in protein-protein interactions, site-directed mutagenesis was conducted to investigate the function of the S-HBsAg Trp-rich domain in HDV assembly. Single substitutions of tryptophan between positions 163 and 201 with alanine or phenylalanine were tolerated for SVP secretion, but those affecting W196, W199, and W201 were detrimental for HDV assembly. This was proven to result from a reduced capacity of the mutants for interaction with L-HDAg. In addition, a W196S S-HBsAg mutant, which has been described in HBV strains that arose in a few cases of lamivudine-treated HBV-infected patients, was deficient for HDV assembly as a consequence of its impaired capacity for interacting with L-HDAg. Interestingly, the fact that even the most conservative substitution of phenylalanine for tryptophan at positions 196, 199, or 201 was sufficient to ablate interaction of S-HBsAg with L-HDAg suggests that W196, W199, and W201 are located at a binding interface that is central to HDV maturation.  相似文献   

6.
Huang YH  Wu JC  Hsu SC  Syu WJ 《Journal of virology》2003,77(24):12980-12985
Whether the hepatitis delta virus (HDV) DNA vaccine can induce anti-HDV antibodies has been debatable. The role of the isoprenylated motif of hepatitis delta antigens (HDAg) in the generation of immune responses following DNA-based immunization has never been studied. Plasmids p2577L, encoding large HDAg (L-HDAg), p2577S, expressing small HDAg (S-HDAg), and p25L-211S, encoding a mutant form of L-HDAg with a cysteine-to-serine mutation at codon 211, were constructed in this study. Mice were intramuscularly injected with the plasmids. The anti-HDV antibody titers, T-cell proliferation responses, T-helper responses, and HDV-specific, gamma interferon (IFN-gamma)-producing CD8(+) T cells were analyzed. Animals immunized with p2577S showed a strong anti-HDV antibody response. Conversely, only a low titer of anti-HDV antibodies was detected in mice immunized with p2577L. Epitope mapping revealed that the anti-HDV antibodies generated by p2577L vaccination hardly reacted with epitope amino acids 174 to 194, located at the C terminus of S-HDAg. All of the HDAg-encoding plasmids could induce significant T-cell proliferation responses and generate Th1 responses and HDV-specific, IFN-gamma-producing CD8(+) T cells. In conclusion, HDAg-specific antibodies definitely exist following DNA vaccination. The magnitudes of the humoral immune responses generated by L-HDAg- and S-HDAg-encoding DNA vaccines are different. The isoprenylated motif can mask epitope amino acids 174 to 195 of HDAg but does not interfere with cellular immunity following DNA-based immunization. These findings are important for the choice of a candidate HDV DNA vaccine in the future.  相似文献   

7.
Hepatitis delta virus (HDV) particles are coated with the large (L), middle (M), and small (S) hepatitis B virus envelope proteins. In the present study, we constructed glycosylation-defective envelope protein mutants and evaluated their capacity to assist in the maturation of infectious HDV in vitro. We observed that the removal of N-linked carbohydrates on the S, M, and L proteins was tolerated for the assembly of subviral hepatitis B virus (HBV) particles but was partially inhibitory for the formation of HDV virions. However, when assayed on primary cultures of human hepatocytes, virions coated with S, M, and L proteins lacking N-linked glycans were infectious. Furthermore, in the absence of M, HDV particles coated with nonglycosylated S and L proteins retained infectivity. These results indicate that carbohydrates on the HBV envelope proteins are not essential for the in vitro infectivity of HDV.  相似文献   

8.
The hepatitis delta virus (HDV) genome is a circular, single-stranded, rod-shaped, 1.7-kb RNA that replicates via a rolling-circle mechanism. Viral ribozymes function to cleave replication intermediates which are then ligated to generate the circular product. HDV expresses two forms of a single protein, the small and large delta antigens (delta Ag-S and delta Ag-L), which associate with viral RNA in a ribonucleoprotein (RNP) structure. While delta Ag-S is required for RNA replication, delta Ag-L inhibits this process but promotes the assembly of the RNP into mature virions. In this study, we have expressed full-length and deleted HDV RNA inside cells to determine the minimal RNA sequences required for self-cleavage, ligation, RNP packaging, and virion assembly and to assess the role of either delta antigen in each of these processes. We report the following findings. (i) The cleavage and ligation reactions did not require either delta antigen and were not inhibited in their presence. (ii) delta Ag-L, in the absence of delta Ag-S, formed an RNP with HDV RNA which could be assembled into secreted virus-like particles. (iii) Full-length HDV RNAs were stabilized in the presence of either delta antigen and accumulated to much higher levels than in their absence. (iv) As few as 348 nucleotides of HDV RNA were competent for circle formation, RNP assembly, and incorporation into virus-like particles. (v) An HDV RNA incapable of folding into the rod-like structure was not packaged by delta Ag-L.  相似文献   

9.
S B Hwang  M M Lai 《Journal of virology》1993,67(12):7659-7662
Hepatitis delta antigen (HDAg) consists of two protein species of 195 and 214 amino acids, respectively, which are identical in sequence except that the large HDAg has additional 19 amino acids at its C terminus and is prenylated. Previous studies have shown that the large HDAg and the surface antigen of hepatitis B virus (HBsAg) together can form empty hepatitis delta virus (HDV) particles. To understand the molecular mechanism of HDV virion morphogenesis, we investigated the possible direct protein-protein interaction between HDAg and HBsAg. We constructed recombinant baculoviruses expressing the major form of HBsAg and various mutant HDAgs and used these proteins for far-Western protein binding assays. We demonstrated that HBsAg interacted specifically with the large HDAg but not with the small HDAg. Using mutant HDAgs which have defective or aberrant prenylation, we showed that this interaction required isoprenylates on the cysteine residue of the C terminus of the large HDAg. Isoprenylation alone, without the remainder of the C-terminal amino acids of the large HDAg, was insufficient to mediate interaction with HBsAg. This study demonstrates a novel role of prenylates in HDV virion assembly.  相似文献   

10.
11.
Blanchet M  Sureau C 《Journal of virology》2006,80(24):11935-11945
The hepatitis B virus (HBV) envelope proteins have the ability to assemble three types of viral particles, (i) the empty subviral particles (SVPs), (ii) the mature HBV virions, and (iii) the hepatitis delta virus (HDV) particles, in cells that are coinfected with HBV and HDV. To gain insight into the function of the HBV envelope proteins in morphogenesis of HBV or HDV virions, we have investigated subdomains of the envelope proteins that have been shown or predicted to lie at the cytosolic face of the endoplasmic reticulum membrane during synthesis, a position prone to interaction with the inner core structure. These domains, referred to here as cytosolic loops I and II (CYL-I and -II, respectively), were subjected to mutagenesis. The mutations were introduced in the three HBV envelope proteins, designated small, middle, and large (S-HBsAg, M-HBsAg, and L-HBsAg, respectively). The mutants were expressed in HuH-7 cells to evaluate their capacity for self-assembly and formation of HBV or HDV virions when HBV nucleocapsid or HDV ribonucleoprotein, respectively, was provided. We found that SVP-competent CYL-I mutations between positions 23 and 78 of the S domain were permissive to HBV or HDV virion assembly. One mutation (P29A) was permissive for synthesis of the S- and M-HBsAg but adversely affected the synthesis or stability of L-HBsAg, thereby preventing the assembly of HBV virions. Furthermore, using an in vitro infection assay based on the HepaRG cells and the HDV model, we have shown that particles coated with envelope proteins bearing CYL-I mutations were fully infectious, hence indicating the absence of an infectivity determinant in this region. Finally, we demonstrated that the tryptophan residues at positions 196, 199, and 201 in CYL-II, which were shown to exert a matrix function for assembly of HDV particles (I. Komla-Soukha and C. Sureau, J. Virol. 80:4648-4655, 2006), were dispensable for both assembly and infectivity of HBV virions.  相似文献   

12.
The large hepatitis delta antigen (HDAg-L) mediates hepatitis delta virus (HDV) assembly and inhibits HDV RNA replication. Farnesylation of the cysteine residue within the HDAg-L carboxyl terminus is required for both functions. Here, HDAg-L proteins from different HDV genotypes and genotype chimeric proteins were analyzed for their ability to incorporate into virus-like particles (VLPs). Observed differences in efficiency of VLP incorporation could be attributed to genotype-specific differences within the HDAg-L carboxyl terminus. Using a novel assay to quantify the extent of HDAg-L farnesylation, we found that genotype 3 HDAg-L was inefficiently farnesylated when expressed in the absence of the small hepatitis delta antigen (HDAg-S). However, as the intracellular ratio of HDAg-S to HDAg-L was increased, so too was the extent of HDAg-L farnesylation for all three genotypes. Single point mutations within the carboxyl terminus of HDAg-L were screened, and three mutants that severely inhibited assembly without affecting farnesylation were identified. The observed assembly defects persisted under conditions where the mutants were known to have access to the site of VLP assembly. Therefore, the corresponding residues within the wild-type protein are likely required for direct interaction with viral envelope proteins. Finally, it was observed that when HDAg-S was artificially myristoylated, it could efficiently inhibit HDV RNA replication. Hence, a general association with membranes enables HDAg to inhibit replication. In contrast, although myristoylated HDAg-S was incorporated into VLPs far more efficiently than HDAg-S or nonfarnesylated HDAg-L, it was incorporated far less efficiently than wild-type HDAg-L; thus, farnesylation was required for efficient assembly.  相似文献   

13.
This study demonstrates that the envelope proteins of hepatitis B virus (HBV) could be incorporated into the lipid membrane of lentivirus pseudotype particles. The assembly procedure was initiated by the transfection of 293T cells with three plasmids: (i) a human immunodeficiency virus (HIV) packaging construct, (ii) a transfer plasmid expressing a reporter gene, and (iii) a plasmid expressing large (L), middle (M), and small (S) HBV envelope proteins. After 2 days, hepatitis B surface antigen and the antigenic forms of L, M, and S were detected at the cell surface by flow cytometry. Also, virus particles that were able to infect cultured primary human hepatocytes (PHH) were released. Under optimal conditions, 50% of PHH could be infected. In addition, the susceptibility of PHH and the resistance of other cell types to the pseudotype particles were similar to those observed for HBV and hepatitis delta virus (HDV), which shares the same L, M, and S. Furthermore, the infection of PHH by the pseudotype was sensitive to known inhibitors of HBV and HDV entry. These findings of specific and efficient infection of hepatocytes could be applicable to liver-specific gene therapy and may help clarify the attachment and entry mechanism used by HBV and HDV.  相似文献   

14.
Assembly of hepatitis delta virus particles.   总被引:25,自引:22,他引:3       下载免费PDF全文
W S Ryu  M Bayer    J Taylor 《Journal of virology》1992,66(4):2310-2315
Hepatitis delta virus (HDV) is a subviral satellite of hepatitis B virus (HBV). Since the RNA genome of HDV can replicate in cultured cells in the absence of HBV, it has been suggested that the only helper function of HBV is to supply HBV coat proteins in the assembly process of HDV particles. To examine the factors involved in such virion assembly, we transiently cotransfected cells with various hepadnavirus constructs and cDNAs of HDV and analyzed the particles released into the medium. We report that the HDV genomic RNA and the delta antigen can be packaged by coat proteins of either HBV or the related hepadnavirus woodchuck hepatitis virus (WHV). Among the three co-carboxy-terminal coat proteins of WHV, the smallest form was sufficient to package the HDV genome; even in the absence of HDV RNA, the delta antigen could be packaged by this WHV coat protein. Also, of the two co-amino-terminal forms of the delta antigen, only the larger form was essential for packaging.  相似文献   

15.
Huang C  Chang SC  Yu IC  Tsay YG  Chang MF 《Journal of virology》2007,81(11):5985-5994
Clathrin-mediated endocytosis is a common pathway for viral entry, but little is known about the direct association of viral protein with clathrin in the cytoplasm. In this study, a putative clathrin box known to be conserved in clathrin adaptors was identified at the C terminus of the large hepatitis delta antigen (HDAg-L). Similar to clathrin adaptors, HDAg-L directly interacted with the N terminus of the clathrin heavy chain through the clathrin box. HDAg-L is a nucleocytoplasmic shuttle protein important for the assembly of hepatitis delta virus (HDV). Here, we demonstrated that brefeldin A and wortmannin, inhibitors of clathrin-mediated exocytosis and endosomal trafficking, respectively, specifically blocked HDV assembly but had no effect on the assembly of the small surface antigen of hepatitis B virus. In addition, cytoplasm-localized HDAg-L inhibited the clathrin-mediated endocytosis of transferrin and the degradation of epidermal growth factor receptor. These results indicate that HDAg-L is a new clathrin adaptor-like protein, and it may be involved in the maturation and pathogenesis of HDV coinfection or superinfection with hepatitis B virus through interaction with clathrin.  相似文献   

16.
T S Yeh  S J Lo  P J Chen    Y H Lee 《Journal of virology》1996,70(9):6190-6198
Hepatitis delta virus (HDV) contains two virus-specific delta antigens (HDAgs), large and small forms, which are identical in sequence except that the large one contains 19 extra amino acids at the C terminus. HDAgs are nuclear phosphoproteins with distinct biological functions; the small form activates HDV RNA replication, whereas the large form suppresses this process but is required for viral particle assembly. In this study, we have characterized the phosphorylative property of HDAg in a human hepatoma cell line (HuH-7) and examined the role of phosphorylation in HDAg function. As demonstrated by in vivo labeling and kinase inhibitor experiments, the phosphorylation levels of both HDAgs were diminished by the inhibitor of casein kinase II (CKII). Nevertheless, phosphorylation of only the small form could be markedly reduced by the protein kinase C (PKC) inhibitor, suggesting different phosphorylation properties between the two HDAgs. When these two kinase inhibitors were added separately to the transient-expression system, HDV RNA replication was profoundly suppressed. In contrast, the inhibitors did not affect the assembly of empty HDAg particle from HDAgs and hepatitis B virus surface antigen. To further examine the role of phosphorylation in HDAg function, two conservative CKII recognition sites at Ser-2 and Ser-123 of both HDAgs and one potential PKC recognition site at Ser-210 of the large HDAg were altered to alanine by site-directed mutagenesis. Transfection experiments indicated that mutation at Ser-2, but not Ser-123, significantly impaired the activity of the small HDAg in assisting HDV RNA replication. This property is in accordance with our observation that Ser-2, not Ser-123, was the predominant CKII phosphorylation site in the small HDAg. Our studies also excluded the possibility that the phosphorylation of Ser-2, Ser-123, or Ser-210, had roles in the trans-suppression activity of the large HDAg, in the assembly of empty virus-like HDAg particle, and in the nuclear transport of HDAgs. In conclusion, our results indicate that both CKII and PKC positively modulate HDV RNA replication but not the assembly of empty HDAg particle. The role of CKII in HDV replication may at least in part be accounted for by the phosphorylation of Ser-2 in the small HDAg. The effect of PKC on HDV RNA replication is, however, not to mediate the phosphorylation of the conservative Ser-210 in the large HDAg but rather to act on as-yet-unidentified Ser or Thr residues in the small HDAg or cellular factors. These findings provide the first insight into the roles of phosphorylation of the two HDAgs in the HDV replication cycle.  相似文献   

17.
Efficient assembly of hepatitis delta virus (HDV) was achieved by cotransfection of Huh7 cells with two plasmids: one to provide expression of the large, middle, and small envelope proteins of hepatitis B virus (HBV), the natural helper of HDV, and another to initiate replication of the HDV RNA genome. HDV released into the media was assayed for HDV RNA and HBV envelope proteins and characterized by rate-zonal sedimentation, immunoaffinity purification, electron microscopy, and the ability to infect primary human hepatocytes. Among the novel findings were that (i) immunostaining for delta antigen 6 days after infection with 300 genome equivalents (GE) per cell showed only 1% of cells as infected, but this was increased to 16% when 5% polyethylene glycol was present during infection; (ii) uninfected cells did not differ from infected cells in terms of albumin accumulation or the presence of E-cadherin at cell junctions; and (iii) sensitive quantitative real-time PCR assays detected HDV replication even when the multiplicity of infection was 0.2 GE/cell. In the future, this HDV assembly and infection system can be further developed to better understand the mechanisms shared by HBV and HDV for attachment and entry into host cells.  相似文献   

18.
Hepatitis delta virus (HDV) particles were produced in Huh7 human hepatoma cells by transfection with cloned hepatitis B virus (HBV) DNA and HDV cDNA. The particles were characterized by their buoyant density, the presence of encapsidated viral RNA, and their ability to infect primary cultures of chimpanzee hepatocytes. Successful infection was evidenced by the appearance of increasing amounts of intracellular HDV RNA after exposure to particles. Infection was prevented when particles were incubated with antibodies directed against synthetic peptides specific for epitopes of the pre-S1 or pre-S2 domains of the HBV envelope proteins before exposure to hepatocytes. These data demonstrate that HDV particles produced in vitro are infectious and indicate (i) that infectious particles are coated with HBV envelope proteins that contain the pre-S1 and pre-S2 regions, (ii) that epitopes of the pre-S1 and pre-S2 domains of HBV envelope proteins are exposed at the surface of HDV particles, and (iii) that antibodies directed against those epitopes have neutralizing activity against HDV.  相似文献   

19.
Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus, as it requires hepatitis B virus for virion production and transmission. We have previously demonstrated that sequences within the C-terminal 19-amino acid domain flanking the isoprenylation motif of the large hepatitis delta antigen (HDAg-L) are important for virion assembly. In this study, site-directed mutagenesis and immunofluorescence staining demonstrated that in the absence of hepatitis B virus surface antigen (HBsAg), the wild-type HDAg-L was localized in the nuclei of transfected COS7 cells. Nevertheless, in the presence of HBsAg, the HDAg-L became both nuclei- and cytoplasm-distributed in about half of the cells. An HDAg-L mutant with a substitution of Pro-205 to alanine could neither form HDV-like particles nor shift the subcellular localization in the presence of HBsAg. In addition, nuclear trafficking of HDAg-L in heterokaryons indicated that HDAg-L is a nucleocytoplasmic shuttling protein. A proline-rich HDAg peptide spanning amino acid residues 198 to 210, designated NES(HDAg-L), can function as a nuclear export signal (NES) in Xenopus oocytes. Pro-205 is critical for the NES function. Furthermore, assembly of HDV is insensitive to leptomycin B, indicating that the NES(HDAg-L) directs nuclear export of HDAg-L to the cytoplasm via a chromosome region maintenance 1-independent pathway.  相似文献   

20.
We have previously established that isoprenylation of the prostacyclin receptor (IP) is required for its efficient G protein coupling and effector signaling (Hayes, J. S., Lawler, O. A., Walsh, M. T., and Kinsella, B. T. (1999) J. Biol. Chem. 274, 23707-23718). In the present study, we sought to investigate whether the IP may actually be subject to palmitoylation in addition to isoprenylation and to establish the functional significance thereof. The human (h) IP was efficiently palmitoylated at Cys(308) and Cys(311), proximal to transmembrane domain 7 within its carboxyl-terminal (C)-tail domain, whereas Cys(309) was not palmitoylated. The isoprenylation-defective hIP(SSLC) underwent palmitoylation but did not efficiently couple to G(s) or G(q), confirming that isoprenylation is required for G protein coupling. Deletion of C-tail sequences distal to Val(307) generated hIP(Delta307) that was neither palmitoylated nor isoprenylated and did not efficiently couple to G(s) or to G(q), whereas hIP(Delta312) was palmitoylated and ably coupled to both effector systems. Conversion of Cys(308), Cys(309), Cys(311), Cys(308,309), or Cys(309,311) to corresponding Ser residues, while leaving the isoprenylation CAAX motif intact, did not affect hIP coupling to G(s) signaling, whereas mutation of Cys(308,311) and Cys(308,309,311) abolished signaling, indicating that palmitoylation of either Cys(308) or Cys(311) is sufficient to maintain functional G(s) coupling. Although mutation of Cys(309) and Cys(311) did not affect hIP-mediated G(q) coupling, mutation of Cys(308) abolished signaling, indicating a specific requirement for palmitoylation of Cys(308) for G(q) coupling. Consistent with this, neither hIP(C308S,C309S), hIP(C308S,C311S), nor hIP(C308S,C309S,C311S) coupled to G(q). Taken together, these data confirm that the hIP is isoprenylated and palmitoylated, and collectively these modifications modulate its G protein coupling and effector signaling. We propose that through lipid modification followed by membrane insertion, the C-tail domain of the IP may contain a double loop structure anchored by the dynamically regulated palmitoyl groups proximal to transmembrane domain 7 and by a distal farnesyl isoprenoid permanently attached to its carboxyl terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号